
1

oVirt Scheduler
Deep Dive

2

Agenda

● Intro

● Modules & Code Samples
● Filter
● Weight Module
● Load Balance

● Implementation & Flows
● Engine
● External Scheduling Proxy

3

Intro
The need

Re: [Users] How to define max number of running VMs on a host?

….

I have 4 graphic workstations with 3 graphic cards on each. I wanna
passthrough graphic cards to the VMs one by one, since one workstation
has only 3 cards, I must limit the number of running VM on a host to 3.

4

Intro
● Current oVirt Scheduler

● Executes the selected distribution algorithm on the
cluster:

● Even Distribution
● Power Saving

● Selects a host to run/migrate VM on.
● Balance: Selects a VM to migrate and Host to migrate

to.
● Only 2 distribution algorithms, taking into consideration

only CPU usage
● No way to construct a user defined scheduling policy

5

Intro
● The New Model*

*Uses Nova Scheduling concepts.

Host 1 Host 2 Host 3 Host 4

Host 1 Host 2 Host 4

Host 2 Host 4

Host 2 Host 4

func 1 func 2 sum

Factor 5 2

Host 2 10 2 54

Host 4 3 12 39*

*Host 4 sum: 3*5+12*2 = 39

6

Filter Module
● The New Model

Host 1 Host 2 Host 3 Host 4

Host 1 Host 2 Host 4

Host 2 Host 4

Host 2 Host 4

func 1 func 2 sum

Factor 5 2

Host 2 10 2 54

Host 4 3 12 39*

*Host 4 sum: 3*5+12*2 = 39

7

Filter Module

● A basic logic unit which filters out hypervisors who do
not satisfy the hard constraints for placing a given VM

● Clear cut logic
● Easy to write and maintain
● Chained up-dependently to allow complete filtering
● Allows custom parameters

● Existing logic (pin-to-host, memory limitations, etc.) is
translated into filters

● External filters written in python can be loaded into
engine.

8

Let's go back to the example

Re: [Users] How to define max number of running VMs on a host?

….

I have 4 graphic workstations with 3 graphic cards on each. I wanna
passthrough graphic cards to the VMs one by one, since one workstation
has only 3 cards, I must limit the number of running VM on a host to 3.

9

Let's go back to the example

Re: [Users] How to define max number of running VMs on a host?

….

I have 4 graphic workstations with 3 graphic cards on each. I wanna
passthrough graphic cards to the VMs one by one, since one workstation
has only 3 cards, I must limit the number of running VM on a host to 3.

Filter: filters out hosts with number running of vms > 3

10

Filter Sample (python)

11

Filter Sample (python)

12

Filter Sample (python)

13

Filter Sample (python)

14

Filter Sample (python)

15

Filter Sample (Java)

* getEffectiveCpuCores(): checks whether threads count as cores

16

Filter Sample (Java)

* getEffectiveCpuCores(): checks whether threads count as cores

17

● The New Model

Host 1 Host 2 Host 3 Host 4

Host 1 Host 2 Host 4

Host 2 Host 4

Host 2 Host 4

func 1 func 2 sum

Factor 5 2

Host 2 10 2 54

Host 4 3 12 39*

*Host 4 sum: 3*5+12*2 = 39

Weight Module

18

Weight Module

● The Weight Module scores each host according to its
logic

● Lowest weight is the most preferable candidate

● Weights can be prioritized using Factors; default factor
is 1

● Ultimately, we will construct a cost table, which will
order the hosts (we will try to run the VM on the best
host)

19

Weight Module (cont.)

● Predefined Weight Modules:
● Even Distribution

● Each host weight will be scored according to CPU load, SPMs
will be scored higher.

● Power Saving
● Define Max_Weight
● if (no VMs on Host) → Max_Weight
● Else (Max_Weight – Even_Distribution_Weight)

● External Weight Modules written in python can be loaded
into engine.

20

Weight module Sample

21

Weight module Sample

22

Weight module Sample

23

Load Balancing

● Triggers a scheduled task to determine which VM
needs to be migrated to one of under-utilized hosts

● A single load balancing logic is allowed per cluster

Load balance
VM

Under-utilized Hosts
Migrate VM

schedule

Selected Host
VM

White List

24

Load Balancing (cont.)

● For backward compatibility we have 2 predefined Load
Balancing algorithms

● Even Distribution:
● Calculates over-utilized and under-utilized hosts according to

upper CPU load threshold
● Select a VM out of the over-utilized hosts.
● Pass VM and under-utilized hosts to the scheduler
● migrate VM to the host selected by the scheduler

● Power Saving:
● Same as Even Distribution, but with a second

threshold for low CPU load
● External load balancing written in python can be loaded

into engine

25

Load Balance (Sample)

… same as previous

26

Load Balance (Sample)

… same as previous

27

Load Balance (Sample)

… same as previous

29

Q&A
for 1st part*?

* Coming up: internal implementation...

30

Engine Implementation:
Policy Unit

● New Entity

● Basic logical building block for scheduling, a set of
policy units construct a cluster policy

● Holds meta-data for a single policy logic:
● Each logic can represent Filter or Weight or balancing

module
● Internal policy units (pin to host, memory, etc.) are

predefined

31

Policy Unit (cont.)

● Structure
● name (based on class name)
● description (used for tool-tips)
● type: filter/weight module/load balancing
● is_internal: represents either internal or external units.
● Allow custom properties per unit

(key1=regex1;key2=regex2)
● In case there is inconsistency between external units to

DB stored (and used) units, the unit is marked as
disabled.

32

Cluster Policy

● New Entity

● Holds a collection of policy units to form a cluster's
scheduling policy

● Each cluster policy can be attached to multiple
clusters, and its custom parameters can be overridden

● Former policies (None, Evenly Distribution and Power
Saving) are migrated to the new arch as predefined
cluster policies

33

Cluster Policy (cont.)

● Structure
● name
● description
● list of filters

● Execution order is insignificant
● Optional: Filter position (one filter may be set to run first,

and one last)
● list of weight modules and factors
● single load balancing logic
● allows to set custom properties per policy according to

policy units.
● is_locked

34

Cluster Policy Management

35

Attach Cluster Policy

36

Scheduling Manager

● We define a new singleton object, SchedulingManager

● Responsible for all scheduling activities

● Initialize scheduled Load Balancing Task

● According to engine configuration (enabled, interval)
● Serves run/migrate VM scheduling requests

● Loads and holds policy units and cluster policies

● Interacts with external scheduler proxy

37

Scheduling Manager (cont.)

● Loads Policy Units & cluster policies
● Loads from DB all stored entities to memory maps.
● External (if needed):

● Run Discover command (in a separate thread) to
fetch all available external policy units.

● Compares loaded policy units with discovered
ones.
● Missing modules mark as disabled.
● New are added to DB.
● Modified are updated in DB.

● Refresh policy units in memory cache.

38

Flow: Schedule Request

Migrate/Run VM

SchedulingManager.Schedule()

VM
Host Black List
Host White List

Destination Host

Handle destination host

Locks VM's cluster

Construct initial hosts list

 Release lock and return best Host

Run Filters (internal then external)

Weights (internal then external)
Build Cost Table

39

DB Upgrade

● Insert predefined policy units

● Insert Predefined Cluster Policies for Even Distribution,
Power Saving and No Balancing

● Each predefined cluster policy is made of internal policy
units

● Each cluster will point to a cluster policy according to
its selection algorithm.

● Other selection algorithm parameters will be migrated
to a properties map.

40

External Scheduler

● External service written in python and run as a
separate process from the engine

● Why do we need it?
● Engine safety
● Should allow other languages
● Going forward we may suggest SaaS (Scheduling as a

Service)

41

External Scheduler (cont.)

● Packaged as ovirt-scheduler-proxy RPM, which is
optional (not installed by default).

● Initialization
● Service Start
● Analyze
● Publishing Internal API (Starting XML-RPC Server)
● Waiting for engine calls

● Discover
● ...

42

External Code Representation

● Init:
● Scan /usr/share/ovirt-

scheduler-proxy/plugins for
*.py
● Analyze for

filters/weights/balance
● Cache results

● Discover: return cached results

43

External Scheduler (cont.)

● RunFilters (or Weights/Balance)
● Filters names
● UUIDs as parameters, args_map

● Start process for each Filter
● Pass parameters in process initialization
● Wait (with timeout) for process
● Communicate using stdout/stderr to get results

● Aggregate results for all processes

● Return result to engine

45

Future

● Schedule multiple VMs

● Loadable Java plug-ins

● SaaS: Scheduling as a service, which will allow us
several scheduling services

46

Q&A

Thank you :-)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 45
	Slide 46

