The workflow is a versatile R package designed for comprehensive feature selection in bulk RNAseq datasets. Its key innovation lies in the seamless integration of the 'Python' 'scikit-learn' (<https://scikit-learn.org/stable/index.html>) machine learning framework with R-based bioinformatics tools. 'GeneSelectR' performs robust Machine Learning-driven (ML) feature selection while leveraging 'Gene Ontology' (GO) enrichment analysis as described by Thomas PD et al. (2022) <doi:10.1002/pro.4218>, using 'clusterProfiler' (Wu et al., 2021) <doi:10.1016/j.xinn.2021.100141> and semantic similarity analysis powered by 'simplifyEnrichment' (Gu, Huebschmann, 2021) <doi:10.1016/j.gpb.2022.04.008>. This combination of methodologies optimizes computational and biological insights for analyzing complex RNAseq datasets.
| Version: | 
1.0.1 | 
| Depends: | 
R (≥ 3.5.0) | 
| Imports: | 
cowplot (≥ 1.1.1), dplyr (≥ 1.1.0), ggplot2 (≥ 3.4.2), glue (≥ 1.6.2), magrittr (≥ 2.0.3), methods (≥ 4.2.2), RColorBrewer (≥ 1.1.3), reshape2 (≥ 1.4.4), reticulate (≥
1.28), rlang (≥ 1.1.1), testthat (≥ 3.0.0), tibble (≥
3.2.1), tidyr (≥ 1.3.0), tmod (≥ 0.50.13) | 
| Suggests: | 
clusterProfiler (≥ 4.6.2), GO.db (≥ 3.17.0), knitr, rmarkdown, BiocManager (≥ 1.30.21), UpSetR (≥ 1.4.0), AnnotationHub (≥ 3.8.0), ensembldb (≥ 2.24.0), org.Hs.eg.db (≥ 3.17.0) | 
| Enhances: | 
simplifyEnrichment (≥ 1.8.0) | 
| Published: | 
2024-02-03 | 
| DOI: | 
10.32614/CRAN.package.GeneSelectR | 
| Author: | 
Damir Zhakparov  
    [aut, cre] | 
| Maintainer: | 
Damir Zhakparov  <dzhakparov at gmail.com> | 
| BugReports: | 
https://github.com/dzhakparov/GeneSelectR/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://github.com/dzhakparov/GeneSelectR | 
| NeedsCompilation: | 
no | 
| Materials: | 
README  | 
| CRAN checks: | 
GeneSelectR results [issues need fixing before 2025-11-09] |