| affairs | affairs |
| azcabgptca | azcabgptca |
| azdrg112 | azdrg112 |
| azpro | azpro |
| azprocedure | azprocedure |
| badhealth | badhealth |
| fasttrakg | fasttrakg |
| fishing | fishing |
| lbw | lbw |
| lbwgrp | lbwgrp |
| logit_syn | Logistic regression : generic synthetic binary/binomial logistic data and model |
| loomis | loomis |
| mdvis | mdvis |
| medpar | medpar |
| ml.nb1 | NB1: maximum likelihood linear negative binomial regression |
| ml.nb2 | NB2: maximum likelihood linear negative binomial regression |
| ml.nbc | NBC: maximum likelihood linear negative binomial regression |
| ml.pois | NB2: maximum likelihood Poisson regression |
| modelfit | Fit Statistics for generalized linear models |
| myTable | Frequency table |
| nb1_syn | Negative binomial (NB1): generic synthetic linear negative binomial data and model |
| nb2.obs.pred | Table of negative binomial counts: observed vs predicted proportions and difference |
| nb2_syn | Negative binomial (NB2): generic synthetic negative binomial data and model |
| nbc_syn | Negative binomial (NB-C): generic synthetic canonical negative binomial data and model |
| nuts | nuts |
| poi.obs.pred | Table of Poisson counts: observed vs predicted proportions and difference |
| poisson_syn | Poisson : generic synthetic Poisson data and model |
| probit_syn | Probit regression : generic synthetic binary/binomial probit data and model |
| rwm | rwm |
| rwm1984 | rwm1984 |
| rwm5yr | rwm5yr |
| ships | ships |
| smoking | smoking |
| titanic | titanic |
| titanicgrp | titanicgrp |