It parses a fitted 'R' model object, and returns a formula in
    'Tidy Eval' code that calculates the predictions.  It works with
    several databases back-ends because it leverages 'dplyr' and 'dbplyr'
    for the final 'SQL' translation of the algorithm. It currently
    supports lm(), glm(), randomForest(), ranger(), earth(),
    xgb.Booster.complete(), cubist(), and ctree() models.
| Version: | 
0.5.1 | 
| Depends: | 
R (≥ 3.6) | 
| Imports: | 
cli, dplyr (≥ 0.7), generics, knitr, purrr, rlang (≥ 1.1.1), tibble, tidyr | 
| Suggests: | 
covr, Cubist, DBI, dbplyr, earth (≥ 5.1.2), methods, mlbench, modeldata, nycflights13, parsnip, partykit, randomForest, ranger, rmarkdown, RSQLite, testthat (≥ 3.2.0), xgboost, yaml | 
| Published: | 
2024-12-19 | 
| DOI: | 
10.32614/CRAN.package.tidypredict | 
| Author: | 
Emil Hvitfeldt [aut, cre],
  Edgar Ruiz [aut],
  Max Kuhn [aut] | 
| Maintainer: | 
Emil Hvitfeldt  <emil.hvitfeldt at posit.co> | 
| BugReports: | 
https://github.com/tidymodels/tidypredict/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://tidypredict.tidymodels.org,
https://github.com/tidymodels/tidypredict | 
| NeedsCompilation: | 
no | 
| Materials: | 
README, NEWS  | 
| In views: | 
ModelDeployment | 
| CRAN checks: | 
tidypredict results |