hdme: High-Dimensional Regression with Measurement Error
Penalized regression for generalized linear models for
  measurement error problems (aka. errors-in-variables). The package
  contains a version of the lasso (L1-penalization) which corrects
  for measurement error (Sorensen et al. (2015) <doi:10.5705/ss.2013.180>). 
  It also contains an implementation of the Generalized Matrix Uncertainty 
  Selector, which is a version the (Generalized) Dantzig Selector for the 
  case of measurement error (Sorensen et al. (2018) <doi:10.1080/10618600.2018.1425626>).
| Version: | 
0.6.0 | 
| Imports: | 
glmnet (≥ 3.0.0), ggplot2 (≥ 2.2.1), Rdpack, Rcpp (≥
0.12.15), Rglpk (≥ 0.6-1), rlang (≥ 1.0), stats | 
| LinkingTo: | 
Rcpp, RcppArmadillo | 
| Suggests: | 
knitr, rmarkdown, testthat, dplyr, tidyr, covr | 
| Published: | 
2023-05-16 | 
| DOI: | 
10.32614/CRAN.package.hdme | 
| Author: | 
Oystein Sorensen  
    [aut, cre] | 
| Maintainer: | 
Oystein Sorensen  <oystein.sorensen.1985 at gmail.com> | 
| License: | 
GPL-3 | 
| URL: | 
https://github.com/osorensen/hdme | 
| NeedsCompilation: | 
yes | 
| Citation: | 
hdme citation info  | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
hdme results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=hdme
to link to this page.