smashr: Smoothing by Adaptive Shrinkage

Fast, wavelet-based Empirical Bayes shrinkage methods for signal denoising, including smoothing Poisson-distributed data and Gaussian-distributed data with possibly heteroskedastic error. The algorithms implement the methods described Z. Xing, P. Carbonetto & M. Stephens (2021) <https://jmlr.org/papers/v22/19-042.html>.

Version: 1.3-12
Depends: R (≥ 3.1.1)
Imports: utils, stats, data.table, caTools, wavethresh, ashr, Rcpp (≥ 1.1.0)
LinkingTo: Rcpp
Suggests: knitr, rmarkdown, MASS, EbayesThresh, testthat
Published: 2025-12-15
DOI: 10.32614/CRAN.package.smashr (may not be active yet)
Author: Zhengrong Xing [aut], Matthew Stephens [aut], Kaiqian Zhang [ctb], Daniel Nachun [ctb], Guy Nason [cph], Stuart Barber [cph], Tim Downie [cph], Piotr Frylewicz [cph], Arne Kovac [cph], Todd Ogden [cph], Bernard Silverman [cph], Peter Carbonetto [aut, cre]
Maintainer: Peter Carbonetto <pcarbo at uchicago.edu>
BugReports: https://github.com/stephenslab/smashr/issues
License: GPL (≥ 3)
Copyright: file COPYRIGHTS
smashr copyright details
URL: https://github.com/stephenslab/smashr
NeedsCompilation: yes
Citation: smashr citation info
Materials: README
CRAN checks: smashr results

Documentation:

Reference manual: smashr.html , smashr.pdf

Downloads:

Package source: smashr_1.3-12.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): smashr_1.3-12.tgz, r-oldrel (arm64): smashr_1.3-12.tgz, r-release (x86_64): smashr_1.3-12.tgz, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=smashr to link to this page.