Type: | Package |
Title: | The Marshal–Olkin Generalized Inverse Weibull Distribution |
Version: | 0.1.0 |
Maintainer: | Atchanut Rattanalertnusorn <atchanut_r@rmutt.ac.th> |
Description: | Density, distribution function, quantile function, and random generation function based on Salem, H. M. (2019)<doi:10.5539/mas.v13n2p54>. In addition, a numerical method for maximum likelihood estimation is provided. |
License: | GPL-3 |
Language: | en-US |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Imports: | stats |
Suggests: | testthat (≥ 3.0.0) |
NeedsCompilation: | no |
Packaged: | 2025-09-04 08:02:00 UTC; User |
Author: | Atchanut Rattanalertnusorn [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2025-09-09 14:10:07 UTC |
Marshall–Olkin Generalized Inverse Weibull Distribution (MOGIW)
Description
Density, distribution function, quantile function, and random generation function
for the MOGIW distribution with four parameters (alpha
, beta
, lambda
, and beta
).
See details in references (Salem, 2019).
Usage
dMOGIW(x, alpha, beta, lambda, theta, log = FALSE)
pMOGIW(q, alpha, beta, lambda, theta, lower.tail = TRUE, log.p = FALSE)
qMOGIW(p, alpha, beta, lambda, theta, lower.tail = TRUE, log.q = FALSE)
rMOGIW(n, alpha, beta, lambda, theta)
Arguments
x , q |
vector of quantile. |
alpha |
scale parameter of the Generalized Inverse Weibull Distribution (GIW), where |
beta |
shape parameter#1 of the Generalized Inverse Weibull Distribution (GIW), where |
lambda |
shape parameter#2 of the Generalized Inverse Weibull Distribution (GIW), where |
theta |
Marshall–Olkin parameter, where |
log , log.p , log.q |
logical; (default = |
lower.tail |
logical; if |
p |
vector of probabilities. |
n |
number of observations. If |
Value
dMOGIW
gives the density,
pMOGIW
gives the distribution function,
qMOGIW
gives the quantile function
and rMOGIW
generates random samples.
References
Salem, H. M. (2019). The Marshall–Olkin Generalized Inverse Weibull Distribution: Properties and Application. Modern Applied Science, 13(2), 54. doi:10.5539/mas.v13n2p54
Examples
x <- seq(0.5,4,by=0.1)
dMOGIW(x,1,3,2,3)
p<- pMOGIW(q=x,1,3,2,3)
q<- qMOGIW(p,1,3,2,3)
q
rMOGIW(10,1,3,2,3)
x <- seq(0.5,4,by=0.1)
dMOGIW(x,1,3,2,3) #or dMOGIW(x,alpha=1,beta=3,lambda=2,theta=3)
dMOGIW(x,1,3,2,3,log=TRUE) #or dMOGIW(x,alpha=1,beta=3,lambda=2,theta=3,log=TRUE)
q <- seq(1,4,by=0.1)
pMOGIW(q,1,3,2,3) #or pMOGIW(q,1,3,2,3,lower.tail = TRUE)
pMOGIW(q,1,3,2,3,lower.tail = FALSE)
q <- seq(0.5,1.5,by=0.01)
p <- pMOGIW(q,1,3,2,3)
x <- qMOGIW(p,1,3,2,3)
x <- rMOGIW(10,1,3,2,3)
x
Numerical method for maximum likelihood estimation
Description
In maximum likelihood estimation, if the Hessian matrix is difficult to obtain, Numerical method (means an iteration optimization method) will be used to obtain the model parameter.
Usage
mleMOGIW(x, param, method = "L-BFGS-B")
Arguments
x |
vector of data. |
param |
inintial four parameters ( |
method |
a numerical method for maximum likelihood estimation, a default method is "L-BFGS-B", the other specify "BFGS" |
Value
outout
is a list of variables as follows:
est_param
gives the estimated four parameters,
neg_likelihood
gives the negative-log-likelihood value,
code_conversgence
is code of convergence, if 0
, convergence , otherwise, divergence.
num_method
is numerical method, a default method is "L-BFGS-B"
References
Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algorithm 778: L-BFGS-B. ACM Transactions on Mathematical Software, 23(4), 550–560. https://doi.org/10.1145/279232.279236.
Examples
y <- rMOGIW(100,1,3,2,3)
pars <- c(alpha=1, beta=3, lambda=2, theta=3)
mleMOGIW(x=y,param=pars,method = "L-BFGS-B")