Package ‘fdp’

November 4, 2025

Title f-Differential Privacy and Gaussian Differential Privacy
Version 1.0.0

Description Constructs and visualises trade-off functions for f-differential
privacy (f-DP) as introduced by Dong et al. (2022) <doi:10.1111/rssb.12454>.
Supports Gaussian differential privacy, the f-DP generalisation of
(epsilon, delta)-differential privacy, and accepts user-specified optimal
type I/ type II errors from which the lower convex hull trade-off function
is automatically constructed.

URL https://fdp.louisaslett.com/

BugReports https://github.com/louisaslett/fdp/issues
License GPL (>=3)

Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>=4.1.0)

Imports cli, ggplot2, rlang

NeedsCompilation no

Author Louis Aslett [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-2211-233X>)

Maintainer Louis Aslett <louis.aslett@durham.ac.uk>
Repository CRAN
Date/Publication 2025-11-04 19:00:07 UTC

Contents

+fdp_plot e
epsdelta L. e e
est_epsdelta
est_gdp e
fdp . . . e e
fdp_attributes

https://doi.org/10.1111/rssb.12454
https://fdp.louisaslett.com/
https://github.com/louisaslett/fdp/issues
https://orcid.org/0000-0003-2211-233X

2 +.fdp_plot

0 1 15
gdp_to_epsdelta L 17
lap . . . e 19
Index 22
+.fdp_plot Combine fdp plots
Description

Allows combining multiple fdp () plot objects using the + operator.

Usage

S3 method for class 'fdp_plot'
el + e2

Arguments

el An fdp_plot object (the result of calling fdp())
e2 Either another fdp_plot object or a ggplot2 layer

Value

If e2 is an fdp_plot, returns a new combined fdp_plot object. If e2 is a ggplot?2 layer, returns a
modified ggplot2 object.

Examples

Combine two separate fdp() calls
fdp(gdp(0@.5)) + fdp(lap(1))

Can still add regular ggplot2 layers
fdp(gdp(1)) + ggplot2::ggtitle(”"My Privacy Plot")

First legend naming takes precedence

fdp(gdp(@.5), .legend = "First”) + fdp(lap(1), .legend = "Second")
Later .legend arguments apply if none specified in prior calls
fdp(gdp(0.5)) + fdp(lap(1), .legend = "Second")

epsdelta 3

epsdelta (epsilon, delta)-differential privacy trade-off function

Description

Constructs the trade-off function corresponding to the classical (e, §)-differential privacy guarantee.
This is the f-DP representation of the approximate differential privacy definition, which allows
a small probability § of privacy breach (if 6 > 0) while maintaining e-differential privacy with
probability 1 — 4.

The resulting trade-off function is piecewise linear with two segments, reflecting the geometry of
(e,9)-DP in the hypothesis testing framework. The function returned can be called either without
arguments to retrieve the underlying data points, or with an alpha argument to evaluate the trade-off
at specific Type-I error rates.

Usage

epsdelta(epsilon, delta = 0)

Arguments
epsilon Numeric scalar specifying the € privacy parameter. Must be non-negative.
delta Numeric scalar specifying the ¢ privacy parameter. Must be in [0, 1]. Default is
0.0 (pure e-DP).
Details

Creates an (e, §)-differential privacy trade-off function for use in f-DP analysis and visualisation.
If you would like a reminder of the formal definition of (e, §)-DP, please see further down this
documentation page in the "Formal definition" Section.

The function returns a closure that stores the € and § parameters in its environment. This function
can be called with or without arguments supplied, either to obtain the skeleton or particular Type-II
error rates for given Type-I errors respectively.

Value

A function of class c("fdp_epsdelta_tradeoff”, "function”) which computes the (e, d)-DP
trade-off function.

When called:
* Without arguments: Returns a data frame with columns alpha and beta containing the
skeleton points of the piecewise linear trade-off function.

e With an alpha argument: Returns a data frame with columns alpha and beta containing
the Type-II error values corresponding to the specified Type-I error rates.

4 epsdelta

Formal definition

Classical (e, ¢)-differential privacy (Dwork et al., 2006a,b) states that a randomised mechanism M
satisfies (¢, d)-DP if for all neighbouring datasets S and S’ that differ in a single observation, and
any event I,

P(M(S) € E) <e"PIM(S") € E] +§

In the f-DP framework (Dong et al., 2022), this corresponds to a specific trade-off function,
fes:[0,1] — [0,1]
which maps Type-I error rates « to the minimum achievable Type-II error rates 8 when distinguish-

ing between the output distributions M (S) and M (S’).

The special case = 0 corresponds to pure e-differential privacy, where the trade-off function has
no fixed disclosure risk.

References

Dong, J., Roth, A. and Su, W.J. (2022). “Gaussian Differential Privacy”. Journal of the Royal
Statistical Society Series B, 84(1), 3-37. doi:10.1111/rssb.12454.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I. and Naor, M. (2006a) “Our Data, Ourselves:
Privacy Via Distributed Noise Generation”. In: Advances in Cryptology - EUROCRYPT 2006,
486-503. doi:10.1007/11761679_29.

Dwork, C., McSherry, F., Nissim, K. and Smith, A. (2006b) “Calibrating Noise to Sensitivity in
Private Data Analysis”. In: Theory of Cryptography, 265-284. doi:10.1007/11681878_14.

See Also

fdp() for plotting trade-off functions, est_epsdelta() for finding the choice of ¢ and J that lower
bounds a collection of trade-off functions.

Additional trade-off functions can be found in gdp() for Gaussian differential privacy, and lap()
for Laplace differential privacy.

Examples

Pure epsilon-differential privacy with epsilon = 1
pure_dp <- epsdelta(1.0)

pure_dp

pure_dp() # View the skeleton points

Approximate DP with epsilon = 1 and delta = 0.01
approx_dp <- epsdelta(1.0, 0.01)
approx_dp

Evaluate at specific Type-I error rates
approx_dp(c(0.05, 0.1, 0.25, 0.5))

Plot and compare different (epsilon, delta) configurations
fdp(epsdelta(0.5),
epsdelta(1.9),

https://doi.org/10.1111/rssb.12454
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14

est_epsdelta 5

epsdelta(1.0, 0.01))

Compare with Gaussian DP
fdp(epsdelta(1.0),
epsdelta(1.0, 0.01),

gdp(1.0),
.legend = "Privacy Mechanism")
est_epsdelta (epsilon, delta)-differential privacy parameters lower bounding em-
pirical trade-off points
Description

Estimates the (g, ¢)-differential privacy parameters that lower bound a given set of empirical trade-
off points. This function uses numerical optimisation to identify the tightest (&, §)-DP guarantee
consistent with observed Type-1/Type-I1I error trade-offs, holding either ¢ or ¢ fixed whilst optimis-
ing over the other parameter. Note: due to the numerical optimisation involved, this is only an
approximation.

Usage

est_epsdelta(x, epsilon = NULL, delta = NULL, dp = 2L)

Arguments

X One or more f-DP trade-off specifications to be lower bounded. Accepts the
same flexible input types as fdp():

* A function (user-defined or built-in, e.g., gdp()) that when called with a
numeric vector alpha returns a data frame with columns alpha and beta;

* A data frame with columns alpha and beta containing empirical trade-off
points;

* A numeric vector of length 101 (interpreted as beta values on the canonical
grid alpha = seq(9@, 1, by =0.01)).

The function extracts all Type-I/Type-II error coordinates and finds the minimal
(€, 9)-DP parameters lower bounding them.

epsilon Optional numeric scalar specifying a fixed value of ¢ > 0. If supplied, the
function searches for the minimal § € [0, 1] such that the (g, 0)-DP trade-off
lower bounds x. Exactly one of epsilon or delta must be specified. Default is
NULL.

delta Optional numeric scalar specifying a fixed value of § € [0, 1]. If supplied, the
function searches for the minimal € > 0 such that the (e, §)-DP trade-off lower
bounds x. Exactly one of epsilon or delta must be specified. Default is NULL.

dp Integer scalar specifying the number of decimal places of precision for the result
(with careful rounding employed to ensure the bound holds). Must be a non-
negative integer. Default is 2L.

6 est_epsdelta

Details

This function numerically solves an inverse problem in the f-differential privacy framework: given
empirical trade-off points { (o, 5;)}7, characterising the distinguishability between output distri-
butions of a randomised mechanism on neighbouring datasets, find the minimal classical (e, §)-DP
parameters such that the (g, 6)-DP trade-off function lower bounds all observed points.

Warning: since this is a numerical optimisation on a finite set of trade-off points, there is no
mathematical guarantee of correctness. As such, the (¢,d) found ought best to be viewed as an
approximate lower bound on the true values, since there could be intermediate trade-off points that
are not supplied which cause the true values to be larger. For example, consider:

est_epsdelta(gdp(0.5)(), delta = 0)

This code will return € = 1.45, yet Corollary 1, p.16, in Dong et al. (2022) means the exact answer
here is (¢ = 1.45,6 = 0.000544...) and that indeed there does not in general exist any finite &
solution for § = 0.

Note: for lower bounding p-Gaussian Differential Privacy one should use gdp_to_epsdelta()
instead, which employs exact theoretical results from the literature!

This function may be useful for post-hoc privacy auditing, privacy budget allocation, or mechanism
comparison.

Mathematical formulation:

The (g, §)-DP trade-off function f; s: [0,1] — [0, 1] is piecewise linear (see epsdelta()). This
function seeks parameters (&,) such that

fes(ay) <B; foralli=1,...,n

whilst minimising either € (if delta is fixed) or § (if epsilon is fixed).

Exactly one of epsilon or delta must be specified by the user; the function then searches for the
minimal value of the unspecified parameter. The optimisation first verifies whether any solution
exists within reasonable bounds (¢ < 30 or § < 1), then constructs an objective measuring
the signed vertical distance between the empirical points and the candidate (&, 4)-DP curve. A
numerical root finder then seeks the parameter value where this crosses zero, with the solution
rounded up to the specified decimal precision (dp). There are then checks that the rounded bound
holds numerically, with incremental adjustment if necessary to guarantee f. 5(c;) < §; for all i
within machine precision.

Value

A (g,6)-DP trade-off function object (see epsdelta()) of class c(”fdp_epsdelta_tradeoff”,
"function”). This represents the tightest (&, §)-DP trade-off function that lower bounds the input
X.

References

Dong, J., Roth, A. and Su, W.J. (2022). “Gaussian Differential Privacy”. Journal of the Royal
Statistical Society Series B, 84(1), 3-37. doi:10.1111/rssb.12454.

https://doi.org/10.1111/rssb.12454

est_gdp 7

See Also

epsdelta() for constructing (g, 6)-DP trade-off functions with known parameters, est_gdp() for
the analogous estimation problem in the Gaussian DP framework, fdp() for plotting and comparing
trade-off functions.

For lower bounding p-Gaussian Differential Privacy, see gdp_to_epsdelta() which uses exact
theoretical results from the literature.

Examples

Estimate epsilon given fixed delta for empirical trade-off points
Note: unrealistically small set of points, in practice this would be a
collection of potentially thousands of points representing multiple
trade-off functions, the collection of which should be lower bounded.
empirical <- data.frame(
alpha = c(0.00, 0.05, 0.10, 0.25, 0.50, 1.00),
beta = c(1.00, 0.92, 0.85, 0.70, 0.45, 0.00)
)
result <- est_epsdelta(empirical, delta = 0.01)
result # Print the estimated parameters

Estimate delta given fixed epsilon
result2 <- est_epsdelta(empirical, epsilon = 1.0)
result2

Visualise the fit
fdp(empirical, result, .legend = "Trade-off")

Find epsilon bounding a Gaussian DP mechanism with delta = 0.1 and compare
with the exactly computed values
gdp_mechanism <- gdp(1.1)
approx_dp <- est_epsdelta(gdp_mechanism, delta = 0.1)
dp <- gdp_to_epsdelta(1.1, environment(approx_dp)$epsilon)
fdp(gdp_mechanism, approx_dp, dp,

.legend = "Mechanism”)

Compare precision levels
result_2dp <- est_epsdelta(empirical, delta = 0.01, dp = 2L)

result_4dp <- est_epsdelta(empirical, delta = 0.01, dp = 4L)
fdp(empirical, result_2dp, result_4dp)
est_gdp Gaussian differential privacy parameters lower bounding empirical

trade-off points

Description

Estimates the minimal Gaussian differential privacy (GDP) parameter p that provides a valid lower
bound for a collection of empirical or analytically-derived trade-off points. Note: due to the numer-
ical optimisation involved, this is only an approximation.

8 est_gdp

Usage

est_gdp(x, dp = 2L)

Arguments

X One or more f-DP trade-off specifications to be lower bounded. Accepts the
same flexible input types as fdp():

* A function (user-defined or built-in, e.g., lap()) that when called with a
numeric vector alpha returns a data frame with columns alpha and beta;
* A data frame with columns alpha and beta containing empirical trade-off
points;
* A numeric vector of length 101 (interpreted as beta values on the canonical
grid alpha = seq(@, 1, by =0.01)).
The function extracts all Type-1/Type-II error coordinates and finds the minimal
(¢, 6)-DP parameters lower bounding them.

dp Integer scalar specifying the number of decimal places of precision for the result
(with careful rounding employed to ensure the bound holds). Must be a non-
negative integer. Default is 2L.

Details

Given a set of trade-off points {(«a, 8;)}1~ representing Type-I and Type-II error rates, this func-
tion numerically solves for the smallest ;+ > 0 such that the u-GDP trade-off function

Gula)=@ (7 '(1—a) —p)
satisfies G, (a;) < fB; forall i = 1,...,n, where ® denotes the standard normal cumulative distri-

bution function.

Warning: since this is a numerical optimisation on a finite set of trade-off points, there is no math-
ematical guarantee of correctness. As such, the p found ought best to be viewed as an approximate
lower bound on the true values, since there could be intermediate trade-off points that are not sup-
plied which cause the true values to be larger.

This function may be useful for post-hoc privacy auditing, privacy budget allocation, or mechanism
comparison.

Value

A GDP trade-off function object (see gdp()) with class c("fdp_gdp_tradeoff”, "function”).
This represents the tightest p-GDP trade-off function that lower bounds the input x.

References

Dong, J., Roth, A. and Su, W.J. (2022). “Gaussian Differential Privacy”. Journal of the Royal
Statistical Society Series B, 84(1), 3-37. doi:10.1111/rssb.12454.

https://doi.org/10.1111/rssb.12454

fdp 9

See Also

gdp () for constructing GDP trade-off functions with known p, fdp() for visualising and com-
paring trade-off functions, gdp_to_epsdelta() for converting from GDP to classical (e, §)-DP,
est_epsdelta() for estimating classical DP parameters from trade-off points.

Examples

Estimate GDP from manually specified empirical trade-off points
These could come from empirical measurements or privacy audits
empirical_points <- data.frame(

alpha = ¢(0.00, .05, .10, .25, 0.50, 1.00),

beta = c(1.00, 0.93, 0.87, 0.72, 0.43, 0.00)
)
result <- est_gdp(empirical_points)
result

Visualise how well the GDP bound fits the empirical points
fdp(empirical_points, result)

Find the GDP lower bound for a Laplace mechanism.
lap_mechanism <- lap(1.5)

gdp_bound <- est_gdp(lap_mechanism)

gdp_bound

Compare the Laplace mechanism with its GDP lower bound
fdp(lap_mechanism, gdp_bound)

Control precision with the dp parameter
result_1dp <- est_gdp(empirical_points, dp = 1L)
result_3dp <- est_gdp(empirical_points, dp = 3L)
Higher precision gives tighter bounds
fdp(empirical_points, result_1dp, result_3dp)

fdp Plot f-differential privacy trade-off functions

Description

Produce a comparative plot of one or more (analytic or empirical) f-differential privacy trade-off
functions.

Usage

fdp(..., .legend = NULL, .tol = sqgrt(.Machine$double.eps))

10 fdp

Arguments
One or more f-DP trade-off specifications. Each argument can be a:

* function (user-defined or built-in, e.g. gdp(), epsdelta(), lap(), etc) that
when called with a numeric vector alpha returns a data frame with columns
alpha and beta;

¢ data frame with columns alpha and beta;

* numeric vector of length equal to the internal alpha grid (interpreted as
beta).

Arguments may be named to control legend labels. See Details for full explana-
tion of different ways to pass these arguments.
.legend Character string giving the legend title. Use NULL (default) for no title.
.tol Numeric tolerance used when:
* Validating 3, beta <=1 - alpha + . tol.
* Checking convexity for objects forced to draw as lines.
Details

This is the main plotting function in the package, which produces plots of f-differential privacy
(f-DP) trade-off functions in the style shown in the original f-DP paper (Dong et al., 2022). If you
would like a reminder of the formal definition of f-DP, please see further down this documentation
page in the "Formal definition" Section.

The . .. arguments define the trade-off functions to be plotted and can be:

* Built-in analytic trade-off function generators such as gdp(), epsdelta(), lap().
* User-defined functions defining trade-off functions.
* Data frames containing an alpha and beta column.

* Numeric vectors interpreted as a sequence of beta values over a canonical grid of Type-I error
rates alpha =seq(@, 1, by =0.01).

We cover each of these cases in more detail in the subsequent sub-sections. After that is a discussion
of the two main approaches to modifying the legend labels.

Built-in analytic trade-off function generators:

Most built-in trade-off function generators will take one or more arguments specifying the level
of differential privacy, for example, gdp(@.5) corresponding to ; = 0.5-Gaussian differential
privacy.

These function calls can be passed directly, eg fdp(gdp(@.5)), and will automatically provide
suitable legend names in the plot, including the detail of any argument specification. So the
example fdp(gdp(@.5)) results in a legend label "0.5-GDP".

User-defined trade-off functions:

Custom trade-off functions should accept a vector of Type-I error values, «, and return the cor-
responding vector of Type-II error values, 5. In the simplest case, the user defined function will
accept a single argument, so in the (unrealistic) perfect privacy setting:

fdp

11

my_fdp <- function(a) {
1 - a

3

This can then be plotted by calling fdp(my_fdp).

However, often there will be a need to pass additional arguments. This is supported using the
direct calling mechanism, so assume an axis offset is required for the above unrealistic example:

my_fdp <- function(a, off) {
pmax(@, 1 - a - off)
3

This is now called by using the dummy variable alpha (which need not be defined in your calling
environment), fdp(my_fdp(alpha, 0.1)), which will produce the trade-off function curve with
offset 0.1.

Data frames:

One need not define a trade-off function explicitly, it can be implicitly defined by giving a set
of coordinates {(c;, 3;)}?_; in a two-column data frame with columns named alpha and beta.
These coordinates will be linearly interpolated to produce the trade-off function curve. For exam-
ple

my_fdp <- data.frame(alpha = c(0, 0.25, 1), beta = c(1, 0.25, @))

Can be used to produce the f-DP curve corresponding to € ~ 1.09861-differential privacy by
then calling fdp(my_fdp). Of course, that particular example is more easily produced using the
built-in analytic trade-off function generator epsdelta() by calling fdp(epsdelta(1.09861)).

Numeric vectors:

Finally, it is possible to simply provide a vector of 3 values at the grid of « values that fdp() uses
internally for plotting — that is, at the values seq(@.0, 1.9, by =0.01). For example,

a <- seq(0.9, 1.0, by = 0.01)
my_fdp <- 1 - a

would then produce the (unrealistic) perfect f-DP privacy curve by calling fdp(my_fdp).

Legend labels:

As discussed above, built-in analytic trade-off function generators will provide automatic legend
labels that make sense for their particular trade-off function. In all other cases, the default will
be for the legend label to equal the function, data frame, or numeric vector variable name used
when calling fdp (). Thus, in all the examples above where my_fdp was used as the name of the
function/data frame/vector the default legend label will be simply "my_fdp".

This default can be overridden in two ways:

1. by using an argument name. For example, to set the legend label to "hello" in the user-defined
function with offset, one would call fdp(hello =my_fdp(alpha, @.1)). This also works
with spaces or special characters by using backtick quoted argument names, for example
fdp(~So cool!™ =my_fdp(alpha, 0.1)).

2. by modifying the object passed with fdp_name () in advance. See the help file for that func-
tion for further details.

12 fdp

Drawing method and validation:

By default, built-in and user-defined function arguments will be plotted as a trade-off function
curve. This means that they will first be checked to ensure the rendered line is indeed a valid trade-
off function: that is, convex, non-increasing and less than 1 — o (however, technically continuity
cannot be checked with a finite number of calls to a black-box function). If a problem is detected
an error will be thrown. Note that due to the finite precision nature of computers, it might be
that these validity checks throw a false alarm, in which case you may use the .tol argument to
increase the tolerance within which these validity checks must pass.

In contrast, data frame/vector arguments are plotted differently depending on their size. If there
are at least 100 rows/elements then these will be treated in the same way as built-in and user-
defined function arguments, with trade-off function validity checks. However, if there are fewer
rows/elements, then these will be treated as merely a collection of points, the only check being
that they all lie below the 5 = 1 — « line. Those points will then be plotted, together with the
lower convex hull which corresponds to the lower bounding trade-off function for that collection
of points.

This default behaviour of validating and drawing a line versus computing lower convex hull and
plotting points can be controlled with the fdp_point() and fdp_line() functions. See those
help files for further details.

A final performance note: all function type arguments are evaluated on a uniform grid alpha =
seq(@, 1, 0.01). To use a custom resolution, supply an explicit data frame instead of a function.

Value

A ggplot2 object of class c("fdp_plot”, "gg", "ggplot") displaying the supplied trade-off
functions (and points, if applicable). It can be further modified with additional ggplot2 layers
or combined with other fdp_plot objects using +.

Formal definition (Dong et al., 2022)

For any two probability distributions P and) on the same space, the trade-off function
T(P,Q): [0,1] - [0,1]

characterises the optimal relationship between Type I and Type II errors in a hypothesis test distin-
guishing between them. It is defined as:

T(P,Q)(e) = inf {By: ay < 0}

where the infimum is taken over all measurable rejection rules ¢. The terms ay, = Ep[¢] and
By =1 —Eg[¢)] represent the Type I and Type II errors, respectively.

A function f: [0,1] — [0,1] is a trade-off function if and only if it is convex, continuous, non-
increasing, and satisfies f(z) < 1 — z forall z € [0, 1].

In the context of differential privacy, we are interested in the distributions of the output of a ran-
domised algorithm when run on two neighbouring datasets (datasets that differ in a single record), S
and S’. Let M be a randomised algorithm which has output probability distribution denoted M (S)
when applied to dataset S. Then, each pair of neighbouring datasets generate a specific trade-
off function T'(M (S), M (S’)) which characterises how hard it is to distinguish between whether
dataset S or S’ has been used to produce the released output. Considering all possible neighbouring

fdp_attributes 13

datasets leads to a family of trade-off functions, the lower bound of which determines the privacy
of the randomised algorithm.

More formally, let f be a trade-off function. A randomised algorithm M is said to be f-differentially
private (f-DP) if for any pair of neighbouring datasets .S and S’, the following condition holds:

T(M(S), M(5) = f

This definition means that the task of distinguishing whether the mechanism was run on dataset .S or
its neighbour S’ is at least as difficult as distinguishing between two canonical distributions whose
trade-off function is f.

Therefore, this function is concerned with plotting T'(P, @): [0,1] — [0,1] or f: [0,1] — [0, 1].
That is, plotting a function which returns the smallest type-II error for a specified type-I error rate.

References

Andrew, A. M. (1979). “Another efficient algorithm for convex hulls in two dimensions”. Informa-
tion Processing Letters, 9(5), 216-219. doi:10.1016/00200190(79)900723.

Dong, J., Roth, A. and Su, W.J. (2022). “Gaussian Differential Privacy”. Journal of the Royal
Statistical Society Series B, 84(1), 3-37. doi:10.1111/rssb.12454.

Examples

Plotting mu=1 Gaussian differential privacy
fdp(gdp(1))

Plotting the f_(epsilon,delta) curve corresponding to (1, @.1)-differential privacy
fdp(epsdelta(l, 0.1))

These can be plotted together for comparison
fdp(gdp(1), epsdelta(l, 0.1))

The same curves custom labels and a custom legend header
fdp("Gaussian DP" = gdp(1),

"Classical DP" = epsdelta(l, 0.1),

.legend = "Methods")

Alternatively, combine separate fdp() calls using +
fdp(gdp(1)) + fdp(epsdelta(l, 0.1))

fdp_attributes Control rendering of f-DP trade-off functions

Description
These functions attach attributes to f-DP objects that control their visualization:

* fdp_line() forces the object to be rendered as a continuous trade-off function curve. The
function validates that the resulting curve is convex (a requirement for valid trade-off func-
tions). Use this for analytic trade-off functions or when you want to ensure convexity is
checked.

https://doi.org/10.1016/0020-0190%2879%2990072-3
https://doi.org/10.1111/rssb.12454

14 fdp_attributes

* fdp_point() forces the object to be rendered as individual Type I/II error coordinates, with
the lower convex hull automatically computed and drawn. Use this for empirical estimates or
small datasets where individual points should be visible.

* fdp_name() sets or retrieves the legend label for the object. When called with nm, it sets the
label; when called without nm, it returns the current label.

» fdp_attributes() retrieves all f-DP related attributes attached to an object.
By default, fdp() automatically determines the rendering method: data frames or vectors with

> 100 elements are treated as lines (with convexity validation), while those with < 100 elements
are treated as points (with lower hull computation).

Usage

fdp_attributes(x)
fdp_line(x)
fdp_point(x, hide = FALSE)

fdp_name(x, nm)

Arguments
X An f-DP object (function, data frame, or vector) to which attributes are added or
retrieved.
hide Logical; if TRUE, individual points are not drawn (only their lower convex hull
is shown).
nm Character string specifying the legend label. If missing, returns the current label.
Details

Functions to control how f-differential privacy trade-off functions and empirical Type I/II error
points are rendered by fdp().

Value

For fdp_line(), fdp_point(), and fdp_name() (when setting): the input object x with modified
attributes (returned invisibly).

For fdp_name () (when getting) and fdp_attributes(): the requested attribute value(s) or NULL.

See Also

fdp() for the main plotting function.

gdp 15

Examples

Force a small dataset to be drawn as a line (with convexity check)
df <- data.frame(alpha = c(@, 0.5, 1), beta = c(1, 0.4, 0))
fdp(fdp_line(df))

Draw points but hide them (only show the lower hull)
fdp(fdp_point(df, hide = TRUE))

Conversely, the following points if interpolated do not define a convex
trade-off function, so fdp_line would fail

df2 <- data.frame(alpha = c(@, 0.5, 0.51, 1), beta = c(1, 0.4, 0.34, 0))
#fdp(fdp_line(df2)) # Not run, would error

But the following is ok, since we will compute lower convex hull due to
small number of points

fdp(df2)

If you have a large number of points which will not interpolate to give
convexity, then fdp_point can force that behaviour

df3 <- gdp(0.5)()

df3$beta <- pmin(df3$beta * rnorm(101, 0.95, sd=0.025), 1.0)

#fdp(df3) # Not run, would error

But wrapping in fdp_point forces plotting points and lower convex hull
fdp(fdp_point(df3))

Set a custom legend label programmatically, rather than via argument in
call to fdp ... eg alternative is fdp("my label™ = my_gdp)

my_gdp <- gdp(1)

my_gdp <- fdp_name(my_gdp, "Custom GDP Label")

fdp(my_gdp)

gdp Gaussian differential privacy trade-off function

Description

Constructs the trade-off function corresponding to u-Gaussian differential privacy (GDP). This
framework, introduced by Dong et al. (2022), provides a natural privacy guarantee for mechanisms
based on Gaussian noise, typically offering tighter composition properties and a better privacy-
utility trade-off than classical (¢, ¢)-differential privacy.

Usage

gdp(mu = 1)

Arguments

mu Numeric scalar specifying the p privacy parameter. Must be non-negative.

16 gdp

Details

Creates a u-Gaussian differential privacy trade-off function for use in f-DP analysis and visualisa-
tion. If you would like a reminder of the formal definition of ;-GDP, please see further down this
documentation page in the "Formal definition" Section.

The function returns a closure that stores the y parameter in its environment. This function can be
called with or without argument supplied, either to obtain points on a canonical grid or particular
Type-II error rates for given Type-I errors respectively.

Value

A function of class c("fdp_gdp_tradeoff”, "function") that computes the p-GDP trade-off
function.
When called:
* Without arguments: Returns a data frame with columns alpha and beta containing points
on a canonical grid (alpha = seq(@, 1, by = 0.01)) of the trade-off function.

* With an alpha argument: Returns a data frame with columns alpha and beta containing
the Type-II error values corresponding to the specified Type-I error rates.

Formal definition

Gaussian differential privacy (Dong et al., 2022) arises as the trade-off function corresponding
to distinguishing between two Normal distributions with unit variance and means differing by p.
Without loss of generality, the trade-off function is therefore,

G, :=T(N(0,1),N(p,1)) for p>0.
This leads to,
Gula) =@ (271 (1~ a) - u)
where ® is the standard Normal cumulative distribution function.

The most natural way to satisfy u-GDP is by adding Gaussian noise to construct the randomised
algorithm. Theorem 1 in Dong et al. (2022) identifies the correct variance of that noise for a given
sensitivity of the statistic to be released. Let 6(.S) be the statistic of the data S which is to be
released. Then the Gaussian mechanism is defined to be

M(S) :=0(5)+n
where) ~ N(0, A(6)?/u?) and,

A(0) = sup |0(S) (")

the supremum being taken over neighbouring data sets. The randomised algorithm M (-) is then a
1-GDP release of 0(S).

More generally, any mechanism M (-) satisfies u-GDP if,
T (M(S), M(5") =G,

for all neighbouring data sets .S, S’. In particular, one can seek the minimal y for a collection of
trade-off functions using est_gdp().

gdp_to_epsdelta 17

References

Dong, J., Roth, A. and Su, W.J. (2022). “Gaussian Differential Privacy”. Journal of the Royal
Statistical Society Series B, 84(1), 3-37. doi:10.1111/rssb.12454.

See Also

fdp() for plotting trade-off functions, est_gdp() for finding the choice of p that lower bounds a
collection of trade-off functions.

Additional trade-off functions can be found in epsdelta() for classical (g, §)-differential privacy,
and lap() for Laplace differential privacy.

Examples

Gaussian DP with mu = 1

gdp_1 <- gdp(1.0)

gdp_1

gdp_1() # View points on the canonical grid

Stronger privacy with mu = 0.5
gdp_strong <- gdp(0.5)
gdp_strong

Evaluate at specific Type-I error rates
gdp_1(c(0.05, 0.1, 0.25, 0.5))

Plot and compare different mu values
fdp(gdp(@.5),

gdp(1.9),

gdp(2.0))

Compare Gaussian DP with classical (epsilon, delta)-DP
fdp(gdp(1.0),

epsdelta(1.9),

epsdelta(1.0, 0.01),

.legend = "Privacy Mechanism")
gdp_to_epsdelta Convert Gaussian differential privacy to classical (epsilon, delta)-
differential privacy
Description

Computes the exact (g, §)-differential privacy guarantee corresponding to a given pu-Gaussian dif-
ferential privacy (GDP) mechanism for a specified € value. This conversion is based on the closed-
form relationship established in Corollary 1 (p.16) of Dong et al. (2022), which provides the tightest
possible d for any given ¢ and p.

https://doi.org/10.1111/rssb.12454

18 gdp_to_epsdelta

Usage

gdp_to_epsdelta(mu = 0.5, epsilon = 1, dp = NULL)

Arguments
mu Numeric scalar specifying the p parameter of the Gaussian differential privacy
mechanism. Must be non-negative.
epsilon Numeric scalar specifying the target € privacy parameter. Must be non-negative.
The function computes the minimal § such that ;-GDP implies (g, 6)-DP.
dp Optional integer specifying the number of decimal places for rounding the com-
puted § value. If provided, ¢ is rounded up to ensure the privacy guarantee
remains valid. If NULL (default), the exact value is returned without rounding.
Must be a positive integer if specified.
Details

While GDP provides a complete characterisation of privacy through the trade-off function, classical
(e, 6)-differential privacy remains the most widely recognised privacy definition in both theoretical
and applied research. This function enables practitioners to translate GDP guarantees into the more
familiar (g, 0)-DP language.

For a mechanism satisfying ;-GDP, the exact (g, §)-DP guarantee is given by Corollary 1 of Dong

et al. (2022):
e e u
—o(—+C)—¢ed(—=-°L
o) (u+2> ‘ (u 2)

where ® denotes the cumulative distribution function of the standard Normal distribution. This was
a result originally proved in Balle and Wang (2018).

Value

A (g,0)-DP trade-off function object (see epsdelta()) of class c("fdp_epsdelta_tradeoff”,
"function").

References

Balle, B. and Wang, Y-X. (2018). “Improving the Gaussian Mechanism for Differential Privacy:
Analytical Calibration and Optimal Denoising”. Proceedings of the 35th International Confer-
ence on Machine Learning, 80, 394-403. Available at: https://proceedings.mlr.press/v80/
balle18a.html.

Dong, J., Roth, A. and Su, W.J. (2022). “Gaussian Differential Privacy”. Journal of the Royal
Statistical Society Series B, 84(1), 3-37. doi:10.1111/rssb.12454.

See Also

gdp() for constructing Gaussian differential privacy trade-off functions, epsdelta() for directly
constructing (&, §)-DP trade-off functions, est_gdp() for estimating x from empirical trade-off
functions, est_epsdelta() for estimating (e, §) from empirical trade-off functions, fdp() for plot-
ting and comparing trade-off functions.

https://proceedings.mlr.press/v80/balle18a.html
https://proceedings.mlr.press/v80/balle18a.html
https://doi.org/10.1111/rssb.12454

lap 19

Examples

Convert mu = 1 GDP to (epsilon, delta)-DP with epsilon = 1
dp_guarantee <- gdp_to_epsdelta(mu = 1.0, epsilon = 1.0)
dp_guarantee

Round delta to 6 decimal places for reporting
dp_rounded <- gdp_to_epsdelta(mu = 1.0, epsilon = 1.0, dp = 6)
dp_rounded

Compare the original GDP with its (epsilon, delta)-DP representation
fdp(gdp(1.90),

gdp_to_epsdelta(mu = 1.0, epsilon = 1.0),

.legend = "Privacy Mechanism")

Explore how delta varies with epsilon for a fixed mu
mu_fixed <- 1.0
epsilons <- c(0.1, 0.5, 1.0, 2.0)

res <- fdp(gdp(mu_fixed))
for (eps in epsilons) {

res <- res+fdp(gdp_to_epsdelta(mu = mu_fixed, epsilon = eps))
3

res

lap Laplace differential privacy trade-off function

Description

Constructs the trade-off function corresponding to p-Laplace differential privacy. This corresponds
to a randomised algorithm based on Laplace (double exponential) noise, which is the canonical
mechanism in the original differential privacy framework (Dwork et al., 2006).

Usage
lap(mu = 1)

Arguments

mu Numeric scalar specifying the p privacy parameter. Must be non-negative.

Details

Creates a p-Laplace differential privacy trade-off function for use in f-DP analysis and visualisation.
If you would like a reminder of the formal definition of p-Laplace DP, please see further down this
documentation page in the "Formal definition" Section.

The function returns a closure that stores the p parameter in its environment. This function can be
called with or without argument supplied, either to obtain points on a canonical grid or particular
Type-II error rates for given Type-I errors respectively.

20 lap

Value

A function of class c("fdp_lap_tradeoff"”, "function”) that computes the p-Laplace DP trade-
off function.

When called:
* Without arguments: Returns a data frame with columns alpha and beta containing the
skeleton points of the trade-off function.

* With an alpha argument: Returns a data frame with columns alpha and beta containing
the Type-II error values corresponding to the specified Type-I error rates.

Formal definition

Laplace differential privacy arises as the trade-off function corresponding to distinguishing between
two Laplace distributions with unit scale parameter and locations differing by p. Without loss of
generality, the trade-off function is therefore,

L, :=T (Lap(0,1),Lap(u,1)) for p>0.

The most natural way to satisfy p-Laplace DP is by adding Laplace noise to construct the ran-
domised algorithm. This is the canonical noise mechanism used in classical e-differential privacy.
Let 6(S) be the statistic of the data S which is to be released. Then the Laplace mechanism is
defined to be

where i ~ Lap(0, A(6) /1) and,

A(B) := Zué)’ |6(S) — 6(S")]

the supremum being taken over neighbouring data sets. The randomised algorithm M (-) is then a
u-Laplace DP release of 6(.5). In the classical regime, this corresponds to the Laplace mechanism
which satisfies (¢ = p)-differential privacy (Dwork et al., 2006).

More generally, any mechanism M (-) satisfies u-Laplace DP if,
T (M(S),M(5") = Ly,

for all neighbouring data sets S, S”.

In the f-differential privacy framework, the canonical noise mechanism is Gaussian (see gdp()), but
p-Laplace DP does arise as the trade-off function in the limit of the group privacy of -DP as the
group size goes to infinity (see Proposition 7, Dong et al., 2022).

References

Dong, J., Roth, A. and Su, W.J. (2022). “Gaussian Differential Privacy”. Journal of the Royal
Statistical Society Series B, 84(1), 3-37. doi:10.1111/rssb.12454.

Dwork, C., McSherry, F., Nissim, K. and Smith, A. (2006) “Calibrating Noise to Sensitivity in
Private Data Analysis”. In: Theory of Cryptography, 265-284. doi:10.1007/11681878_14.

https://doi.org/10.1111/rssb.12454
https://doi.org/10.1007/11681878_14

lap 21

See Also

fdp () for plotting trade-off functions.

Additional trade-off functions can be found in gdp() for Gaussian differential privacy, and in
epsdelta() for classical (e, §)-differential privacy.

Examples

Laplace DP with mu = 1

lap_1 <- lap(1.0)

lap_1

lap_1() # View points on the canonical grid

Plot and compare different mu values
fdp(lap(0.5),

lap(1.0),

lap(2.0))

Notice that (epsilon=1)-differential privacy is indeed 1-Laplace DP
The gap between the lines is the inefficiency in the privacy
characterisation of classical differential privacy
fdp(lap(1),
epsdelta(1))

Compare Laplace DP with Gaussian DP and classical (epsilon, delta)-DP
fdp(lap(1.9),

gdp(1.0),

epsdelta(1.0),

.legend = "Privacy Mechanism")

Index

+.fdp_plot, 2

epsdelta, 3
epsdelta(), 6, 7,10, 11,17, 18,21
est_epsdelta, 5
est_epsdelta(), 4,9, 18
est_gdp, 7

est_gdp(), 7, 16-18

fdp, 9

fdp (), 4, 5,7-9, 14,17, 18, 21
fdp_attributes, 13

fdp_line (fdp_attributes), 13
fdp_line(), 12

fdp_name (fdp_attributes), 13
fdp_name(), 11

fdp_point (fdp_attributes), 13
fdp_point(), 12

gdp, 15

gdp(), 4, 5,8-10, 18, 20, 21
gdp_to_epsdelta, 17
gdp_to_epsdelta(), 6, 7,9

lap, 19
lap(), 4,8, 10, 17

22

	+.fdp_plot
	epsdelta
	est_epsdelta
	est_gdp
	fdp
	fdp_attributes
	gdp
	gdp_to_epsdelta
	lap
	Index

