Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework.
  The distribution parameters may capture location, scale, shape, etc. and every parameter may depend
  on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model.
  The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019)
  <doi:10.1080/10618600.2017.1407325> and the R package in Umlauf, Klein, Simon, Zeileis (2021)
  <doi:10.18637/jss.v100.i04>.
| Version: | 
1.2-5 | 
| Depends: | 
R (≥ 3.5.0), coda, colorspace, distributions3 (≥ 0.2.1), mgcv | 
| Imports: | 
Formula, MBA, mvtnorm, sp, Matrix, survival, methods, parallel | 
| Suggests: | 
bit, ff, fields, gamlss, gamlss.dist, interp, rjags, BayesX, mapdata, maps, sf, nnet, spatstat, spdep, zoo, keras, splines2, sdPrior, statmod, glogis, glmnet, scoringRules, knitr, rmarkdown, MASS, tensorflow | 
| Published: | 
2024-10-11 | 
| DOI: | 
10.32614/CRAN.package.bamlss | 
| Author: | 
Nikolaus Umlauf  
    [aut, cre],
  Nadja Klein   [aut],
  Achim Zeileis  
    [aut],
  Meike Koehler [ctb],
  Thorsten Simon  
    [aut],
  Stanislaus Stadlmann [ctb],
  Alexander Volkmann
      [ctb] | 
| Maintainer: | 
Nikolaus Umlauf  <Nikolaus.Umlauf at uibk.ac.at> | 
| License: | 
GPL-2 | GPL-3 | 
| URL: | 
http://www.bamlss.org/ | 
| NeedsCompilation: | 
yes | 
| Citation: | 
bamlss citation info  | 
| Materials: | 
NEWS  | 
| In views: | 
Bayesian, MixedModels | 
| CRAN checks: | 
bamlss results |