
RFC 8949
Concise Binary Object Representation (CBOR)

Abstract
The Concise Binary Object Representation (CBOR) is a data format whose design goals include the
possibility of extremely small code size, fairly small message size, and extensibility without the
need for version negotiation. These design goals make it different from earlier binary
serializations such as ASN.1 and MessagePack.

This document obsoletes RFC 7049, providing editorial improvements, new details, and errata
fixes while keeping full compatibility with the interchange format of RFC 7049. It does not create
a new version of the format.

Stream: Internet Engineering Task Force (IETF)
RFC: 8949
STD: 94
Obsoletes: 7049 
Category: Standards Track
Published: November 2020 
ISSN: 2070-1721
Authors:   C. Bormann

Universität Bremen TZI
P. Hoffman
ICANN

Status of This Memo 
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8949

Copyright Notice 
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents ( ) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Bormann & Hoffman Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8949
https://www.rfc-editor.org/rfc/rfc7049
https://www.rfc-editor.org/info/rfc8949
https://trustee.ietf.org/license-info


with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents 
1.  Introduction

1.1.  Objectives

1.2.  Terminology

2.  CBOR Data Models

2.1.  Extended Generic Data Models

2.2.  Specific Data Models

3.  Specification of the CBOR Encoding

3.1.  Major Types

3.2.  Indefinite Lengths for Some Major Types

3.2.1.  The "break" Stop Code

3.2.2.  Indefinite-Length Arrays and Maps

3.2.3.  Indefinite-Length Byte Strings and Text Strings

3.2.4.  Summary of Indefinite-Length Use of Major Types

3.3.  Floating-Point Numbers and Values with No Content

3.4.  Tagging of Items

3.4.1.  Standard Date/Time String

3.4.2.  Epoch-Based Date/Time

3.4.3.  Bignums

3.4.4.  Decimal Fractions and Bigfloats

3.4.5.  Content Hints

3.4.5.1.  Encoded CBOR Data Item

3.4.5.2.  Expected Later Encoding for CBOR-to-JSON Converters

3.4.5.3.  Encoded Text

3.4.6.  Self-Described CBOR

4.  Serialization Considerations

4.1.  Preferred Serialization

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 2



4.2.  Deterministically Encoded CBOR

4.2.1.  Core Deterministic Encoding Requirements

4.2.2.  Additional Deterministic Encoding Considerations

4.2.3.  Length-First Map Key Ordering

5.  Creating CBOR-Based Protocols

5.1.  CBOR in Streaming Applications

5.2.  Generic Encoders and Decoders

5.3.  Validity of Items

5.3.1.  Basic validity

5.3.2.  Tag validity

5.4.  Validity and Evolution

5.5.  Numbers

5.6.  Specifying Keys for Maps

5.6.1.  Equivalence of Keys

5.7.  Undefined Values

6.  Converting Data between CBOR and JSON

6.1.  Converting from CBOR to JSON

6.2.  Converting from JSON to CBOR

7.  Future Evolution of CBOR

7.1.  Extension Points

7.2.  Curating the Additional Information Space

8.  Diagnostic Notation

8.1.  Encoding Indicators

9.  IANA Considerations

9.1.  CBOR Simple Values Registry

9.2.  CBOR Tags Registry

9.3.  Media Types Registry

9.4.  CoAP Content-Format Registry

9.5.  Structured Syntax Suffix Registry

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 3



10. Security Considerations

11. References

11.1.  Normative References

11.2.  Informative References

Appendix A.  Examples of Encoded CBOR Data Items

Appendix B.  Jump Table for Initial Byte

Appendix C.  Pseudocode

Appendix D.  Half-Precision

Appendix E.  Comparison of Other Binary Formats to CBOR's Design Objectives

E.1.  ASN.1 DER, BER, and PER

E.2.  MessagePack

E.3.  BSON

E.4.  MSDTP: RFC 713

E.5.  Conciseness on the Wire

Appendix F.  Well-Formedness Errors and Examples

F.1.  Examples of CBOR Data Items That Are Not Well-Formed

Appendix G.  Changes from RFC 7049

G.1.  Errata Processing and Clerical Changes

G.2.  Changes in IANA Considerations

G.3.  Changes in Suggestions and Other Informational Components

Acknowledgements

Authors' Addresses

1. Introduction 
There are hundreds of standardized formats for binary representation of structured data (also
known as binary serialization formats). Of those, some are for specific domains of information,
while others are generalized for arbitrary data. In the IETF, probably the best-known formats in
the latter category are ASN.1's BER and DER .[ASN.1]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 4



The format defined here follows some specific design goals that are not well met by current
formats. The underlying data model is an extended version of the JSON data model . It
is important to note that this is not a proposal that the grammar in RFC 8259 be extended in
general, since doing so would cause a significant backwards incompatibility with already
deployed JSON documents. Instead, this document simply defines its own data model that starts
from JSON.

Appendix E lists some existing binary formats and discusses how well they do or do not fit the
design objectives of the Concise Binary Object Representation (CBOR).

This document obsoletes , providing editorial improvements, new details, and errata
fixes while keeping full compatibility with the interchange format of RFC 7049. It does not create
a new version of the format.

[RFC8259]

[RFC7049]

1.1. Objectives 
The objectives of CBOR, roughly in decreasing order of importance, are:

The representation must be able to unambiguously encode most common data formats used
in Internet standards.

It must represent a reasonable set of basic data types and structures using binary
encoding. "Reasonable" here is largely influenced by the capabilities of JSON, with the
major addition of binary byte strings. The structures supported are limited to arrays and
trees; loops and lattice-style graphs are not supported. 
There is no requirement that all data formats be uniquely encoded; that is, it is acceptable
that the number "7" might be encoded in multiple different ways. 

The code for an encoder or decoder must be able to be compact in order to support systems
with very limited memory, processor power, and instruction sets.

An encoder and a decoder need to be implementable in a very small amount of code (for
example, in class 1 constrained nodes as defined in ). 
The format should use contemporary machine representations of data (for example, not
requiring binary-to-decimal conversion). 

Data must be able to be decoded without a schema description.

Similar to JSON, encoded data should be self-describing so that a generic decoder can be
written. 

The serialization must be reasonably compact, but data compactness is secondary to code
compactness for the encoder and decoder.

"Reasonable" here is bounded by JSON as an upper bound in size and by the
implementation complexity, which limits the amount of effort that can go into achieving
that compactness. Using either general compression schemes or extensive bit-fiddling
violates the complexity goals. 

1. 

◦ 

◦ 

2. 

◦ 
[RFC7228]

◦ 

3. 

◦ 

4. 

◦ 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 5



The format must be applicable to both constrained nodes and high-volume applications.

This means it must be reasonably frugal in CPU usage for both encoding and decoding.
This is relevant both for constrained nodes and for potential usage in applications with a
very high volume of data. 

The format must support all JSON data types for conversion to and from JSON.

It must support a reasonable level of conversion as long as the data represented is within
the capabilities of JSON. It must be possible to define a unidirectional mapping towards
JSON for all types of data. 

The format must be extensible, and the extended data must be decodable by earlier
decoders.

The format is designed for decades of use. 
The format must support a form of extensibility that allows fallback so that a decoder that
does not understand an extension can still decode the message. 
The format must be able to be extended in the future by later IETF standards. 

5. 

◦ 

6. 

◦ 

7. 

◦ 
◦ 

◦ 

Data item:

Decoder:

Encoder:

1.2. Terminology 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

The term "byte" is used in its now-customary sense as a synonym for "octet". All multi-byte values
are encoded in network byte order (that is, most significant byte first, also known as "big-
endian").

This specification makes use of the following terminology:

A single piece of CBOR data. The structure of a data item may contain zero, one, or
more nested data items. The term is used both for the data item in representation format and
for the abstract idea that can be derived from that by a decoder; the former can be addressed
specifically by using the term "encoded data item". 

A process that decodes a well-formed encoded CBOR data item and makes it available
to an application. Formally speaking, a decoder contains a parser to break up the input using
the syntax rules of CBOR, as well as a semantic processor to prepare the data in a form
suitable to the application. 

A process that generates the (well-formed) representation format of a CBOR data item
from application information. 

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 6



Data Stream:

Well-formed:

Valid:

Expected:

Stream decoder:

A sequence of zero or more data items, not further assembled into a larger
containing data item (see  for one application). The independent data items that
make up a data stream are sometimes also referred to as "top-level data items". 

A data item that follows the syntactic structure of CBOR. A well-formed data item
uses the initial bytes and the byte strings and/or data items that are implied by their values as
defined in CBOR and does not include following extraneous data. CBOR decoders by definition
only return contents from well-formed data items. 

A data item that is well-formed and also follows the semantic restrictions that apply to
CBOR data items (Section 5.3). 

Besides its normal English meaning, the term "expected" is used to describe
requirements beyond CBOR validity that an application has on its input data. Well-formed
(processable at all), valid (checked by a validity-checking generic decoder), and expected
(checked by the application) form a hierarchy of layers of acceptability. 

A process that decodes a data stream and makes each of the data items in the
sequence available to an application as they are received. 

Terms and concepts for floating-point values such as Infinity, NaN (not a number), negative zero,
and subnormal are defined in .

Where bit arithmetic or data types are explained, this document uses the notation familiar from
the programming language C , except that ".." denotes a range that includes both ends given,
and superscript notation denotes exponentiation. For example, 2 to the power of 64 is notated:
264. In the plain-text version of this specification, superscript notation is not available and
therefore is rendered by a surrogate notation. That notation is not optimized for this RFC; it is
unfortunately ambiguous with C's exclusive-or (which is only used in the appendices, which in
turn do not use exponentiation) and requires circumspection from the reader of the plain-text
version.

Examples and pseudocode assume that signed integers use two's complement representation and
that right shifts of signed integers perform sign extension; these assumptions are also specified
in Sections 6.8.1 (basic.fundamental) and 7.6.7 (expr.shift) of the 2020 version of C++ (currently
available as a final draft, ).

Similar to the "0x" notation for hexadecimal numbers, numbers in binary notation are prefixed
with "0b". Underscores can be added to a number solely for readability, so 0b00100001 (0x21)
might be written 0b001_00001 to emphasize the desired interpretation of the bits in the byte; in
this case, it is split into three bits and five bits. Encoded CBOR data items are sometimes given in
the "0x" or "0b" notation; these values are first interpreted as numbers as in C and are then
interpreted as byte strings in network byte order, including any leading zero bytes expressed in
the notation.

[RFC8742]

[IEEE754]

[C]

[Cplusplus20]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 7



Words may be italicized for emphasis; in the plain text form of this specification, this is indicated
by surrounding words with underscore characters. Verbatim text (e.g., names from a
programming language) may be set in monospace type; in plain text, this is approximated
somewhat ambiguously by surrounding the text in double quotes (which also retain their usual
meaning).

2. CBOR Data Models 
CBOR is explicit about its generic data model, which defines the set of all data items that can be
represented in CBOR. Its basic generic data model is extensible by the registration of "simple
values" and tags. Applications can then create a subset of the resulting extended generic data
model to build their specific data models.

Within environments that can represent the data items in the generic data model, generic CBOR
encoders and decoders can be implemented (which usually involves defining additional
implementation data types for those data items that do not already have a natural representation
in the environment). The ability to provide generic encoders and decoders is an explicit design
goal of CBOR; however, many applications will provide their own application-specific encoders
and/or decoders.

In the basic (unextended) generic data model defined in Section 3, a data item is one of the
following:

an integer in the range -264..264-1 inclusive 
a simple value, identified by a number between 0 and 255, but distinct from that number
itself 
a floating-point value, distinct from an integer, out of the set representable by IEEE 754
binary64 (including non-finites)  
a sequence of zero or more bytes ("byte string") 
a sequence of zero or more Unicode code points ("text string") 
a sequence of zero or more data items ("array") 
a mapping (mathematical function) from zero or more data items ("keys") each to a data item
("values"), ("map") 

a tagged data item ("tag"), comprising a tag number (an integer in the range 0..264-1) and the
tag content (a data item) 

Note that integer and floating-point values are distinct in this model, even if they have the same
numeric value.

Also note that serialization variants are not visible at the generic data model level. This
deliberate absence of visibility includes the number of bytes of the encoded floating-point value.
It also includes the choice of encoding for an "argument" (see Section 3) such as the encoding for
an integer, the encoding for the length of a text or byte string, the encoding for the number of
elements in an array or pairs in a map, or the encoding for a tag number.

• 

• 

• 
[IEEE754]

• 
• 
• 
• 

• 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 8



2.1. Extended Generic Data Models 
This basic generic data model has been extended in this document by the registration of a
number of simple values and tag numbers, such as:

false, true, null, and undefined (simple values identified by 20..23, Section 3.3) 
integer and floating-point values with a larger range and precision than the above (tag
numbers 2 to 5, Section 3.4) 
application data types such as a point in time or date/time string defined in RFC 3339 (tag
numbers 1 and 0, Section 3.4) 

Additional elements of the extended generic data model can be (and have been) defined via the
IANA registries created for CBOR. Even if such an extension is unknown to a generic encoder or
decoder, data items using that extension can be passed to or from the application by
representing them at the application interface within the basic generic data model, i.e., as
generic simple values or generic tags.

In other words, the basic generic data model is stable as defined in this document, while the
extended generic data model expands by the registration of new simple values or tag numbers,
but never shrinks.

While there is a strong expectation that generic encoders and decoders can represent false, 
true, and null (undefined is intentionally omitted) in the form appropriate for their
programming environment, the implementation of the data model extensions created by tags is
truly optional and a matter of implementation quality.

• 
• 

• 

2.2. Specific Data Models 
The specific data model for a CBOR-based protocol usually takes a subset of the extended generic
data model and assigns application semantics to the data items within this subset and its
components. When documenting such specific data models and specifying the types of data
items, it is preferable to identify the types by their generic data model names ("negative integer",
"array") instead of referring to aspects of their CBOR representation ("major type 1", "major type
4").

Specific data models can also specify value equivalency (including values of different types) for
the purposes of map keys and encoder freedom. For example, in the generic data model, a valid
map  have both 0 and 0.0 as keys, and an encoder  encode 0.0 as an integer
(major type 0, Section 3.1). However, if a specific data model declares that floating-point and
integer representations of integral values are equivalent, using both map keys 0 and 0.0 in a
single map would be considered duplicates, even while encoded as different major types, and so
invalid; and an encoder could encode integral-valued floats as integers or vice versa, perhaps to
save encoded bytes.

MAY MUST NOT

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 9



Less than 24:

24, 25, 26, or 27:

28, 29, 30:

31:

3. Specification of the CBOR Encoding 
A CBOR data item (Section 2) is encoded to or decoded from a byte string carrying a well-formed
encoded data item as described in this section. The encoding is summarized in Table 7 in 
Appendix B, indexed by the initial byte. An encoder  produce only well-formed encoded
data items. A decoder  return a decoded data item when it encounters input that is not
a well-formed encoded CBOR data item (this does not detract from the usefulness of diagnostic
and recovery tools that might make available some information from a damaged encoded CBOR
data item).

The initial byte of each encoded data item contains both information about the major type (the
high-order 3 bits, described in Section 3.1) and additional information (the low-order 5 bits).
With a few exceptions, the additional information's value describes how to load an unsigned
integer "argument":

The argument's value is the value of the additional information. 

The argument's value is held in the following 1, 2, 4, or 8 bytes, respectively, in
network byte order. For major type 7 and additional information value 25, 26, 27, these bytes
are not used as an integer argument, but as a floating-point value (see Section 3.3). 

These values are reserved for future additions to the CBOR format. In the present
version of CBOR, the encoded item is not well-formed. 

No argument value is derived. If the major type is 0, 1, or 6, the encoded item is not well-
formed. For major types 2 to 5, the item's length is indefinite, and for major type 7, the byte
does not constitute a data item at all but terminates an indefinite-length item; all are
described in Section 3.2. 

The initial byte and any additional bytes consumed to construct the argument are collectively
referred to as the head of the data item.

The meaning of this argument depends on the major type. For example, in major type 0, the
argument is the value of the data item itself (and in major type 1, the value of the data item is
computed from the argument); in major type 2 and 3, it gives the length of the string data in
bytes that follow; and in major types 4 and 5, it is used to determine the number of data items
enclosed.

If the encoded sequence of bytes ends before the end of a data item, that item is not well-formed.
If the encoded sequence of bytes still has bytes remaining after the outermost encoded item is
decoded, that encoding is not a single well-formed CBOR item. Depending on the application, the
decoder may either treat the encoding as not well-formed or just identify the start of the
remaining bytes to the application.

MUST
MUST NOT

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 10



A CBOR decoder implementation can be based on a jump table with all 256 defined values for the
initial byte (Table 7). A decoder in a constrained implementation can instead use the structure of
the initial byte and following bytes for more compact code (see Appendix C for a rough
impression of how this could look).

Major type 0:

Major type 1:

Major type 2:

Major type 3:

Major type 4:

Major type 5:

3.1. Major Types 
The following lists the major types and the additional information and other bytes associated
with the type.

an unsigned integer in the range 0..264-1 inclusive. The value of the encoded item
is the argument itself. For example, the integer 10 is denoted as the one byte 0b000_01010
(major type 0, additional information 10). The integer 500 would be 0b000_11001 (major type
0, additional information 25) followed by the two bytes 0x01f4, which is 500 in decimal. 

a negative integer in the range -264..-1 inclusive. The value of the item is -1 minus
the argument. For example, the integer -500 would be 0b001_11001 (major type 1, additional
information 25) followed by the two bytes 0x01f3, which is 499 in decimal. 

a byte string. The number of bytes in the string is equal to the argument. For
example, a byte string whose length is 5 would have an initial byte of 0b010_00101 (major
type 2, additional information 5 for the length), followed by 5 bytes of binary content. A byte
string whose length is 500 would have 3 initial bytes of 0b010_11001 (major type 2, additional
information 25 to indicate a two-byte length) followed by the two bytes 0x01f4 for a length of
500, followed by 500 bytes of binary content. 

a text string (Section 2) encoded as UTF-8 . The number of bytes in the
string is equal to the argument. A string containing an invalid UTF-8 sequence is well-formed
but invalid (Section 1.2). This type is provided for systems that need to interpret or display
human-readable text, and allows the differentiation between unstructured bytes and text that
has a specified repertoire (that of Unicode) and encoding (UTF-8). In contrast to formats such
as JSON, the Unicode characters in this type are never escaped. Thus, a newline character (U
+000A) is always represented in a string as the byte 0x0a, and never as the bytes 0x5c6e (the
characters "\" and "n") nor as 0x5c7530303061 (the characters "\", "u", "0", "0", "0", and "a"). 

an array of data items. In other formats, arrays are also called lists, sequences, or
tuples (a "CBOR sequence" is something slightly different, though ). The argument is
the number of data items in the array. Items in an array do not need to all be of the same type.
For example, an array that contains 10 items of any type would have an initial byte of
0b100_01010 (major type 4, additional information 10 for the length) followed by the 10
remaining items. 

a map of pairs of data items. Maps are also called tables, dictionaries, hashes, or
objects (in JSON). A map is comprised of pairs of data items, each pair consisting of a key that
is immediately followed by a value. The argument is the number of pairs of data items in the
map. For example, a map that contains 9 pairs would have an initial byte of 0b101_01001
(major type 5, additional information 9 for the number of pairs) followed by the 18 remaining

[RFC3629]

[RFC8742]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 11



Major type 6:

Major type 7:

items. The first item is the first key, the second item is the first value, the third item is the
second key, and so on. Because items in a map come in pairs, their total number is always
even: a map that contains an odd number of items (no value data present after the last key
data item) is not well-formed. A map that has duplicate keys may be well-formed, but it is not
valid, and thus it causes indeterminate decoding; see also Section 5.6. 

a tagged data item ("tag") whose tag number, an integer in the range 0..264-1
inclusive, is the argument and whose enclosed data item (tag content) is the single encoded
data item that follows the head. See Section 3.4. 

floating-point numbers and simple values, as well as the "break" stop code. See 
Section 3.3. 

These eight major types lead to a simple table showing which of the 256 possible values for the
initial byte of a data item are used (Table 7).

In major types 6 and 7, many of the possible values are reserved for future specification. See 
Section 9 for more information on these values.

Table 1 summarizes the major types defined by CBOR, ignoring Section 3.2 for now. The number
N in this table stands for the argument.

Major Type Meaning Content

0 unsigned integer N -

1 negative integer -1-N -

2 byte string N bytes

3 text string N bytes (UTF-8 text)

4 array N data items (elements)

5 map 2N data items (key/value pairs)

6 tag of number N 1 data item

7 simple/float -

Table 1: Overview over the Definite-Length Use of CBOR Major Types (N =
Argument) 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 12



3.2. Indefinite Lengths for Some Major Types 
Four CBOR items (arrays, maps, byte strings, and text strings) can be encoded with an indefinite
length using additional information value 31. This is useful if the encoding of the item needs to
begin before the number of items inside the array or map, or the total length of the string, is
known. (The ability to start sending a data item before all of it is known is often referred to as
"streaming" within that data item.)

Indefinite-length arrays and maps are dealt with differently than indefinite-length strings (byte
strings and text strings).

3.2.1. The "break" Stop Code 

The "break" stop code is encoded with major type 7 and additional information value 31
(0b111_11111). It is not itself a data item: it is just a syntactic feature to close an indefinite-length
item.

If the "break" stop code appears where a data item is expected, other than directly inside an
indefinite-length string, array, or map -- for example, directly inside a definite-length array or
map -- the enclosing item is not well-formed.

3.2.2. Indefinite-Length Arrays and Maps 

Indefinite-length arrays and maps are represented using their major type with the additional
information value of 31, followed by an arbitrary-length sequence of zero or more items for an
array or key/value pairs for a map, followed by the "break" stop code (Section 3.2.1). In other
words, indefinite-length arrays and maps look identical to other arrays and maps except for
beginning with the additional information value of 31 and ending with the "break" stop code.

If the "break" stop code appears after a key in a map, in place of that key's value, the map is not
well-formed.

There is no restriction against nesting indefinite-length array or map items. A "break" only
terminates a single item, so nested indefinite-length items need exactly as many "break" stop
codes as there are type bytes starting an indefinite-length item.

For example, assume an encoder wants to represent the abstract array [1, [2, 3], [4, 5]]. The
definite-length encoding would be 0x8301820203820405:

83        -- Array of length 3
   01     -- 1
   82     -- Array of length 2
      02  -- 2
      03  -- 3
   82     -- Array of length 2
      04  -- 4
      05  -- 5

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 13



Indefinite-length encoding could be applied independently to each of the three arrays encoded in
this data item, as required, leading to representations such as:

0x9f018202039f0405ffff
9F        -- Start indefinite-length array
   01     -- 1
   82     -- Array of length 2
      02  -- 2
      03  -- 3
   9F     -- Start indefinite-length array
      04  -- 4
      05  -- 5
      FF  -- "break" (inner array)
   FF     -- "break" (outer array)

0x9f01820203820405ff
9F        -- Start indefinite-length array
   01     -- 1
   82     -- Array of length 2
      02  -- 2
      03  -- 3
   82     -- Array of length 2
      04  -- 4
      05  -- 5
   FF     -- "break"

0x83018202039f0405ff
83        -- Array of length 3
   01     -- 1
   82     -- Array of length 2
      02  -- 2
      03  -- 3
   9F     -- Start indefinite-length array
      04  -- 4
      05  -- 5
      FF  -- "break"

0x83019f0203ff820405
83        -- Array of length 3
   01     -- 1
   9F     -- Start indefinite-length array
      02  -- 2
      03  -- 3
      FF  -- "break"
   82     -- Array of length 2
      04  -- 4
      05  -- 5

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 14



An example of an indefinite-length map (that happens to have two key/value pairs) might be:

0xbf6346756ef563416d7421ff
BF           -- Start indefinite-length map
   63        -- First key, UTF-8 string length 3
      46756e --   "Fun"
   F5        -- First value, true
   63        -- Second key, UTF-8 string length 3
      416d74 --   "Amt"
   21        -- Second value, -2
   FF        -- "break"

3.2.3. Indefinite-Length Byte Strings and Text Strings 

Indefinite-length strings are represented by a byte containing the major type for byte string or
text string with an additional information value of 31, followed by a series of zero or more
strings of the specified type ("chunks") that have definite lengths, and finished by the "break"
stop code (Section 3.2.1). The data item represented by the indefinite-length string is the
concatenation of the chunks. If no chunks are present, the data item is an empty string of the
specified type. Zero-length chunks, while not particularly useful, are permitted.

If any item between the indefinite-length string indicator (0b010_11111 or 0b011_11111) and the
"break" stop code is not a definite-length string item of the same major type, the string is not
well-formed.

The design does not allow nesting indefinite-length strings as chunks into indefinite-length
strings. If it were allowed, it would require decoder implementations to keep a stack, or at least a
count, of nesting levels. It is unnecessary on the encoder side because the inner indefinite-length
string would consist of chunks, and these could instead be put directly into the outer indefinite-
length string.

If any definite-length text string inside an indefinite-length text string is invalid, the indefinite-
length text string is invalid. Note that this implies that the UTF-8 bytes of a single Unicode code
point (scalar value) cannot be spread between chunks: a new chunk of a text string can only be
started at a code point boundary.

For example, assume an encoded data item consisting of the bytes:

After decoding, this results in a single byte string with seven bytes: 0xaabbccddeeff99.

0b010_11111 0b010_00100 0xaabbccdd 0b010_00011 0xeeff99 0b111_11111
5F              -- Start indefinite-length byte string
   44           -- Byte string of length 4
      aabbccdd  -- Bytes content
   43           -- Byte string of length 3
      eeff99    -- Bytes content
   FF           -- "break"

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 15



3.2.4. Summary of Indefinite-Length Use of Major Types 

Table 2 summarizes the major types defined by CBOR as used for indefinite-length encoding
(with additional information set to 31).

Major Type Meaning Enclosed up to "break" Stop Code

0 (not well-formed) -

1 (not well-formed) -

2 byte string definite-length byte strings

3 text string definite-length text strings

4 array data items (elements)

5 map data items (key/value pairs)

6 (not well-formed) -

7 "break" stop code -

Table 2: Overview of the Indefinite-Length Use of CBOR Major Types
(Additional Information = 31) 

3.3. Floating-Point Numbers and Values with No Content 
Major type 7 is for two types of data: floating-point numbers and "simple values" that do not
need any content. Each value of the 5-bit additional information in the initial byte has its own
separate meaning, as defined in Table 3. Like the major types for integers, items of this major
type do not carry content data; all the information is in the initial bytes (the head).

5-Bit Value Semantics

0..23 Simple value (value 0..23)

24 Simple value (value 32..255 in following byte)

25 IEEE 754 Half-Precision Float (16 bits follow)

26 IEEE 754 Single-Precision Float (32 bits follow)

27 IEEE 754 Double-Precision Float (64 bits follow)

28-30 Reserved, not well-formed in the present document

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 16



As with all other major types, the 5-bit value 24 signifies a single-byte extension: it is followed by
an additional byte to represent the simple value. (To minimize confusion, only the values 32 to
255 are used.) This maintains the structure of the initial bytes: as for the other major types, the
length of these always depends on the additional information in the first byte. Table 4 lists the
numeric values assigned and available for simple values.

An encoder  issue two-byte sequences that start with 0xf8 (major type 7, additional
information 24) and continue with a byte less than 0x20 (32 decimal). Such sequences are not
well-formed. (This implies that an encoder cannot encode false, true, null, or undefined in
two-byte sequences and that only the one-byte variants of these are well-formed; more generally
speaking, each simple value only has a single representation variant).

The 5-bit values of 25, 26, and 27 are for 16-bit, 32-bit, and 64-bit IEEE 754 binary floating-point
values . These floating-point values are encoded in the additional bytes of the
appropriate size. (See Appendix D for some information about 16-bit floating-point numbers.)

5-Bit Value Semantics

31 "break" stop code for indefinite-length items (Section 3.2.1)

Table 3: Values for Additional Information in Major Type 7 

Value Semantics

0..19 (unassigned)

20 false

21 true

22 null

23 undefined

24..31 (reserved)

32..255 (unassigned)

Table 4: Simple Values 

MUST NOT

[IEEE754]

3.4. Tagging of Items 
In CBOR, a data item can be enclosed by a tag to give it some additional semantics, as uniquely
identified by a tag number. The tag is major type 6, its argument (Section 3) indicates the tag
number, and it contains a single enclosed data item, the tag content. (If a tag requires further
structure to its content, this structure is provided by the enclosed data item.) We use the term tag
for the entire data item consisting of both a tag number and the tag content: the tag content is the
data item that is being tagged.

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 17



For example, assume that a byte string of length 12 is marked with a tag of number 2 to indicate
it is an unsigned bignum (Section 3.4.3). The encoded data item would start with a byte
0b110_00010 (major type 6, additional information 2 for the tag number) followed by the
encoded tag content: 0b010_01100 (major type 2, additional information 12 for the length)
followed by the 12 bytes of the bignum.

In the extended generic data model, a tag number's definition describes the additional semantics
conveyed with the tag number. These semantics may include equivalence of some tagged data
items with other data items, including some that can be represented in the basic generic data
model. For instance, 0xc24101, a bignum the tag content of which is the byte string with the
single byte 0x01, is equivalent to an integer 1, which could also be encoded as 0x01, 0x1801, or
0x190001. The tag definition may specify a preferred serialization (Section 4.1) that is
recommended for generic encoders; this may prefer basic generic data model representations
over ones that employ a tag.

The tag definition usually defines which nested data items are valid for such tags. Tag definitions
may restrict their content to a very specific syntactic structure, as the tags defined in this
document do, or they may define their content more semantically. An example for the latter is
how tags 40 and 1040 accept multiple ways to represent arrays .

As a matter of convention, many tags do not accept null or undefined values as tag content;
instead, the expectation is that a null or undefined value can be used in place of the entire tag; 
Section 3.4.2 provides some further considerations for one specific tag about the handling of this
convention in application protocols and in mapping to platform types.

Decoders do not need to understand tags of every tag number, and tags may be of little value in
applications where the implementation creating a particular CBOR data item and the
implementation decoding that stream know the semantic meaning of each item in the data flow.
The primary purpose of tags in this specification is to define common data types such as dates. A
secondary purpose is to provide conversion hints when it is foreseen that the CBOR data item
needs to be translated into a different format, requiring hints about the content of items.
Understanding the semantics of tags is optional for a decoder; it can simply present both the tag
number and the tag content to the application, without interpreting the additional semantics of
the tag.

A tag applies semantics to the data item it encloses. Tags can nest: if tag A encloses tag B, which
encloses data item C, tag A applies to the result of applying tag B on data item C.

IANA maintains a registry of tag numbers as described in Section 9.2. Table 5 provides a list of
tag numbers that were defined in  with definitions in the rest of this section. (Tag
number 35 was also defined in ; a discussion of this tag number follows in Section
3.4.5.3.) Note that many other tag numbers have been defined since the publication of ;
see the registry described at Section 9.2 for the complete list.

[RFC8746]

[RFC7049]
[RFC7049]

[RFC7049]

Tag Data Item Semantics

0 text string Standard date/time string; see Section 3.4.1 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 18



Conceptually, tags are interpreted in the generic data model, not at (de-)serialization time. A
small number of tags (at this time, tag number 25 and tag number 29 ) have
been registered with semantics that may require processing at (de-)serialization time: the
decoder needs to be aware of, and the encoder needs to be in control of, the exact sequence in
which data items are encoded into the CBOR data item. This means these tags cannot be
implemented on top of an arbitrary generic CBOR encoder/decoder (which might not reflect the
serialization order for entries in a map at the data model level and vice versa); their
implementation therefore typically needs to be integrated into the generic encoder/decoder. The
definition of new tags with this property is .

IANA allocated tag numbers 65535, 4294967295, and 18446744073709551615 (binary all-ones in
16-bit, 32-bit, and 64-bit). These can be used as a convenience for implementers who want a
single-integer data structure to indicate either the presence of a specific tag or absence of a tag.
That allocation is described in . These tags are not intended to occur in
actual CBOR data items; implementations  flag such an occurrence as an error.

Tag Data Item Semantics

1 integer or float Epoch-based date/time; see Section 3.4.2 

2 byte string Unsigned bignum; see Section 3.4.3 

3 byte string Negative bignum; see Section 3.4.3 

4 array Decimal fraction; see Section 3.4.4 

5 array Bigfloat; see Section 3.4.4 

21 (any) Expected conversion to base64url encoding; see Section 3.4.5.2 

22 (any) Expected conversion to base64 encoding; see Section 3.4.5.2 

23 (any) Expected conversion to base16 encoding; see Section 3.4.5.2 

24 byte string Encoded CBOR data item; see Section 3.4.5.1 

32 text string URI; see Section 3.4.5.3 

33 text string base64url; see Section 3.4.5.3 

34 text string base64; see Section 3.4.5.3 

36 text string MIME message; see Section 3.4.5.3 

55799 (any) Self-described CBOR; see Section 3.4.6 

Table 5: Tag Numbers Defined in RFC 7049 

[IANA.cbor-tags]

NOT RECOMMENDED

Section 10 of [CBOR-TAGS]
MAY

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 19

https://tools.ietf.org/html/draft-bormann-cbor-notable-tags-02#section-10


Protocols can extend the generic data model (Section 2) with data items representing points in
time by using tag numbers 0 and 1, with arbitrarily sized integers by using tag numbers 2 and 3,
and with floating-point values of arbitrary size and precision by using tag numbers 4 and 5.

3.4.1. Standard Date/Time String 

Tag number 0 contains a text string in the standard format described by the date-time
production in , as refined by , representing the point in time
described there. A nested item of another type or a text string that doesn't match the format
described in  is invalid.

[RFC3339] Section 3.3 of [RFC4287]

[RFC4287]

3.4.2. Epoch-Based Date/Time 

Tag number 1 contains a numerical value counting the number of seconds from
1970-01-01T00:00Z in UTC time to the represented point in civil time.

The tag content  be an unsigned or negative integer (major types 0 and 1) or a floating-point
number (major type 7 with additional information 25, 26, or 27). Other contained types are
invalid.

Nonnegative values (major type 0 and nonnegative floating-point numbers) stand for time values
on or after 1970-01-01T00:00Z UTC and are interpreted according to POSIX . (POSIX time
is also known as "UNIX Epoch time".) Leap seconds are handled specially by POSIX time, and this
results in a 1-second discontinuity several times per decade. Note that applications that require
the expression of times beyond early 2106 cannot leave out support of 64-bit integers for the tag
content.

Negative values (major type 1 and negative floating-point numbers) are interpreted as
determined by the application requirements as there is no universal standard for UTC count-of-
seconds time before 1970-01-01T00:00Z (this is particularly true for points in time that precede
discontinuities in national calendars). The same applies to non-finite values.

To indicate fractional seconds, floating-point values can be used within tag number 1 instead of
integer values. Note that this generally requires binary64 support, as binary16 and binary32
provide nonzero fractions of seconds only for a short period of time around early 1970. An
application that requires tag number 1 support may restrict the tag content to be an integer (or a
floating-point value) only.

Note that platform types for date/time may include null or undefined values, which may also be
desirable at an application protocol level. While emitting tag number 1 values with non-finite tag
content values (e.g., with NaN for undefined date/time values or with Infinity for an expiry date
that is not set) may seem an obvious way to handle this, using untagged null or undefined
avoids the use of non-finites and results in a shorter encoding. Application protocol designers are
encouraged to consider these cases and include clear guidelines for handling them.

MUST

[TIME_T]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc4287#section-3.3


3.4.3. Bignums 

Protocols using tag numbers 2 and 3 extend the generic data model (Section 2) with "bignums"
representing arbitrarily sized integers. In the basic generic data model, bignum values are not
equal to integers from the same model, but the extended generic data model created by this tag
definition defines equivalence based on numeric value, and preferred serialization (Section 4.1)
never makes use of bignums that also can be expressed as basic integers (see below).

Bignums are encoded as a byte string data item, which is interpreted as an unsigned integer n in
network byte order. Contained items of other types are invalid. For tag number 2, the value of
the bignum is n. For tag number 3, the value of the bignum is -1 - n. The preferred serialization of
the byte string is to leave out any leading zeroes (note that this means the preferred serialization
for n = 0 is the empty byte string, but see below). Decoders that understand these tags  be
able to decode bignums that do have leading zeroes. The preferred serialization of an integer
that can be represented using major type 0 or 1 is to encode it this way instead of as a bignum
(which means that the empty string never occurs in a bignum when using preferred
serialization). Note that this means the non-preferred choice of a bignum representation instead
of a basic integer for encoding a number is not intended to have application semantics (just as
the choice of a longer basic integer representation than needed, such as 0x1800 for 0x00, does
not).

For example, the number 18446744073709551616 (264) is represented as 0b110_00010 (major
type 6, tag number 2), followed by 0b010_01001 (major type 2, length 9), followed by
0x010000000000000000 (one byte 0x01 and eight bytes 0x00). In hexadecimal:

MUST

C2                        -- Tag 2
   49                     -- Byte string of length 9
      010000000000000000  -- Bytes content

3.4.4. Decimal Fractions and Bigfloats 

Protocols using tag number 4 extend the generic data model with data items representing
arbitrary-length decimal fractions of the form m*(10e). Protocols using tag number 5 extend the
generic data model with data items representing arbitrary-length binary fractions of the form m*
(2e). As with bignums, values of different types are not equal in the generic data model.

Decimal fractions combine an integer mantissa with a base-10 scaling factor. They are most
useful if an application needs the exact representation of a decimal fraction such as 1.1 because
there is no exact representation for many decimal fractions in binary floating-point
representations.

"Bigfloats" combine an integer mantissa with a base-2 scaling factor. They are binary floating-
point values that can exceed the range or the precision of the three IEEE 754 formats supported
by CBOR (Section 3.3). Bigfloats may also be used by constrained applications that need some
basic binary floating-point capability without the need for supporting IEEE 754.

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 21



A decimal fraction or a bigfloat is represented as a tagged array that contains exactly two integer
numbers: an exponent e and a mantissa m. Decimal fractions (tag number 4) use base-10
exponents; the value of a decimal fraction data item is m*(10e). Bigfloats (tag number 5) use
base-2 exponents; the value of a bigfloat data item is m*(2e). The exponent e  be
represented in an integer of major type 0 or 1, while the mantissa can also be a bignum (Section
3.4.3). Contained items with other structures are invalid.

An example of a decimal fraction is the representation of the number 273.15 as 0b110_00100
(major type 6 for tag, additional information 4 for the tag number), followed by 0b100_00010
(major type 4 for the array, additional information 2 for the length of the array), followed by
0b001_00001 (major type 1 for the first integer, additional information 1 for the value of -2),
followed by 0b000_11001 (major type 0 for the second integer, additional information 25 for a
two-byte value), followed by 0b0110101010110011 (27315 in two bytes). In hexadecimal:

An example of a bigfloat is the representation of the number 1.5 as 0b110_00101 (major type 6
for tag, additional information 5 for the tag number), followed by 0b100_00010 (major type 4 for
the array, additional information 2 for the length of the array), followed by 0b001_00000 (major
type 1 for the first integer, additional information 0 for the value of -1), followed by 0b000_00011
(major type 0 for the second integer, additional information 3 for the value of 3). In hexadecimal:

Decimal fractions and bigfloats provide no representation of Infinity, -Infinity, or NaN; if these
are needed in place of a decimal fraction or bigfloat, the IEEE 754 half-precision representations
from Section 3.3 can be used.

MUST

C4             -- Tag 4
   82          -- Array of length 2
      21       -- -2
      19 6ab3  -- 27315

C5             -- Tag 5
   82          -- Array of length 2
      20       -- -1
      03       -- 3

3.4.5. Content Hints 

The tags in this section are for content hints that might be used by generic CBOR processors.
These content hints do not extend the generic data model.

3.4.5.1. Encoded CBOR Data Item 
Sometimes it is beneficial to carry an embedded CBOR data item that is not meant to be decoded
immediately at the time the enclosing data item is being decoded. Tag number 24 (CBOR data
item) can be used to tag the embedded byte string as a single data item encoded in CBOR format.
Contained items that aren't byte strings are invalid. A contained byte string is valid if it encodes a
well-formed CBOR data item; validity checking of the decoded CBOR item is not required for tag
validity (but could be offered by a generic decoder as a special option).

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 22



3.4.5.2. Expected Later Encoding for CBOR-to-JSON Converters 
Tag numbers 21 to 23 indicate that a byte string might require a specific encoding when
interoperating with a text-based representation. These tags are useful when an encoder knows
that the byte string data it is writing is likely to be later converted to a particular JSON-based
usage. That usage specifies that some strings are encoded as base64, base64url, and so on. The
encoder uses byte strings instead of doing the encoding itself to reduce the message size, to
reduce the code size of the encoder, or both. The encoder does not know whether or not the
converter will be generic, and therefore wants to say what it believes is the proper way to
convert binary strings to JSON.

The data item tagged can be a byte string or any other data item. In the latter case, the tag applies
to all of the byte string data items contained in the data item, except for those contained in a
nested data item tagged with an expected conversion.

These three tag numbers suggest conversions to three of the base data encodings defined in 
. Tag number 21 suggests conversion to base64url encoding ( )

where padding is not used (see ); that is, all trailing equals signs ("=") are
removed from the encoded string. Tag number 22 suggests conversion to classical base64
encoding ( ) with padding as defined in RFC 4648. For both base64url and
base64, padding bits are set to zero (see ), and the conversion to alternate
encoding is performed on the contents of the byte string (that is, without adding any line breaks,
whitespace, or other additional characters). Tag number 23 suggests conversion to base16 (hex)
encoding with uppercase alphabetics (see ). Note that, for all three tag
numbers, the encoding of the empty byte string is the empty text string.

[RFC4648] Section 5 of [RFC4648]
Section 3.2 of [RFC4648]

Section 4 of [RFC4648]
Section 3.5 of [RFC4648]

Section 8 of [RFC4648]

3.4.5.3. Encoded Text 
Some text strings hold data that have formats widely used on the Internet, and sometimes those
formats can be validated and presented to the application in appropriate form by the decoder.
There are tags for some of these formats.

Tag number 32 is for URIs, as defined in . If the text string doesn't match the URI-
reference production, the string is invalid. 
Tag numbers 33 and 34 are for base64url- and base64-encoded text strings, respectively, as
defined in . If any of the following apply:

the encoded text string contains non-alphabet characters or only 1 alphabet character in
the last block of 4 (where alphabet is defined by  for tag number 33
and  for tag number 34), or 
the padding bits in a 2- or 3-character block are not 0, or 
the base64 encoding has the wrong number of padding characters, or 
the base64url encoding has padding characters, 

the string is invalid.

• [RFC3986]

• 
[RFC4648]

◦ 
Section 5 of [RFC4648]

Section 4 of [RFC4648]
◦ 
◦ 
◦ 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 23

https://www.rfc-editor.org/rfc/rfc4648#section-5
https://www.rfc-editor.org/rfc/rfc4648#section-3.2
https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc4648#section-3.5
https://www.rfc-editor.org/rfc/rfc4648#section-8
https://www.rfc-editor.org/rfc/rfc4648#section-5
https://www.rfc-editor.org/rfc/rfc4648#section-4


Tag number 36 is for MIME messages (including all headers), as defined in . A text
string that isn't a valid MIME message is invalid. (For this tag, validity checking may be
particularly onerous for a generic decoder and might therefore not be offered. Note that
many MIME messages are general binary data and therefore cannot be represented in a text
string;  lists a registration for tag number 257 that is similar to tag number
36 but uses a byte string as its tag content.) 

Note that tag numbers 33 and 34 differ from 21 and 22 in that the data is transported in base-
encoded form for the former and in raw byte string form for the latter.

 also defined a tag number 35 for regular expressions that are in Perl Compatible
Regular Expressions (PCRE/PCRE2) form  or in JavaScript regular expression syntax 

. The state of the art in these regular expression specifications has since advanced and
is continually advancing, so this specification does not attempt to update the references. Instead,
this tag remains available (as registered in ) for applications that specify the particular
regular expression variant they use out-of-band (possibly by limiting the usage to a defined
common subset of both PCRE and ECMA262). As this specification clarifies tag validity beyond 

, we note that due to the open way the tag was defined in , any contained
string value needs to be valid at the CBOR tag level (but then may not be "expected" at the
application level).

• [RFC2045]

[IANA.cbor-tags]

[RFC7049]
[PCRE]

[ECMA262]

[RFC7049]

[RFC7049] [RFC7049]

3.4.6. Self-Described CBOR 

In many applications, it will be clear from the context that CBOR is being employed for encoding
a data item. For instance, a specific protocol might specify the use of CBOR, or a media type is
indicated that specifies its use. However, there may be applications where such context
information is not available, such as when CBOR data is stored in a file that does not have
disambiguating metadata. Here, it may help to have some distinguishing characteristics for the
data itself.

Tag number 55799 is defined for this purpose, specifically for use at the start of a stored encoded
CBOR data item as specified by an application. It does not impart any special semantics on the
data item that it encloses; that is, the semantics of the tag content enclosed in tag number 55799
is exactly identical to the semantics of the tag content itself.

The serialization of this tag's head is 0xd9d9f7, which does not appear to be in use as a
distinguishing mark for any frequently used file types. In particular, 0xd9d9f7 is not a valid start
of a Unicode text in any Unicode encoding if it is followed by a valid CBOR data item.

For instance, a decoder might be able to decode both CBOR and JSON. Such a decoder would need
to mechanically distinguish the two formats. An easy way for an encoder to help the decoder
would be to tag the entire CBOR item with tag number 55799, the serialization of which will
never be found at the beginning of a JSON text.

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 24



4. Serialization Considerations 

4.1. Preferred Serialization 
For some values at the data model level, CBOR provides multiple serializations. For many
applications, it is desirable that an encoder always chooses a preferred serialization (preferred
encoding); however, the present specification does not put the burden of enforcing this
preference on either the encoder or decoder.

Some constrained decoders may be limited in their ability to decode non-preferred serializations:
for example, if only integers below 1_000_000_000 (one billion) are expected in an application,
the decoder may leave out the code that would be needed to decode 64-bit arguments in integers.
An encoder that always uses preferred serialization ("preferred encoder") interoperates with this
decoder for the numbers that can occur in this application. Generally speaking, a preferred
encoder is more universally interoperable (and also less wasteful) than one that, say, always uses
64-bit integers.

Similarly, a constrained encoder may be limited in the variety of representation variants it
supports such that it does not emit preferred serializations ("variant encoder"). For instance, a
constrained encoder could be designed to always use the 32-bit variant for an integer that it
encodes even if a short representation is available (assuming that there is no application need
for integers that can only be represented with the 64-bit variant). A decoder that does not rely on
receiving only preferred serializations ("variation-tolerant decoder") can therefore be said to be
more universally interoperable (it might very well optimize for the case of receiving preferred
serializations, though). Full implementations of CBOR decoders are by definition variation
tolerant; the distinction is only relevant if a constrained implementation of a CBOR decoder
meets a variant encoder.

The preferred serialization always uses the shortest form of representing the argument (Section
3); it also uses the shortest floating-point encoding that preserves the value being encoded.

The preferred serialization for a floating-point value is the shortest floating-point encoding that
preserves its value, e.g., 0xf94580 for the number 5.5, and 0xfa45ad9c00 for the number 5555.5.
For NaN values, a shorter encoding is preferred if zero-padding the shorter significand towards
the right reconstitutes the original NaN value (for many applications, the single NaN encoding
0xf97e00 will suffice).

Definite-length encoding is preferred whenever the length is known at the time the serialization
of the item starts.

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 25



4.2. Deterministically Encoded CBOR 
Some protocols may want encoders to only emit CBOR in a particular deterministic format; those
protocols might also have the decoders check that their input is in that deterministic format.
Those protocols are free to define what they mean by a "deterministic format" and what
encoders and decoders are expected to do. This section defines a set of restrictions that can serve
as the base of such a deterministic format.

4.2.1. Core Deterministic Encoding Requirements 

A CBOR encoding satisfies the "core deterministic encoding requirements" if it satisfies the
following restrictions:

Preferred serialization  be used. In particular, this means that arguments (see Section
3) for integers, lengths in major types 2 through 5, and tags  be as short as possible, for
instance:

0 to 23 and -1 to -24  be expressed in the same byte as the major type; 
24 to 255 and -25 to -256  be expressed only with an additional uint8_t; 
256 to 65535 and -257 to -65536  be expressed only with an additional uint16_t; 
65536 to 4294967295 and -65537 to -4294967296  be expressed only with an
additional uint32_t. 

Floating-point values also  use the shortest form that preserves the value, e.g., 1.5 is
encoded as 0xf93e00 (binary16) and 1000000.5 as 0xfa49742408 (binary32). (One
implementation of this is to have all floats start as a 64-bit float, then do a test conversion to
a 32-bit float; if the result is the same numeric value, use the shorter form and repeat the
process with a test conversion to a 16-bit float. This also works to select 16-bit float for
positive and negative Infinity as well.)

Indefinite-length items  appear. They can be encoded as definite-length items
instead. 
The keys in every map  be sorted in the bytewise lexicographic order of their
deterministic encodings. For example, the following keys are sorted correctly:

10, encoded as 0x0a. 
100, encoded as 0x1864. 
-1, encoded as 0x20. 
"z", encoded as 0x617a. 
"aa", encoded as 0x626161. 
[100], encoded as 0x811864. 
[-1], encoded as 0x8120. 
false, encoded as 0xf4. 

• MUST
MUST

◦ MUST

◦ MUST

◦ MUST

◦ MUST

MUST

• MUST NOT

• MUST

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 26



Implementation note: the self-delimiting nature of the CBOR encoding means that
there are no two well-formed CBOR encoded data items where one is a prefix of the
other. The bytewise lexicographic comparison of deterministic encodings of
different map keys therefore always ends in a position where the byte differs
between the keys, before the end of a key is reached.

4.2.2. Additional Deterministic Encoding Considerations 

CBOR tags present additional considerations for deterministic encoding. If a CBOR-based protocol
were to provide the same semantics for the presence and absence of a specific tag (e.g., by
allowing both tag 1 data items and raw numbers in a date/time position, treating the latter as if
they were tagged), the deterministic format would not allow the presence of the tag, based on the
"shortest form" principle. For example, a protocol might give encoders the choice of representing
a URL as either a text string or, using Section 3.4.5.3, tag number 32 containing a text string. This
protocol's deterministic encoding needs either to require that the tag is present or to require that
it is absent, not allow either one.

In a protocol that does require tags in certain places to obtain specific semantics, the tag needs to
appear in the deterministic format as well. Deterministic encoding considerations also apply to
the content of tags.

If a protocol includes a field that can express integers with an absolute value of 264 or larger
using tag numbers 2 or 3 (Section 3.4.3), the protocol's deterministic encoding needs to specify
whether smaller integers are also expressed using these tags or using major types 0 and 1.
Preferred serialization uses the latter choice, which is therefore recommended.

Protocols that include floating-point values, whether represented using basic floating-point
values (Section 3.3) or using tags (or both), may need to define extra requirements on their
deterministic encodings, such as:

Although IEEE floating-point values can represent both positive and negative zero as distinct
values, the application might not distinguish these and might decide to represent all zero
values with a positive sign, disallowing negative zero. (The application may also want to
restrict the precision of floating-point values in such a way that there is never a need to
represent 64-bit -- or even 32-bit -- floating-point values.) 
If a protocol includes a field that can express floating-point values, with a specific data model
that declares integer and floating-point values to be interchangeable, the protocol's
deterministic encoding needs to specify whether, for example, the integer 1.0 is encoded as
0x01 (unsigned integer), 0xf93c00 (binary16), 0xfa3f800000 (binary32), or
0xfb3ff0000000000000 (binary64). Example rules for this are:

Encode integral values that fit in 64 bits as values from major types 0 and 1, and other
values as the preferred (smallest of 16-, 32-, or 64-bit) floating-point representation that
accurately represents the value, 
Encode all values as the preferred floating-point representation that accurately represents
the value, even for integral values, or 

• 

• 

1. 

2. 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 27



Encode all values as 64-bit floating-point representations. 

Rule 1 straddles the boundaries between integers and floating-point values, and Rule 3 does
not use preferred serialization, so Rule 2 may be a good choice in many cases.

If NaN is an allowed value, and there is no intent to support NaN payloads or signaling NaNs,
the protocol needs to pick a single representation, typically 0xf97e00. If that simple choice is
not possible, specific attention will be needed for NaN handling. 
Subnormal numbers (nonzero numbers with the lowest possible exponent of a given IEEE
754 number format) may be flushed to zero outputs or be treated as zero inputs in some
floating-point implementations. A protocol's deterministic encoding may want to specifically
accommodate such implementations while creating an onus on other implementations by
excluding subnormal numbers from interchange, interchanging zero instead. 
The same number can be represented by different decimal fractions, by different bigfloats,
and by different forms under other tags that may be defined to express numeric values.
Depending on the implementation, it may not always be practical to determine whether any
of these forms (or forms in the basic generic data model) are equivalent. An application
protocol that presents choices of this kind for the representation format of numbers needs to
be explicit about how the formats for deterministic encoding are to be chosen. 

3. 

• 

• 

• 

4.2.3. Length-First Map Key Ordering 

The core deterministic encoding requirements (Section 4.2.1) sort map keys in a different order
from the one suggested by  (called "Canonical CBOR" there). Protocols
that need to be compatible with the order specified in  can instead be specified in
terms of this specification's "length-first core deterministic encoding requirements":

A CBOR encoding satisfies the "length-first core deterministic encoding requirements" if it
satisfies the core deterministic encoding requirements except that the keys in every map 
be sorted such that:

If two keys have different lengths, the shorter one sorts earlier; 
If two keys have the same length, the one with the lower value in (bytewise) lexical order
sorts earlier. 

For example, under the length-first core deterministic encoding requirements, the following keys
are sorted correctly:

10, encoded as 0x0a. 
-1, encoded as 0x20. 
false, encoded as 0xf4. 
100, encoded as 0x1864. 
"z", encoded as 0x617a. 
[-1], encoded as 0x8120. 
"aa", encoded as 0x626161. 
[100], encoded as 0x811864. 

Section 3.9 of [RFC7049]
[RFC7049]

MUST

1. 
2. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 28

https://www.rfc-editor.org/rfc/rfc7049#section-3.9


Although  used the term "Canonical CBOR" for its form of requirements on
deterministic encoding, this document avoids this term because "canonicalization"
is often associated with specific uses of deterministic encoding only. The terms are
essentially interchangeable, however, and the set of core requirements in this
document could also be called "Canonical CBOR", while the length-first-ordered
version of that could be called "Old Canonical CBOR".

[RFC7049]

5. Creating CBOR-Based Protocols 
Data formats such as CBOR are often used in environments where there is no format negotiation.
A specific design goal of CBOR is to not need any included or assumed schema: a decoder can
take a CBOR item and decode it with no other knowledge.

Of course, in real-world implementations, the encoder and the decoder will have a shared view
of what should be in a CBOR data item. For example, an agreed-to format might be "the item is an
array whose first value is a UTF-8 string, second value is an integer, and subsequent values are
zero or more floating-point numbers" or "the item is a map that has byte strings for keys and
contains a pair whose key is 0xab01".

CBOR-based protocols  specify how their decoders handle invalid and other unexpected
data. CBOR-based protocols  specify that they treat arbitrary valid data as unexpected.
Encoders for CBOR-based protocols  produce only valid items, that is, the protocol cannot
be designed to make use of invalid items. An encoder can be capable of encoding as many or as
few types of values as is required by the protocol in which it is used; a decoder can be capable of
understanding as many or as few types of values as is required by the protocols in which it is
used. This lack of restrictions allows CBOR to be used in extremely constrained environments.

The rest of this section discusses some considerations in creating CBOR-based protocols. With
few exceptions, it is advisory only and explicitly excludes any language from BCP 14  

 other than words that could be interpreted as " " in the sense of BCP 14. The
exceptions aim at facilitating interoperability of CBOR-based protocols while making use of a
wide variety of both generic and application-specific encoders and decoders.

MUST
MAY

MUST

[RFC2119]
[RFC8174] MAY

5.1. CBOR in Streaming Applications 
In a streaming application, a data stream may be composed of a sequence of CBOR data items
concatenated back-to-back. In such an environment, the decoder immediately begins decoding a
new data item if data is found after the end of a previous data item.

Not all of the bytes making up a data item may be immediately available to the decoder; some
decoders will buffer additional data until a complete data item can be presented to the
application. Other decoders can present partial information about a top-level data item to an
application, such as the nested data items that could already be decoded, or even parts of a byte
string that hasn't completely arrived yet. Such an application also  have a matching
streaming security mechanism, where the desired protection is available for incremental data
presented to the application.

MUST

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 29



Note that some applications and protocols will not want to use indefinite-length encoding. Using
indefinite-length encoding allows an encoder to not need to marshal all the data for counting, but
it requires a decoder to allocate increasing amounts of memory while waiting for the end of the
item. This might be fine for some applications but not others.

5.2. Generic Encoders and Decoders 
A generic CBOR decoder can decode all well-formed encoded CBOR data items and present the
data items to an application. See Appendix C. (The diagnostic notation, Section 8, may be used to
present well-formed CBOR values to humans.)

Generic CBOR encoders provide an application interface that allows the application to specify
any well-formed value to be encoded as a CBOR data item, including simple values and tags
unknown to the encoder.

Even though CBOR attempts to minimize these cases, not all well-formed CBOR data is valid: for
example, the encoded text string 0x62c0ae does not contain valid UTF-8 (because 
requires always using the shortest form) and so is not a valid CBOR item. Also, specific tags may
make semantic constraints that may be violated, for instance, by a bignum tag enclosing another
tag or by an instance of tag number 0 containing a byte string or containing a text string with
contents that do not match the date-time production of . There is no requirement that
generic encoders and decoders make unnatural choices for their application interface to enable
the processing of invalid data. Generic encoders and decoders are expected to forward simple
values and tags even if their specific codepoints are not registered at the time the encoder/
decoder is written (Section 5.4).

[RFC3629]

[RFC3339]

5.3. Validity of Items 
A well-formed but invalid CBOR data item (Section 1.2) presents a problem with interpreting the
data encoded in it in the CBOR data model. A CBOR-based protocol could be specified in several
layers, in which the lower layers don't process the semantics of some of the CBOR data they
forward. These layers can't notice any validity errors in data they don't process and 
forward that data as-is. The first layer that does process the semantics of an invalid CBOR item 

 pick one of two choices:

Replace the problematic item with an error marker and continue with the next item, or 
Issue an error and stop processing altogether. 

A CBOR-based protocol  specify which of these options its decoders take for each kind of
invalid item they might encounter.

Such problems might occur at the basic validity level of CBOR or in the context of tags (tag
validity).

MUST

MUST

1. 
2. 

MUST

5.3.1. Basic validity 

Two kinds of validity errors can occur in the basic generic data model:

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 30



Duplicate keys in a map:

Invalid UTF-8 string:

Generic decoders (Section 5.2) make data available to applications
using the native CBOR data model. That data model includes maps (key-value mappings with
unique keys), not multimaps (key-value mappings where multiple entries can have the same
key). Thus, a generic decoder that gets a CBOR map item that has duplicate keys will decode to
a map with only one instance of that key, or it might stop processing altogether. On the other
hand, a "streaming decoder" may not even be able to notice. See Section 5.6 for more
discussion of keys in maps. 

A decoder might or might not want to verify that the sequence of bytes in
a UTF-8 string (major type 3) is actually valid UTF-8 and react appropriately. 

Inadmissible type for tag content:

Inadmissible value for tag content:

5.3.2. Tag validity 

Two additional kinds of validity errors are introduced by adding tags to the basic generic data
model:

Tag numbers (Section 3.4) specify what type of data item is
supposed to be used as their tag content; for example, the tag numbers for unsigned or
negative bignums are supposed to be put on byte strings. A decoder that decodes the tagged
data item into a native representation (a native big integer in this example) is expected to
check the type of the data item being tagged. Even decoders that don't have such native
representations available in their environment may perform the check on those tags known
to them and react appropriately. 

The type of data item may be admissible for a tag's content,
but the specific value may not be; e.g., a value of "yesterday" is not acceptable for the content
of tag 0, even though it properly is a text string. A decoder that normally ingests such tags into
equivalent platform types might present this tag to the application in a similar way to how it
would present a tag with an unknown tag number (Section 5.4). 

5.4. Validity and Evolution 
A decoder with validity checking will expend the effort to reliably detect data items with validity
errors. For example, such a decoder needs to have an API that reports an error (and does not
return data) for a CBOR data item that contains any of the validity errors listed in the previous
subsection.

The set of tags defined in the "Concise Binary Object Representation (CBOR) Tags" registry
(Section 9.2), as well as the set of simple values defined in the "Concise Binary Object
Representation (CBOR) Simple Values" registry (Section 9.1), can grow at any time beyond the set
understood by a generic decoder. A validity-checking decoder can do one of two things when it
encounters such a case that it does not recognize:

It can report an error (and not return data). Note that treating this case as an error can cause
ossification and is thus not encouraged. This error is not a validity error, per se. This kind of
error is more likely to be raised by a decoder that would be performing validity checking if
this were a known case. 

• 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 31



It can emit the unknown item (type, value, and, for tags, the decoded tagged data item) to the
application calling the decoder, and then give the application an indication that the decoder
did not recognize that tag number or simple value. 

The latter approach, which is also appropriate for decoders that do not support validity checking,
provides forward compatibility with newly registered tags and simple values without the
requirement to update the encoder at the same time as the calling application. (For this, the
decoder's API needs the ability to mark unknown items so that the calling application can handle
them in a manner appropriate for the program.)

Since some of the processing needed for validity checking may have an appreciable cost (in
particular with duplicate detection for maps), support of validity checking is not a requirement
placed on all CBOR decoders.

Some encoders will rely on their applications to provide input data in such a way that valid CBOR
results from the encoder. A generic encoder may also want to provide a validity-checking mode
where it reliably limits its output to valid CBOR, independent of whether or not its application is
indeed providing API-conformant data.

• 

5.5. Numbers 
CBOR-based protocols should take into account that different language environments pose
different restrictions on the range and precision of numbers that are representable. For example,
the basic JavaScript number system treats all numbers as floating-point values, which may result
in the silent loss of precision in decoding integers with more than 53 significant bits. Another
example is that, since CBOR keeps the sign bit for its integer representation in the major type, it
has one bit more for signed numbers of a certain length (e.g., -264..264-1 for 1+8-byte integers)
than the typical platform signed integer representation of the same length (-263..263-1 for 8-byte
int64_t). A protocol that uses numbers should define its expectations on the handling of
nontrivial numbers in decoders and receiving applications.

A CBOR-based protocol that includes floating-point numbers can restrict which of the three
formats (half-precision, single-precision, and double-precision) are to be supported. For an
integer-only application, a protocol may want to completely exclude the use of floating-point
values.

A CBOR-based protocol designed for compactness may want to exclude specific integer encodings
that are longer than necessary for the application, such as to save the need to implement 64-bit
integers. There is an expectation that encoders will use the most compact integer representation
that can represent a given value. However, a compact application that does not require
deterministic encoding should accept values that use a longer-than-needed encoding (such as
encoding "0" as 0b000_11001 followed by two bytes of 0x00) as long as the application can decode
an integer of the given size. Similar considerations apply to floating-point values; decoding both
preferred serializations and longer-than-needed ones is recommended.

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 32



CBOR-based protocols for constrained applications that provide a choice between representing a
specific number as an integer and as a decimal fraction or bigfloat (such as when the exponent is
small and nonnegative) might express a quality-of-implementation expectation that the integer
representation is used directly.

5.6. Specifying Keys for Maps 
The encoding and decoding applications need to agree on what types of keys are going to be used
in maps. In applications that need to interwork with JSON-based applications, conversion is
simplified by limiting keys to text strings only; otherwise, there has to be a specified mapping
from the other CBOR types to text strings, and this often leads to implementation errors. In
applications where keys are numeric in nature, and numeric ordering of keys is important to the
application, directly using the numbers for the keys is useful.

If multiple types of keys are to be used, consideration should be given to how these types would
be represented in the specific programming environments that are to be used. For example, in
JavaScript Maps , a key of integer 1 cannot be distinguished from a key of floating-
point 1.0. This means that, if integer keys are used, the protocol needs to avoid the use of floating-
point keys the values of which happen to be integer numbers in the same map.

Decoders that deliver data items nested within a CBOR data item immediately on decoding them
("streaming decoders") often do not keep the state that is necessary to ascertain uniqueness of a
key in a map. Similarly, an encoder that can start encoding data items before the enclosing data
item is completely available ("streaming encoder") may want to reduce its overhead significantly
by relying on its data source to maintain uniqueness.

A CBOR-based protocol  define what to do when a receiving application sees multiple
identical keys in a map. The resulting rule in the protocol  respect the CBOR data model: it
cannot prescribe a specific handling of the entries with the identical keys, except that it might
have a rule that having identical keys in a map indicates a malformed map and that the decoder
has to stop with an error. When processing maps that exhibit entries with duplicate keys, a
generic decoder might do one of the following:

Not accept maps with duplicate keys (that is, enforce validity for maps, see also Section 5.4).
These generic decoders are universally useful. An application may still need to perform its
own duplicate checking based on application rules (for instance, if the application equates
integers and floating-point values in map key positions for specific maps). 
Pass all map entries to the application, including ones with duplicate keys. This requires that
the application handle (check against) duplicate keys, even if the application rules are
identical to the generic data model rules. 
Lose some entries with duplicate keys, e.g., deliver only the final (or first) entry out of the
entries with the same key. With such a generic decoder, applications may get different
results for a specific key on different runs, and with different generic decoders, which value
is returned is based on generic decoder implementation and the actual order of keys in the
map. In particular, applications cannot validate key uniqueness on their own as they do not
necessarily see all entries; they may not be able to use such a generic decoder if they need to

[ECMA262]

MUST
MUST

• 

• 

• 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 33



validate key uniqueness. These generic decoders can only be used in situations where the
data source and transfer always provide valid maps; this is not possible if the data source
and transfer can be attacked. 

Generic decoders need to document which of these three approaches they implement.

The CBOR data model for maps does not allow ascribing semantics to the order of the key/value
pairs in the map representation. Thus, a CBOR-based protocol  specify that changing
the key/value pair order in a map changes the semantics, except to specify that some orders are
disallowed, for example, where they would not meet the requirements of a deterministic
encoding (Section 4.2). (Any secondary effects of map ordering such as on timing, cache usage,
and other potential side channels are not considered part of the semantics but may be enough
reason on their own for a protocol to require a deterministic encoding format.)

Applications for constrained devices should consider using small integers as keys if they have
maps with a small number of frequently used keys; for instance, a set of 24 or fewer keys can be
encoded in a single byte as unsigned integers, up to 48 if negative integers are also used. Less
frequently occurring keys can then use integers with longer encodings.

MUST NOT

5.6.1. Equivalence of Keys 

The specific data model that applies to a CBOR data item is used to determine whether keys
occurring in maps are duplicates or distinct.

At the generic data model level, numerically equivalent integer and floating-point values are
distinct from each other, as they are from the various big numbers (Tags 2 to 5). Similarly, text
strings are distinct from byte strings, even if composed of the same bytes. A tagged value is
distinct from an untagged value or from a value tagged with a different tag number.

Within each of these groups, numeric values are distinct unless they are numerically equal
(specifically, -0.0 is equal to 0.0); for the purpose of map key equivalence, NaN values are
equivalent if they have the same significand after zero-extending both significands at the right to
64 bits.

Both byte strings and text strings are compared byte by byte, arrays are compared element by
element, and are equal if they have the same number of bytes/elements and the same values at
the same positions. Two maps are equal if they have the same set of pairs regardless of their
order; pairs are equal if both the key and value are equal.

Tagged values are equal if both the tag number and the tag content are equal. (Note that a
generic decoder that provides processing for a specific tag may not be able to distinguish some
semantically equivalent values, e.g., if leading zeroes occur in the content of tag 2 or tag 3
(Section 3.4.3).) Simple values are equal if they simply have the same value. Nothing else is equal
in the generic data model; a simple value 2 is not equivalent to an integer 2, and an array is
never equivalent to a map.

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 34



As discussed in Section 2.2, specific data models can make values equivalent for the purpose of
comparing map keys that are distinct in the generic data model. Note that this implies that a
generic decoder may deliver a decoded map to an application that needs to be checked for
duplicate map keys by that application (alternatively, the decoder may provide a programming
interface to perform this service for the application). Specific data models are not able to
distinguish values for map keys that are equal for this purpose at the generic data model level.

5.7. Undefined Values 
In some CBOR-based protocols, the simple value (Section 3.3) of undefined might be used by an
encoder as a substitute for a data item with an encoding problem, in order to allow the rest of
the enclosing data items to be encoded without harm.

6. Converting Data between CBOR and JSON 
This section gives non-normative advice about converting between CBOR and JSON.
Implementations of converters  use whichever advice here they want.

It is worth noting that a JSON text is a sequence of characters, not an encoded sequence of bytes,
while a CBOR data item consists of bytes, not characters.

MAY

6.1. Converting from CBOR to JSON 
Most of the types in CBOR have direct analogs in JSON. However, some do not, and someone
implementing a CBOR-to-JSON converter has to consider what to do in those cases. The following
non-normative advice deals with these by converting them to a single substitute value, such as a
JSON null.

An integer (major type 0 or 1) becomes a JSON number. 
A byte string (major type 2) that is not embedded in a tag that specifies a proposed encoding
is encoded in base64url without padding and becomes a JSON string. 
A UTF-8 string (major type 3) becomes a JSON string. Note that JSON requires escaping
certain characters ( ): quotation mark (U+0022), reverse solidus (U+005C),
and the "C0 control characters" (U+0000 through U+001F). All other characters are copied
unchanged into the JSON UTF-8 string. 
An array (major type 4) becomes a JSON array. 
A map (major type 5) becomes a JSON object. This is possible directly only if all keys are
UTF-8 strings. A converter might also convert other keys into UTF-8 strings (such as by
converting integers into strings containing their decimal representation); however, doing so
introduces a danger of key collision. Note also that, if tags on UTF-8 strings are ignored as
proposed below, this will cause a key collision if the tags are different but the strings are the
same. 
False (major type 7, additional information 20) becomes a JSON false. 
True (major type 7, additional information 21) becomes a JSON true. 
Null (major type 7, additional information 22) becomes a JSON null. 

• 
• 

• 
[RFC8259], Section 7

• 
• 

• 
• 
• 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 35

https://www.rfc-editor.org/rfc/rfc8259#section-7


A floating-point value (major type 7, additional information 25 through 27) becomes a JSON
number if it is finite (that is, it can be represented in a JSON number); if the value is non-
finite (NaN, or positive or negative Infinity), it is represented by the substitute value. 
Any other simple value (major type 7, any additional information value not yet discussed) is
represented by the substitute value. 
A bignum (major type 6, tag number 2 or 3) is represented by encoding its byte string in
base64url without padding and becomes a JSON string. For tag number 3 (negative bignum),
a "~" (ASCII tilde) is inserted before the base-encoded value. (The conversion to a binary blob
instead of a number is to prevent a likely numeric overflow for the JSON decoder.) 
A byte string with an encoding hint (major type 6, tag number 21 through 23) is encoded as
described by the hint and becomes a JSON string. 
For all other tags (major type 6, any other tag number), the tag content is represented as a
JSON value; the tag number is ignored. 
Indefinite-length items are made definite before conversion. 

A CBOR-to-JSON converter may want to keep to the JSON profile I-JSON , to maximize
interoperability and increase confidence that the JSON output can be processed with predictable
results. For example, this has implications on the range of integers that can be represented
reliably, as well as on the top-level items that may be supported by older JSON implementations.

• 

• 

• 

• 

• 

• 

[RFC7493]

6.2. Converting from JSON to CBOR 
All JSON values, once decoded, directly map into one or more CBOR values. As with any kind of
CBOR generation, decisions have to be made with respect to number representation. In a
suggested conversion:

JSON numbers without fractional parts (integer numbers) are represented as integers (major
types 0 and 1, possibly major type 6, tag number 2 and 3), choosing the shortest form;
integers longer than an implementation-defined threshold may instead be represented as
floating-point values. The default range that is represented as integer is -253+1..253-1 (fully
exploiting the range for exact integers in the binary64 representation often used for
decoding JSON ). A CBOR-based protocol, or a generic converter implementation,
may choose -232..232-1 or -264..264-1 (fully using the integer ranges available in CBOR with
uint32_t or uint64_t, respectively) or even -231..231-1 or -263..263-1 (using popular ranges for
two's complement signed integers). (If the JSON was generated from a JavaScript
implementation, its precision is already limited to 53 bits maximum.) 
Numbers with fractional parts are represented as floating-point values, performing the
decimal-to-binary conversion based on the precision provided by IEEE 754 binary64. The
mathematical value of the JSON number is converted to binary64 using the roundTiesToEven
procedure in Section 4.3.1 of . Then, when encoding in CBOR, the preferred
serialization uses the shortest floating-point representation exactly representing this
conversion result; for instance, 1.5 is represented in a 16-bit floating-point value (not all
implementations will be capable of efficiently finding the minimum form, though). Instead of
using the default binary64 precision, there may be an implementation-defined limit to the

• 

[RFC7493]

• 

[IEEE754]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 36



precision of the conversion that will affect the precision of the represented values. Decimal
representation should only be used on the CBOR side if that is specified in a protocol. 

CBOR has been designed to generally provide a more compact encoding than JSON. One
implementation strategy that might come to mind is to perform a JSON-to-CBOR encoding in
place in a single buffer. This strategy would need to carefully consider a number of pathological
cases, such as that some strings represented with no or very few escapes and longer (or much
longer) than 255 bytes may expand when encoded as UTF-8 strings in CBOR. Similarly, a few of
the binary floating-point representations might cause expansion from some short decimal
representations (1.1, 1e9) in JSON. This may be hard to get right, and any ensuing vulnerabilities
may be exploited by an attacker.

7. Future Evolution of CBOR 
Successful protocols evolve over time. New ideas appear, implementation platforms improve,
related protocols are developed and evolve, and new requirements from applications and
protocols are added. Facilitating protocol evolution is therefore an important design
consideration for any protocol development.

For protocols that will use CBOR, CBOR provides some useful mechanisms to facilitate their
evolution. Best practices for this are well known, particularly from JSON format development of
JSON-based protocols. Therefore, such best practices are outside the scope of this specification.

However, facilitating the evolution of CBOR itself is very well within its scope. CBOR is designed
to both provide a stable basis for development of CBOR-based protocols and to be able to evolve.
Since a successful protocol may live for decades, CBOR needs to be designed for decades of use
and evolution. This section provides some guidance for the evolution of CBOR. It is necessarily
more subjective than other parts of this document. It is also necessarily incomplete, lest it turn
into a textbook on protocol development.

the "simple" space (values in major type 7):

7.1. Extension Points 
In a protocol design, opportunities for evolution are often included in the form of extension
points. For example, there may be a codepoint space that is not fully allocated from the outset,
and the protocol is designed to tolerate and embrace implementations that start using more
codepoints than initially allocated.

Sizing the codepoint space may be difficult because the range required may be hard to predict.
Protocol designs should attempt to make the codepoint space large enough so that it can slowly
be filled over the intended lifetime of the protocol.

CBOR has three major extension points:

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 37



the "tag" space (values in major type 6):

the "additional information" space:

Of the 24 efficient (and 224 slightly less efficient) values, only a small number have been
allocated. Implementations receiving an unknown simple data item may easily be able to
process it as such, given that the structure of the value is indeed simple. The IANA registry in 
Section 9.1 is the appropriate way to address the extensibility of this codepoint space. 

The total codepoint space is abundant; only a tiny part
of it has been allocated. However, not all of these codepoints are equally efficient: the first 24
only consume a single ("1+0") byte, and half of them have already been allocated. The next
232 values only consume two ("1+1") bytes, with nearly a quarter already allocated. These
subspaces need some curation to last for a few more decades. Implementations receiving an
unknown tag number can choose to process just the enclosed tag content or, preferably, to
process the tag as an unknown tag number wrapping the tag content. The IANA registry in 
Section 9.2 is the appropriate way to address the extensibility of this codepoint space. 

An implementation receiving an unknown additional
information value has no way to continue decoding, so allocating codepoints in this space is a
major step beyond just exercising an extension point. There are also very few codepoints left.
See also Section 7.2. 

7.2. Curating the Additional Information Space 
The human mind is sometimes drawn to filling in little perceived gaps to make something neat.
We expect the remaining gaps in the codepoint space for the additional information values to be
an attractor for new ideas, just because they are there.

The present specification does not manage the additional information codepoint space by an
IANA registry. Instead, allocations out of this space can only be done by updating this
specification.

For an additional information value of n >= 24, the size of the additional data typically is 2n-24

bytes. Therefore, additional information values 28 and 29 should be viewed as candidates for
128-bit and 256-bit quantities, in case a need arises to add them to the protocol. Additional
information value 30 is then the only additional information value available for general
allocation, and there should be a very good reason for allocating it before assigning it through an
update of the present specification.

8. Diagnostic Notation 
CBOR is a binary interchange format. To facilitate documentation and debugging, and in
particular to facilitate communication between entities cooperating in debugging, this section
defines a simple human-readable diagnostic notation. All actual interchange always happens in
the binary format.

Note that this truly is a diagnostic format; it is not meant to be parsed. Therefore, no formal
definition (as in ABNF) is given in this document. (Implementers looking for a text-based format
for representing CBOR data items in configuration files may also want to consider YAML .)[YAML]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 38



The diagnostic notation is loosely based on JSON as it is defined in RFC 8259, extending it where
needed.

The notation borrows the JSON syntax for numbers (integer and floating-point), True (>true<),
False (>false<), Null (>null<), UTF-8 strings, arrays, and maps (maps are called objects in JSON; the
diagnostic notation extends JSON here by allowing any data item in the key position). Undefined
is written >undefined< as in JavaScript. The non-finite floating-point numbers Infinity, -Infinity,
and NaN are written exactly as in this sentence (this is also a way they can be written in
JavaScript, although JSON does not allow them). A tag is written as an integer number for the tag
number, followed by the tag content in parentheses; for instance, a date in the format specified
by RFC 3339 (ISO 8601) could be notated as:

0("2013-03-21T20:04:00Z")

or the equivalent relative time as the following:

1(1363896240)

Byte strings are notated in one of the base encodings, without padding, enclosed in single quotes,
prefixed by >h< for base16, >b32< for base32, >h32< for base32hex, >b64< for base64 or
base64url (the actual encodings do not overlap, so the string remains unambiguous). For
example, the byte string 0x12345678 could be written h'12345678', b32'CI2FM6A', or b64'EjRWeA'.

Unassigned simple values are given as "simple()" with the appropriate integer in the parentheses.
For example, "simple(42)" indicates major type 7, value 42.

A number of useful extensions to the diagnostic notation defined here are provided in 
, "Extended Diagnostic Notation" (EDN). Similarly, this notation could be extended

in a separate document to provide documentation for NaN payloads, which are not covered in
this document.

Appendix
G of [RFC8610]

8.1. Encoding Indicators 
Sometimes it is useful to indicate in the diagnostic notation which of several alternative
representations were actually used; for example, a data item written >1.5< by a diagnostic
decoder might have been encoded as a half-, single-, or double-precision float.

The convention for encoding indicators is that anything starting with an underscore and all
following characters that are alphanumeric or underscore is an encoding indicator, and can be
ignored by anyone not interested in this information. For example, _ or _3. Encoding indicators
are always optional.

A single underscore can be written after the opening brace of a map or the opening bracket of an
array to indicate that the data item was represented in indefinite-length format. For example, [_
1, 2] contains an indicator that an indefinite-length representation was used to represent the
data item [1, 2].

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 39

https://www.rfc-editor.org/rfc/rfc8610#appendix-G
https://www.rfc-editor.org/rfc/rfc8610#appendix-G


An underscore followed by a decimal digit n indicates that the preceding item (or, for arrays and
maps, the item starting with the preceding bracket or brace) was encoded with an additional
information value of 24+n. For example, 1.5_1 is a half-precision floating-point number, while
1.5_3 is encoded as double precision. This encoding indicator is not shown in Appendix A. (Note
that the encoding indicator "_" is thus an abbreviation of the full form "_7", which is not used.)

The detailed chunk structure of byte and text strings of indefinite length can be notated in the
form (_ h'0123', h'4567') and (_ "foo", "bar"). However, for an indefinite-length string with no
chunks inside, (_ ) would be ambiguous as to whether a byte string (0x5fff) or a text string
(0x7fff) is meant and is therefore not used. The basic forms ''_ and ""_ can be used instead and
are reserved for the case of no chunks only -- not as short forms for the (permitted, but not really
useful) encodings with only empty chunks, which need to be notated as (_ ''), (_ ""), etc., to
preserve the chunk structure.

9. IANA Considerations 
IANA has created two registries for new CBOR values. The registries are separate, that is, not
under an umbrella registry, and follow the rules in . IANA has also assigned a new
media type, an associated CoAP Content-Format entry, and a structured syntax suffix.

[RFC8126]

9.1. CBOR Simple Values Registry 
IANA has created the "Concise Binary Object Representation (CBOR) Simple Values" registry at 

. The initial values are shown in Table 4.

New entries in the range 0 to 19 are assigned by Standards Action . It is suggested that
IANA allocate values starting with the number 16 in order to reserve the lower numbers for
contiguous blocks (if any).

New entries in the range 32 to 255 are assigned by Specification Required.

[IANA.cbor-simple-values]

[RFC8126]

9.2. CBOR Tags Registry 
IANA has created the "Concise Binary Object Representation (CBOR) Tags" registry at 

. The tags that were defined in  are described in detail in Section 3.4, and other
tags have already been defined since then.

New entries in the range 0 to 23 ("1+0") are assigned by Standards Action. New entries in the
ranges 24 to 255 ("1+1") and 256 to 32767 (lower half of "1+2") are assigned by Specification
Required. New entries in the range 32768 to 18446744073709551615 (upper half of "1+2", "1+4",
and "1+8") are assigned by First Come First Served. The template for registration requests is:

Data item 
Semantics (short form) 

In addition, First Come First Served requests should include:

Point of contact 

[IANA.cbor-
tags] [RFC7049]

• 
• 

• 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 40



Description of semantics (URL) -- This description is optional; the URL can point to something
like an Internet-Draft or a web page. 

Applicants exercising the First Come First Served range and making a suggestion for a tag
number that is not representable in 32 bits (i.e., larger than 4294967295) should be aware that
this could reduce interoperability with implementations that do not support 64-bit numbers.

• 

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Additional information:

Magic number(s):
File extension(s):
Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

9.3. Media Types Registry 
The Internet media type  ("MIME type") for a single encoded CBOR data item is
"application/cbor" as defined in the "Media Types" registry :

application 

cbor 

n/a 

n/a 

Binary 

See Section 10 of RFC 8949. 

n/a 

RFC 8949 

Many 

n/a 
.cbor 

n/a 

IETF CBOR Working Group
(cbor@ietf.org) or IETF Applications and Real-Time Area (art@ietf.org) 

COMMON 

none 

IETF CBOR Working Group (cbor@ietf.org) 

The IESG (iesg@ietf.org) 

[RFC6838]
[IANA.media-types]

9.4. CoAP Content-Format Registry 
The CoAP Content-Format for CBOR has been registered in the "CoAP Content-Formats"
subregistry within the "Constrained RESTful Environments (CoRE) Parameters" registry 

:[IANA.core-parameters]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 41



Media Type:

Encoding:

ID:

Reference:

application/cbor 

- 

60 

RFC 8949 

Name:

+suffix:

References:

Encoding Considerations:

Interoperability Considerations:

Fragment Identifier Considerations:

Security Considerations:

Contact:

Author/Change Controller:

9.5. Structured Syntax Suffix Registry 
The structured syntax suffix  for media types based on a single encoded CBOR data
item is +cbor, which IANA has registered in the "Structured Syntax Suffixes" registry 

:

Concise Binary Object Representation (CBOR) 

+cbor 

RFC 8949 

CBOR is a binary format. 

n/a 

The syntax and semantics of fragment identifiers specified
for +cbor  be as specified for "application/cbor". (At publication of RFC 8949, there is
no fragment identification syntax defined for "application/cbor".)

The syntax and semantics for fragment identifiers for a specific "xxx/yyy+cbor"  be
processed as follows:

For cases defined in +cbor, where the fragment identifier resolves per the +cbor rules,
then process as specified in +cbor. 
For cases defined in +cbor, where the fragment identifier does not resolve per the +cbor
rules, then process as specified in "xxx/yyy+cbor". 
For cases not defined in +cbor, then process as specified in "xxx/yyy+cbor". 

See Section 10 of RFC 8949. 

IETF CBOR Working Group (cbor@ietf.org) or IETF Applications and Real-Time Area
(art@ietf.org) 

IETF 

[RFC6838]

[IANA.structured-suffix]

SHOULD

SHOULD

• 

• 

• 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 42



10. Security Considerations 
A network-facing application can exhibit vulnerabilities in its processing logic for incoming data.
Complex parsers are well known as a likely source of such vulnerabilities, such as the ability to
remotely crash a node, or even remotely execute arbitrary code on it. CBOR attempts to narrow
the opportunities for introducing such vulnerabilities by reducing parser complexity, by giving
the entire range of encodable values a meaning where possible.

Because CBOR decoders are often used as a first step in processing unvalidated input, they need
to be fully prepared for all types of hostile input that may be designed to corrupt, overrun, or
achieve control of the system decoding the CBOR data item. A CBOR decoder needs to assume
that all input may be hostile even if it has been checked by a firewall, has come over a secure
channel such as TLS, is encrypted or signed, or has come from some other source that is
presumed trusted.

Section 4.1 gives examples of limitations in interoperability when using a constrained CBOR
decoder with input from a CBOR encoder that uses a non-preferred serialization. When a single
data item is consumed both by such a constrained decoder and a full decoder, it can lead to
security issues that can be exploited by an attacker who can inject or manipulate content.

As discussed throughout this document, there are many values that can be considered
"equivalent" in some circumstances and "not equivalent" in others. As just one example, the
numeric value for the number "one" might be expressed as an integer or a bignum. A system
interpreting CBOR input might accept either form for the number "one", or might reject one (or
both) forms. Such acceptance or rejection can have security implications in the program that is
using the interpreted input.

Hostile input may be constructed to overrun buffers, to overflow or underflow integer
arithmetic, or to cause other decoding disruption. CBOR data items might have lengths or sizes
that are intentionally extremely large or too short. Resource exhaustion attacks might attempt to
lure a decoder into allocating very big data items (strings, arrays, maps, or even arbitrary
precision numbers) or exhaust the stack depth by setting up deeply nested items. Decoders need
to have appropriate resource management to mitigate these attacks. (Items for which very large
sizes are given can also attempt to exploit integer overflow vulnerabilities.)

A CBOR decoder, by definition, only accepts well-formed CBOR; this is the first step to its
robustness. Input that is not well-formed CBOR causes no further processing from the point
where the lack of well-formedness was detected. If possible, any data decoded up to this point
should have no impact on the application using the CBOR decoder.

In addition to ascertaining well-formedness, a CBOR decoder might also perform validity checks
on the CBOR data. Alternatively, it can leave those checks to the application using the decoder.
This choice needs to be clearly documented in the decoder. Beyond the validity at the CBOR level,
an application also needs to ascertain that the input is in alignment with the application protocol
that is serialized in CBOR.

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 43



The input check itself may consume resources. This is usually linear in the size of the input,
which means that an attacker has to spend resources that are commensurate to the resources
spent by the defender on input validation. However, an attacker might be able to craft inputs
that will take longer for a target decoder to process than for the attacker to produce. Processing
for arbitrary-precision numbers may exceed linear effort. Also, some hash-table
implementations that are used by decoders to build in-memory representations of maps can be
attacked to spend quadratic effort, unless a secret key (see Section 7 of , also 

) or some other mitigation is employed. Such superlinear efforts can be
exploited by an attacker to exhaust resources at or before the input validator; they therefore
need to be avoided in a CBOR decoder implementation. Note that tag number definitions and
their implementations can add security considerations of this kind; this should then be discussed
in the security considerations of the tag number definition.

CBOR encoders do not receive input directly from the network and are thus not directly
attackable in the same way as CBOR decoders. However, CBOR encoders often have an API that
takes input from another level in the implementation and can be attacked through that API. The
design and implementation of that API should assume the behavior of its caller may be based on
hostile input or on coding mistakes. It should check inputs for buffer overruns, overflow and
underflow of integer arithmetic, and other such errors that are aimed to disrupt the encoder.

Protocols should be defined in such a way that potential multiple interpretations are reliably
reduced to a single interpretation. For example, an attacker could make use of invalid input such
as duplicate keys in maps, or exploit different precision in processing numbers to make one
application base its decisions on a different interpretation than the one that will be used by a
second application. To facilitate consistent interpretation, encoder and decoder implementations
should provide a validity-checking mode of operation (Section 5.4). Note, however, that a generic
decoder cannot know about all requirements that an application poses on its input data; it is
therefore not relieving the application from performing its own input checking. Also, since the
set of defined tag numbers evolves, the application may employ a tag number that is not yet
supported for validity checking by the generic decoder it uses. Generic decoders therefore need
to document which tag numbers they support and what validity checking they provide for those
tag numbers as well as for basic CBOR (UTF-8 checking, duplicate map key checking).

Section 3.4.3 notes that using the non-preferred choice of a bignum representation instead of a
basic integer for encoding a number is not intended to have application semantics, but it can
have such semantics if an application receiving CBOR data is using a decoder in the basic generic
data model. This disparity causes a security issue if the two sets of semantics differ. Thus,
applications using CBOR need to specify the data model that they are using for each use of CBOR
data.

It is common to convert CBOR data to other formats. In many cases, CBOR has more expressive
types than other formats; this is particularly true for the common conversion to JSON. The loss of
type information can cause security issues for the systems that are processing the less-expressive
data.

[SIPHASH_LNCS]
[SIPHASH_OPEN]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 44



[C]

[Cplusplus20]

[IEEE754]

[RFC2045]

[RFC2119]

[RFC3339]

[RFC3629]

[RFC3986]

[RFC4287]

[RFC4648]

11. References 

11.1. Normative References 

, 
, , , June 2018, 

. 

, ,
, , , March

2020, . 

, , , 
, . 

, 
, , , 

November 1996, . 

, , , 
, , March 1997, 
. 

, , 
, , July 2002, 

. 

, , , , 
, November 2003, 

. 

, 
, , , , January 2005, 

. 

, , ,
, December 2005, 

. 

, , , 
, October 2006, . 

Section 6.2 describes a possibly common usage scenario of converting between CBOR and JSON
that could allow an attack if the attacker knows that the application is performing the
conversion.

Security considerations for the use of base16 and base64 from , and the use of UTF-8
from , are relevant to CBOR as well.

[RFC4648]
[RFC3629]

International Organization for Standardization "Information technology -
Programming languages - C" Fourth Edition ISO/IEC 9899:2018
<https://www.iso.org/standard/74528.html>

International Organization for Standardization "Programming languages - C++"
Sixth Edition ISO/IEC DIS 14882 ISO/IEC ISO/IEC JTC1 SC22 WG21 N 4860

<https://isocpp.org/files/papers/N4860.pdf>

IEEE "IEEE Standard for Floating-Point Arithmetic" IEEE Std 754-2019 DOI
10.1109/IEEESTD.2019.8766229 <https://ieeexplore.ieee.org/document/8766229>

Freed, N. and N. Borenstein "Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies" RFC 2045 DOI 10.17487/RFC2045

<https://www.rfc-editor.org/info/rfc2045>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Klyne, G. and C. Newman "Date and Time on the Internet: Timestamps" RFC
3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/
rfc3339>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Berners-Lee, T., Fielding, R., and L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Nottingham, M., Ed. and R. Sayre, Ed. "The Atom Syndication Format" RFC 4287
DOI 10.17487/RFC4287 <https://www.rfc-editor.org/info/
rfc4287>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 45

https://www.iso.org/standard/74528.html
https://isocpp.org/files/papers/N4860.pdf
https://ieeexplore.ieee.org/document/8766229
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc4648


[RFC8126]

[RFC8174]

[TIME_T]

[ASN.1]

[BSON]

[CBOR-TAGS]

[ECMA262]

[Err3764]

[Err3770]

[Err4294]

[Err4409]

[Err4963]

[Err4964]

[Err5434]

, 
, , , , June

2017, . 

, , 
, , , May 2017, 

. 

, , 
, , , 2018, 

. 

11.2. Informative References 

, 

, 
, 2015, . 

, , 2013, . 

, , , 
, 25 June 2020, 

. 

, , 
, June 2020, 

. 

, , , 
. 

, , , 
. 

, , , 
. 

, , , 
. 

, , , 
. 

, , , 
. 

, , , 
. 

Cotton, M., Leiba, B., and T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

The Open Group "The Open Group Base Specifications" Section 4.16, 'Seconds
Since the Epoch' Issue 7, 2018 Edition IEEE Std 1003.1 <http://
pubs.opengroup.org/onlinepubs/9699919799/basedefs/
V1_chap04.html#tag_04_16>

International Telecommunication Union "Information Technology - ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER)" ITU-T Recommendation
X.690 <https://www.itu.int/rec/T-REC-X.690-201508-I/en>

Various "BSON - Binary JSON" <http://bsonspec.org/>

Bormann, C. "Notable CBOR Tags" Work in Progress Internet-Draft, draft-
bormann-cbor-notable-tags-02 <https://tools.ietf.org/html/draft-
bormann-cbor-notable-tags-02>

Ecma International "ECMAScript 2020 Language Specification" Standard
ECMA-262, 11th Edition <https://www.ecma-international.org/
publications/standards/Ecma-262.htm>

RFC Errata Erratum ID 3764 RFC 7049 <https://www.rfc-editor.org/errata/
eid3764>

RFC Errata Erratum ID 3770 RFC 7049 <https://www.rfc-editor.org/errata/
eid3770>

RFC Errata Erratum ID 4294 RFC 7049 <https://www.rfc-editor.org/errata/
eid4294>

RFC Errata Erratum ID 4409 RFC 7049 <https://www.rfc-editor.org/errata/
eid4409>

RFC Errata Erratum ID 4963 RFC 7049 <https://www.rfc-editor.org/errata/
eid4963>

RFC Errata Erratum ID 4964 RFC 7049 <https://www.rfc-editor.org/errata/
eid4964>

RFC Errata Erratum ID 5434 RFC 7049 <https://www.rfc-editor.org/errata/
eid5434>

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 46

https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://www.itu.int/rec/T-REC-X.690-201508-I/en
http://bsonspec.org/
https://tools.ietf.org/html/draft-bormann-cbor-notable-tags-02
https://tools.ietf.org/html/draft-bormann-cbor-notable-tags-02
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.rfc-editor.org/errata/eid3764
https://www.rfc-editor.org/errata/eid3764
https://www.rfc-editor.org/errata/eid3770
https://www.rfc-editor.org/errata/eid3770
https://www.rfc-editor.org/errata/eid4294
https://www.rfc-editor.org/errata/eid4294
https://www.rfc-editor.org/errata/eid4409
https://www.rfc-editor.org/errata/eid4409
https://www.rfc-editor.org/errata/eid4963
https://www.rfc-editor.org/errata/eid4963
https://www.rfc-editor.org/errata/eid4964
https://www.rfc-editor.org/errata/eid4964
https://www.rfc-editor.org/errata/eid5434
https://www.rfc-editor.org/errata/eid5434


[Err5763]

[Err5917]

[IANA.cbor-simple-values]

[IANA.cbor-tags]

[IANA.core-parameters]

[IANA.media-types]

[IANA.structured-suffix]

[MessagePack]

[PCRE]

[RFC0713]

[RFC6838]

[RFC7049]

[RFC7228]

[RFC7493]

[RFC7991]

[RFC8259]

, , , 
. 

, , , 
. 

, 
, . 

, , 
. 

, , 
. 

, , . 

, , 
. 

, , 2013, . 

, , .

, , , 
, April 1976, . 

, 
, , , , January 2013, 

. 

, , 
, , October 2013, 
. 

, 
, , , May 2014, 

. 

, , , , 
March 2015, . 

, , , 
, December 2016, . 

, , 
, , , December 2017, 

. 

RFC Errata Erratum ID 5763 RFC 7049 <https://www.rfc-editor.org/errata/
eid5763>

RFC Errata Erratum ID 5917 RFC 7049 <https://www.rfc-editor.org/errata/
eid5917>

IANA "Concise Binary Object Representation (CBOR) Simple
Values" <https://www.iana.org/assignments/cbor-simple-values>

IANA "Concise Binary Object Representation (CBOR) Tags" <https://
www.iana.org/assignments/cbor-tags>

IANA "Constrained RESTful Environments (CoRE) Parameters"
<https://www.iana.org/assignments/core-parameters>

IANA "Media Types" <https://www.iana.org/assignments/media-types>

IANA "Structured Syntax Suffixes" <https://www.iana.org/
assignments/media-type-structured-suffix>

Furuhashi, S. "MessagePack" <https://msgpack.org/>

Hazel, P. "PCRE - Perl Compatible Regular Expressions" <https://www.pcre.org/>

Haverty, J. "MSDTP-Message Services Data Transmission Protocol" RFC 713 DOI
10.17487/RFC0713 <https://www.rfc-editor.org/info/rfc713>

Freed, N., Klensin, J., and T. Hansen "Media Type Specifications and Registration
Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://
www.rfc-editor.org/info/rfc6838>

Bormann, C. and P. Hoffman "Concise Binary Object Representation (CBOR)"
RFC 7049 DOI 10.17487/RFC7049 <https://www.rfc-editor.org/info/
rfc7049>

Bormann, C., Ersue, M., and A. Keranen "Terminology for Constrained-Node
Networks" RFC 7228 DOI 10.17487/RFC7228 <https://www.rfc-
editor.org/info/rfc7228>

Bray, T., Ed. "The I-JSON Message Format" RFC 7493 DOI 10.17487/RFC7493
<https://www.rfc-editor.org/info/rfc7493>

Hoffman, P. "The "xml2rfc" Version 3 Vocabulary" RFC 7991 DOI 10.17487/
RFC7991 <https://www.rfc-editor.org/info/rfc7991>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 47

https://www.rfc-editor.org/errata/eid5763
https://www.rfc-editor.org/errata/eid5763
https://www.rfc-editor.org/errata/eid5917
https://www.rfc-editor.org/errata/eid5917
https://www.iana.org/assignments/cbor-simple-values
https://www.iana.org/assignments/cbor-tags
https://www.iana.org/assignments/cbor-tags
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-type-structured-suffix
https://www.iana.org/assignments/media-type-structured-suffix
https://msgpack.org/
https://www.pcre.org/
https://www.rfc-editor.org/info/rfc713
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7991
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259


[RFC8610]

[RFC8618]

[RFC8742]

[RFC8746]

[SIPHASH_LNCS]

[SIPHASH_OPEN]

[YAML]

, 

, , 
, June 2019, . 

, 
, , 

, September 2019, . 

, , 
, , February 2020, 

. 

, 
, , , February 2020, 

. 

, , 
, , 

2012, . 

, , 
. 

, 
, , October 2009, 

. 

Birkholz, H., Vigano, C., and C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Dickinson, J., Hague, J., Dickinson, S., Manderson, T., and J. Bond "Compacted-
DNS (C-DNS): A Format for DNS Packet Capture" RFC 8618 DOI 10.17487/
RFC8618 <https://www.rfc-editor.org/info/rfc8618>

Bormann, C. "Concise Binary Object Representation (CBOR) Sequences" RFC
8742 DOI 10.17487/RFC8742 <https://www.rfc-editor.org/info/
rfc8742>

Bormann, C., Ed. "Concise Binary Object Representation (CBOR) Tags for Typed
Arrays" RFC 8746 DOI 10.17487/RFC8746 <https://www.rfc-
editor.org/info/rfc8746>

Aumasson, J. and D. Bernstein "SipHash: A Fast Short-Input PRF" Progress in
Cryptology - INDOCRYPT 2012, pp. 489-508 DOI 10.1007/978-3-642-34931-7_28

<https://doi.org/10.1007/978-3-642-34931-7_28>

Aumasson, J. and D.J. Bernstein "SipHash: a fast short-input PRF"
<https://131002.net/siphash/siphash.pdf>

Ben-Kiki, O., Evans, C., and I.d. Net "YAML Ain't Markup Language (YAML[TM])
Version 1.2" 3rd Edition <https://www.yaml.org/spec/1.2/
spec.html>

Appendix A. Examples of Encoded CBOR Data Items 
The following table provides some CBOR-encoded values in hexadecimal (right column), together
with diagnostic notation for these values (left column). Note that the string "\u00fc" is one form of
diagnostic notation for a UTF-8 string containing the single Unicode character 

. Similarly, "\u6c34" is a UTF-8 string in diagnostic
notation with a single character , often
representing "water", and "\ud800\udd51" is a UTF-8 string in diagnostic notation with a single
character . (Note that all these single-
character strings could also be represented in native UTF-8 in diagnostic notation, just not if an
ASCII-only specification is required.) In the diagnostic notation provided for bignums, their
intended numeric value is shown as a decimal number (such as 18446744073709551616) instead
of a tagged byte string (such as 2(h'010000000000000000')).

U+00FC (LATIN
SMALL LETTER U WITH DIAERESIS, "ü")

U+6C34 (CJK UNIFIED IDEOGRAPH-6C34, "水")

U+10151 (GREEK ACROPHONIC ATTIC FIFTY STATERS, "𐅑")

Diagnostic Encoded

0 0x00

1 0x01

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 48

https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8618
https://www.rfc-editor.org/info/rfc8742
https://www.rfc-editor.org/info/rfc8742
https://www.rfc-editor.org/info/rfc8746
https://www.rfc-editor.org/info/rfc8746
https://doi.org/10.1007/978-3-642-34931-7_28
https://131002.net/siphash/siphash.pdf
https://www.yaml.org/spec/1.2/spec.html
https://www.yaml.org/spec/1.2/spec.html


Diagnostic Encoded

10 0x0a

23 0x17

24 0x1818

25 0x1819

100 0x1864

1000 0x1903e8

1000000 0x1a000f4240

1000000000000 0x1b000000e8d4a51000

18446744073709551615 0x1bffffffffffffffff

18446744073709551616 0xc249010000000000000000

-18446744073709551616 0x3bffffffffffffffff

-18446744073709551617 0xc349010000000000000000

-1 0x20

-10 0x29

-100 0x3863

-1000 0x3903e7

0.0 0xf90000

-0.0 0xf98000

1.0 0xf93c00

1.1 0xfb3ff199999999999a

1.5 0xf93e00

65504.0 0xf97bff

100000.0 0xfa47c35000

3.4028234663852886e+38 0xfa7f7fffff

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 49



Diagnostic Encoded

1.0e+300 0xfb7e37e43c8800759c

5.960464477539063e-8 0xf90001

0.00006103515625 0xf90400

-4.0 0xf9c400

-4.1 0xfbc010666666666666

Infinity 0xf97c00

NaN 0xf97e00

-Infinity 0xf9fc00

Infinity 0xfa7f800000

NaN 0xfa7fc00000

-Infinity 0xfaff800000

Infinity 0xfb7ff0000000000000

NaN 0xfb7ff8000000000000

-Infinity 0xfbfff0000000000000

false 0xf4

true 0xf5

null 0xf6

undefined 0xf7

simple(16) 0xf0

simple(255) 0xf8ff

0("2013-03-21T20:04:00Z") 0xc074323031332d30332d32315432303a
30343a30305a

1(1363896240) 0xc11a514b67b0

1(1363896240.5) 0xc1fb41d452d9ec200000

23(h'01020304') 0xd74401020304

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 50



Diagnostic Encoded

24(h'6449455446') 0xd818456449455446

32("http://www.example.com") 0xd82076687474703a2f2f7777772e6578
616d706c652e636f6d

h'' 0x40

h'01020304' 0x4401020304

"" 0x60

"a" 0x6161

"IETF" 0x6449455446

"\"\\" 0x62225c

"\u00fc" 0x62c3bc

"\u6c34" 0x63e6b0b4

"\ud800\udd51" 0x64f0908591

[] 0x80

[1, 2, 3] 0x83010203

[1, [2, 3], [4, 5]] 0x8301820203820405

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25]

0x98190102030405060708090a0b0c0d0e
0f101112131415161718181819

{} 0xa0

{1: 2, 3: 4} 0xa201020304

{"a": 1, "b": [2, 3]} 0xa26161016162820203

["a", {"b": "c"}] 0x826161a161626163

{"a": "A", "b": "B", "c": "C", "d": "D", "e":
"E"}

0xa5616161416162614261636143616461
4461656145

(_ h'0102', h'030405') 0x5f42010243030405ff

(_ "strea", "ming") 0x7f657374726561646d696e67ff

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 51



Diagnostic Encoded

[_ ] 0x9fff

[_ 1, [2, 3], [_ 4, 5]] 0x9f018202039f0405ffff

[_ 1, [2, 3], [4, 5]] 0x9f01820203820405ff

[1, [2, 3], [_ 4, 5]] 0x83018202039f0405ff

[1, [_ 2, 3], [4, 5]] 0x83019f0203ff820405

[_ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]

0x9f0102030405060708090a0b0c0d0e0f
101112131415161718181819ff

{_ "a": 1, "b": [_ 2, 3]} 0xbf61610161629f0203ffff

["a", {_ "b": "c"}] 0x826161bf61626163ff

{_ "Fun": true, "Amt": -2} 0xbf6346756ef563416d7421ff

Table 6: Examples of Encoded CBOR Data Items 

Appendix B. Jump Table for Initial Byte 
For brevity, this jump table does not show initial bytes that are reserved for future extension. It
also only shows a selection of the initial bytes that can be used for optional features. (All
unsigned integers are in network byte order.)

Byte Structure/Semantics

0x00..0x17 unsigned integer 0x00..0x17 (0..23)

0x18 unsigned integer (one-byte uint8_t follows)

0x19 unsigned integer (two-byte uint16_t follows)

0x1a unsigned integer (four-byte uint32_t follows)

0x1b unsigned integer (eight-byte uint64_t follows)

0x20..0x37 negative integer -1-0x00..-1-0x17 (-1..-24)

0x38 negative integer -1-n (one-byte uint8_t for n follows)

0x39 negative integer -1-n (two-byte uint16_t for n follows)

0x3a negative integer -1-n (four-byte uint32_t for n follows)

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 52



Byte Structure/Semantics

0x3b negative integer -1-n (eight-byte uint64_t for n follows)

0x40..0x57 byte string (0x00..0x17 bytes follow)

0x58 byte string (one-byte uint8_t for n, and then n bytes follow)

0x59 byte string (two-byte uint16_t for n, and then n bytes follow)

0x5a byte string (four-byte uint32_t for n, and then n bytes follow)

0x5b byte string (eight-byte uint64_t for n, and then n bytes follow)

0x5f byte string, byte strings follow, terminated by "break"

0x60..0x77 UTF-8 string (0x00..0x17 bytes follow)

0x78 UTF-8 string (one-byte uint8_t for n, and then n bytes follow)

0x79 UTF-8 string (two-byte uint16_t for n, and then n bytes follow)

0x7a UTF-8 string (four-byte uint32_t for n, and then n bytes follow)

0x7b UTF-8 string (eight-byte uint64_t for n, and then n bytes follow)

0x7f UTF-8 string, UTF-8 strings follow, terminated by "break"

0x80..0x97 array (0x00..0x17 data items follow)

0x98 array (one-byte uint8_t for n, and then n data items follow)

0x99 array (two-byte uint16_t for n, and then n data items follow)

0x9a array (four-byte uint32_t for n, and then n data items follow)

0x9b array (eight-byte uint64_t for n, and then n data items follow)

0x9f array, data items follow, terminated by "break"

0xa0..0xb7 map (0x00..0x17 pairs of data items follow)

0xb8 map (one-byte uint8_t for n, and then n pairs of data items follow)

0xb9 map (two-byte uint16_t for n, and then n pairs of data items follow)

0xba map (four-byte uint32_t for n, and then n pairs of data items follow)

0xbb map (eight-byte uint64_t for n, and then n pairs of data items follow)

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 53



Byte Structure/Semantics

0xbf map, pairs of data items follow, terminated by "break"

0xc0 text-based date/time (data item follows; see Section 3.4.1)

0xc1 epoch-based date/time (data item follows; see Section 3.4.2)

0xc2 unsigned bignum (data item "byte string" follows)

0xc3 negative bignum (data item "byte string" follows)

0xc4 decimal Fraction (data item "array" follows; see Section 3.4.4)

0xc5 bigfloat (data item "array" follows; see Section 3.4.4)

0xc6..0xd4 (tag)

0xd5..0xd7 expected conversion (data item follows; see Section 3.4.5.2)

0xd8..0xdb (more tags; 1/2/4/8 bytes of tag number and then a data item follow)

0xe0..0xf3 (simple value)

0xf4 false

0xf5 true

0xf6 null

0xf7 undefined

0xf8 (simple value, one byte follows)

0xf9 half-precision float (two-byte IEEE 754)

0xfa single-precision float (four-byte IEEE 754)

0xfb double-precision float (eight-byte IEEE 754)

0xff "break" stop code

Table 7: Jump Table for Initial Byte 

Appendix C. Pseudocode 
The well-formedness of a CBOR item can be checked by the pseudocode in Figure 1. The data is
well-formed if and only if:

the pseudocode does not "fail"; • 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 54



after execution of the pseudocode, no bytes are left in the input (except in streaming
applications). 

The pseudocode has the following prerequisites:

take(n) reads n bytes from the input data and returns them as a byte string. If n bytes are no
longer available, take(n) fails. 
uint() converts a byte string into an unsigned integer by interpreting the byte string in
network byte order. 
Arithmetic works as in C. 
All variables are unsigned integers of sufficient range. 

Note that well_formed returns the major type for well-formed definite-length items, but 99 for
an indefinite-length item (or -1 for a "break" stop code, only if breakable is set). This is used in 
well_formed_indefinite to ascertain that indefinite-length strings only contain definite-length
strings as chunks.

• 

• 

• 

• 
• 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 55



Note that the remaining complexity of a complete CBOR decoder is about presenting data that
has been decoded to the application in an appropriate form.

Major types 0 and 1 are designed in such a way that they can be encoded in C from a signed
integer without actually doing an if-then-else for positive/negative (Figure 2). This uses the fact
that (-1-n), the transformation for major type 1, is the same as ~n (bitwise complement) in C
unsigned arithmetic; ~n can then be expressed as (-1)^n for the negative case, while 0^n leaves n

Figure 1: Pseudocode for Well-Formedness Check 

well_formed(breakable = false) {
  // process initial bytes
  ib = uint(take(1));
  mt = ib >> 5;
  val = ai = ib & 0x1f;
  switch (ai) {
    case 24: val = uint(take(1)); break;
    case 25: val = uint(take(2)); break;
    case 26: val = uint(take(4)); break;
    case 27: val = uint(take(8)); break;
    case 28: case 29: case 30: fail();
    case 31:
      return well_formed_indefinite(mt, breakable);
  }
  // process content
  switch (mt) {
    // case 0, 1, 7 do not have content; just use val
    case 2: case 3: take(val); break; // bytes/UTF-8
    case 4: for (i = 0; i < val; i++) well_formed(); break;
    case 5: for (i = 0; i < val*2; i++) well_formed(); break;
    case 6: well_formed(); break;     // 1 embedded data item
    case 7: if (ai == 24 && val < 32) fail(); // bad simple
  }
  return mt;                    // definite-length data item
}

well_formed_indefinite(mt, breakable) {
  switch (mt) {
    case 2: case 3:
      while ((it = well_formed(true)) != -1)
        if (it != mt)           // need definite-length chunk
          fail();               //    of same type
      break;
    case 4: while (well_formed(true) != -1); break;
    case 5: while (well_formed(true) != -1) well_formed(); break;
    case 7:
      if (breakable)
        return -1;              // signal break out
      else fail();              // no enclosing indefinite
    default: fail();            // wrong mt
  }
  return 99;                    // indefinite-length data item
}

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 56



unchanged for nonnegative. The sign of a number can be converted to -1 for negative and 0 for
nonnegative (0 or positive) by arithmetic-shifting the number by one bit less than the bit length
of the number (for example, by 63 for 64-bit numbers).

See Section 1.2 for some specific assumptions about the profile of the C language used in these
pieces of code.

Figure 2: Pseudocode for Encoding a Signed Integer 

void encode_sint(int64_t n) {
  uint64t ui = n >> 63;    // extend sign to whole length
  unsigned mt = ui & 0x20; // extract (shifted) major type
  ui ^= n;                 // complement negatives
  if (ui < 24)
    *p++ = mt + ui;
  else if (ui < 256) {
    *p++ = mt + 24;
    *p++ = ui;
  } else
       ...

Appendix D. Half-Precision 
As half-precision floating-point numbers were only added to IEEE 754 in 2008 , today's
programming platforms often still only have limited support for them. It is very easy to include
at least decoding support for them even without such support. An example of a small decoder for
half-precision floating-point numbers in the C language is shown in Figure 3. A similar program
for Python is in Figure 4; this code assumes that the 2-byte value has already been decoded as an
(unsigned short) integer in network byte order (as would be done by the pseudocode in 
Appendix C).

[IEEE754]

Figure 3: C Code for a Half-Precision Decoder 

#include <math.h>

double decode_half(unsigned char *halfp) {
  unsigned half = (halfp[0] << 8) + halfp[1];
  unsigned exp = (half >> 10) & 0x1f;
  unsigned mant = half & 0x3ff;
  double val;
  if (exp == 0) val = ldexp(mant, -24);
  else if (exp != 31) val = ldexp(mant + 1024, exp - 25);
  else val = mant == 0 ? INFINITY : NAN;
  return half & 0x8000 ? -val : val;
}

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 57



Figure 4: Python Code for a Half-Precision Decoder 

import struct
from math import ldexp

def decode_single(single):
    return struct.unpack("!f", struct.pack("!I", single))[0]

def decode_half(half):
    valu = (half & 0x7fff) << 13 | (half & 0x8000) << 16
    if ((half & 0x7c00) != 0x7c00):
        return ldexp(decode_single(valu), 112)
    return decode_single(valu | 0x7f800000)

Appendix E. Comparison of Other Binary Formats to CBOR's
Design Objectives 
The proposal for CBOR follows a history of binary formats that is as long as the history of
computers themselves. Different formats have had different objectives. In most cases, the
objectives of the format were never stated, although they can sometimes be implied by the
context where the format was first used. Some formats were meant to be universally usable,
although history has proven that no binary format meets the needs of all protocols and
applications.

CBOR differs from many of these formats due to it starting with a set of objectives and attempting
to meet just those. This section compares a few of the dozens of formats with CBOR's objectives in
order to help the reader decide if they want to use CBOR or a different format for a particular
protocol or application.

Note that the discussion here is not meant to be a criticism of any format: to the best of our
knowledge, no format before CBOR was meant to cover CBOR's objectives in the priority we have
assigned them. A brief recap of the objectives from Section 1.1 is:

unambiguous encoding of most common data formats from Internet standards 
code compactness for encoder or decoder 
no schema description needed 
reasonably compact serialization 
applicability to constrained and unconstrained applications 
good JSON conversion 
extensibility 

A discussion of CBOR and other formats with respect to a different set of design objectives is
provided in Section 5 and Appendix C of .

1. 
2. 
3. 
4. 
5. 
6. 
7. 

[RFC8618]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 58

https://www.rfc-editor.org/rfc/rfc8618#section-5
https://www.rfc-editor.org/rfc/rfc8618#appendix-C


E.1. ASN.1 DER, BER, and PER 
 has many serializations. In the IETF, DER and BER are the most common. The serialized

output is not particularly compact for many items, and the code needed to decode numeric items
can be complex on a constrained device.

Few (if any) IETF protocols have adopted one of the several variants of Packed Encoding Rules
(PER). There could be many reasons for this, but one that is commonly stated is that PER makes
use of the schema even for parsing the surface structure of the data item, requiring significant
tool support. There are different versions of the ASN.1 schema language in use, which has also
hampered adoption.

[ASN.1]

E.2. MessagePack 
 is a concise, widely implemented counted binary serialization format, similar in

many properties to CBOR, although somewhat less regular. While the data model can be used to
represent JSON data, MessagePack has also been used in many remote procedure call (RPC)
applications and for long-term storage of data.

MessagePack has been essentially stable since it was first published around 2011; it has not yet
had a transition. The evolution of MessagePack is impeded by an imperative to maintain
complete backwards compatibility with existing stored data, while only few bytecodes are still
available for extension. Repeated requests over the years from the MessagePack user community
to separate out binary and text strings in the encoding recently have led to an extension proposal
that would leave MessagePack's "raw" data ambiguous between its usages for binary and text
data. The extension mechanism for MessagePack remains unclear.

[MessagePack]

E.3. BSON 
 is a data format that was developed for the storage of JSON-like maps (JSON objects) in

the MongoDB database. Its major distinguishing feature is the capability for in-place update,
which prevents a compact representation. BSON uses a counted representation except for map
keys, which are null-byte terminated. While BSON can be used for the representation of JSON-
like objects on the wire, its specification is dominated by the requirements of the database
application and has become somewhat baroque. The status of how BSON extensions will be
implemented remains unclear.

[BSON]

E.4. MSDTP: RFC 713 
Message Services Data Transmission (MSDTP) is a very early example of a compact message
format; it is described in , written in 1976. It is included here for its historical value,
not because it was ever widely used.

[RFC0713]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 59



E.5. Conciseness on the Wire 
While CBOR's design objective of code compactness for encoders and decoders is a higher
priority than its objective of conciseness on the wire, many people focus on the wire size. Table 8
shows some encoding examples for the simple nested array [1, [2, 3]]; where some form of
indefinite-length encoding is supported by the encoding, [_ 1, [2, 3]] (indefinite length on the
outer array) is also shown.

Format [1, [2, 3]] [_ 1, [2, 3]]

RFC 713 c2 05 81 c2 02 82 83  

ASN.1 BER 30 0b 02 01 01 30 06 02 01 02 02 01 03 30 80 02 01 01 30 06 02
01 02 02 01 03 00 00

MessagePack 92 01 92 02 03  

BSON 22 00 00 00 10 30 00 01 00 00 00 04 31 00 13 00 00
00 10 30 00 02 00 00 00 10 31 00 03 00 00 00 00 00

 

CBOR 82 01 82 02 03 9f 01 82 02 03 ff

Table 8: Examples for Different Levels of Conciseness 

Too much data:

Too little data:

Syntax error:

Appendix F. Well-Formedness Errors and Examples 
There are three basic kinds of well-formedness errors that can occur in decoding a CBOR data
item:

There are input bytes left that were not consumed. This is only an error if the
application assumed that the input bytes would span exactly one data item. Where the
application uses the self-delimiting nature of CBOR encoding to permit additional data after
the data item, as is done in CBOR sequences , for example, the CBOR decoder can
simply indicate which part of the input has not been consumed. 

The input data available would need additional bytes added at their end for a
complete CBOR data item. This may indicate the input is truncated; it is also a common error
when trying to decode random data as CBOR. For some applications, however, this may not
actually be an error, as the application may not be certain it has all the data yet and can
obtain or wait for additional input bytes. Some of these applications may have an upper limit
for how much additional data can appear; here the decoder may be able to indicate that the
encoded CBOR data item cannot be completed within this limit. 

The input data are not consistent with the requirements of the CBOR encoding,
and this cannot be remedied by adding (or removing) data at the end. 

[RFC8742]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 60



In Appendix C, errors of the first kind are addressed in the first paragraph and bullet list
(requiring "no bytes are left"), and errors of the second kind are addressed in the second
paragraph/bullet list (failing "if n bytes are no longer available"). Errors of the third kind are
identified in the pseudocode by specific instances of calling fail(), in order:

a reserved value is used for additional information (28, 29, 30) 
major type 7, additional information 24, value < 32 (incorrect) 
incorrect substructure of indefinite-length byte string or text string (may only contain
definite-length strings of the same major type) 
"break" stop code (major type 7, additional information 31) occurs in a value position of a
map or except at a position directly in an indefinite-length item where also another enclosed
data item could occur 
additional information 31 used with major type 0, 1, or 6 

• 
• 
• 

• 

• 

End of input in a head:

Definite-length strings with short data:

Definite-length maps and arrays not closed with enough items:

Tag number not followed by tag content:

Indefinite-length strings not closed by a "break" stop code:

Indefinite-length maps and arrays not closed by a "break" stop code:

F.1. Examples of CBOR Data Items That Are Not Well-Formed 
This subsection shows a few examples for CBOR data items that are not well-formed. Each
example is a sequence of bytes, each shown in hexadecimal; multiple examples in a list are
separated by commas.

Examples for well-formedness error kind 1 (too much data) can easily be formed by adding data
to a well-formed encoded CBOR data item.

Similarly, examples for well-formedness error kind 2 (too little data) can be formed by truncating
a well-formed encoded CBOR data item. In test suites, it may be beneficial to specifically test with
incomplete data items that would require large amounts of addition to be completed (for
instance by starting the encoding of a string of a very large size).

A premature end of the input can occur in a head or within the enclosed data, which may be
bare strings or enclosed data items that are either counted or should have been ended by a
"break" stop code.

18, 19, 1a, 1b, 19 01, 1a 01 02, 1b 01 02 03 04 05 06 07, 38, 58, 78, 98, 9a 01
ff 00, b8, d8, f8, f9 00, fa 00 00, fb 00 00 00 

41, 61, 5a ff ff ff ff 00, 5b ff ff ff ff ff ff ff ff 01 02 03, 7a ff ff
ff ff 00, 7b 7f ff ff ff ff ff ff ff 01 02 03 

81, 81 81 81 81 81 81 81 81 81, 82
00, a1, a2 01 02, a1 00, a2 00 00 00 

c0 

5f 41 00, 7f 61 00 

9f, 9f 01 02, bf, bf 01 02 01
02, 81 9f, 9f 80 00, 9f 9f 9f 9f 9f ff ff ff ff, 9f 81 9f 81 9f 9f ff ff ff 

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 61



Reserved additional information values:

Reserved two-byte encodings of simple values:

Indefinite-length string chunks not of the correct type:

Indefinite-length string chunks not definite length:

Break occurring on its own outside of an indefinite-length item:

Break occurring in a definite-length array or map or a tag:

Break in an indefinite-length map that would lead to an odd number of items (break in a
value position):

Major type 0, 1, 6 with additional information 31:

A few examples for the five subkinds of well-formedness error kind 3 (syntax error) are shown
below.

Subkind 1:

1c, 1d, 1e, 3c, 3d, 3e, 5c, 5d, 5e, 7c, 7d, 7e, 9c, 9d, 9e,
bc, bd, be, dc, dd, de, fc, fd, fe, 

Subkind 2:

f8 00, f8 01, f8 18, f8 1f 

Subkind 3:

5f 00 ff, 5f 21 ff, 5f 61 00 ff, 5f 80 ff, 5f
a0 ff, 5f c0 00 ff, 5f e0 ff, 7f 41 00 ff 

5f 5f 41 00 ff ff, 7f 7f 61 00 ff ff 

Subkind 4:

ff 

81 ff, 82 00 ff, a1 ff, a1 ff 00, a1 00
ff, a2 00 00 ff, 9f 81 ff, 9f 82 9f 81 9f 9f ff ff ff ff 

bf 00 ff, bf 00 00 00 ff 

Subkind 5:

1f, 3f, df 

Appendix G. Changes from RFC 7049 
As discussed in the introduction, this document formally obsoletes RFC 7049 while keeping full
compatibility with the interchange format from RFC 7049. This document provides editorial
improvements, added detail, and fixed errata. This document does not create a new version of
the format.

G.1. Errata Processing and Clerical Changes 
The two verified errata on RFC 7049,  and , concerned two encoding examples
in the text that have been corrected (Section 3.4.3: "29" -> "49", Section 5.5: "0b000_11101" ->
"0b000_11001"). Also, RFC 7049 contained an example using the numeric value 24 for a simple
value , which is not well-formed; this example has been removed. Errata report 5763 

 pointed to an error in the wording of the definition of tags; this was resolved during a
rewrite of Section 3.4. Errata report 5434  pointed out that the Universal Binary JSON

[Err3764] [Err3770]

[Err5917]
[Err5763]

[Err5434]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 62



(UBJSON) example in Appendix E no longer complied with the version of UBJSON current at the
time of the errata report submission. It turned out that the UBJSON specification had completely
changed since 2013; this example therefore was removed. Other errata reports  

  complained that the map key sorting rules for canonical encoding were
onerous; these led to a reconsideration of the canonical encoding suggestions and replacement
by the deterministic encoding suggestions (described below). An editorial suggestion in errata
report 4294  was also implemented (improved symmetry by adding "Second value" to a
comment to the last example in Section 3.2.2).

Other clerical changes include:

the use of new xml2rfc functionality ; 
more explanation of the notation used; 
the update of references, e.g., from RFC 4627 to , from CNN-TERMS to ,
and from the 5.1 edition to the 11th edition of ; the addition of a reference to 

 and importation of required definitions; the addition of references to  and 
; and the addition of a reference to  that further illustrates the

discussion in Appendix E; 
in the discussion of diagnostic notation (Section 8), the "Extended Diagnostic Notation"
(EDN) defined in  is now mentioned, the gap in representing NaN payloads is now
highlighted, and an explanation of representing indefinite-length strings with no chunks has
been added (Section 8.1); 
the addition of this appendix. 

[Err4409]
[Err4963] [Err4964]

[Err4294]

• [RFC7991]
• 
• [RFC8259] [RFC7228]

[ECMA262]
[IEEE754] [C]
[Cplusplus20] [RFC8618]

• 
[RFC8610]

• 

G.2. Changes in IANA Considerations 
The IANA considerations were generally updated (clerical changes, e.g., now pointing to the
CBOR Working Group as the author of the specification). References to the respective IANA
registries were added to the informative references.

In the "Concise Binary Object Representation (CBOR) Tags" registry , tags in the
space from 256 to 32767 (lower half of "1+2") are no longer assigned by First Come First Served;
this range is now Specification Required.

[IANA.cbor-tags]

G.3. Changes in Suggestions and Other Informational
Components 
While revising the document, beyond the addressing of the errata reports, the working group
drew upon nearly seven years of experience with CBOR in a diverse set of applications. This led
to a number of editorial changes, including adding tables for illustration, but also emphasizing
some aspects and de-emphasizing others.

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 63



A significant addition is Section 2, which discusses the CBOR data model and its small variations
involved in the processing of CBOR. The introduction of terms for those variations (basic generic,
extended generic, specific) enables more concise language in other places of the document and
also helps to clarify expectations of implementations and of the extensibility features of the
format.

As a format derived from the JSON ecosystem, RFC 7049 was influenced by the JSON number
system that was in turn inherited from JavaScript at the time. JSON does not provide distinct
integers and floating-point values (and the latter are decimal in the format). CBOR provides
binary representations of numbers, which do differ between integers and floating-point values.
Experience from implementation and use suggested that the separation between these two
number domains should be more clearly drawn in the document; language that suggested an
integer could seamlessly stand in for a floating-point value was removed. Also, a suggestion
(based on I-JSON ) was added for handling these types when converting JSON to CBOR,
and the use of a specific rounding mechanism has been recommended.

For a single value in the data model, CBOR often provides multiple encoding options. A new
section (Section 4) introduces the term "preferred serialization" (Section 4.1) and defines it for
various kinds of data items. On the basis of this terminology, the section then discusses how a
CBOR-based protocol can define "deterministic encoding" (Section 4.2), which avoids terms
"canonical" and "canonicalization" from RFC 7049. The suggestion of "Core Deterministic
Encoding Requirements" (Section 4.2.1) enables generic support for such protocol-defined
encoding requirements. This document further eases the implementation of deterministic
encoding by simplifying the map ordering suggested in RFC 7049 to a simple lexicographic
ordering of encoded keys. A description of the older suggestion is kept as an alternative, now
termed "length-first map key ordering" (Section 4.2.3).

The terminology for well-formed and valid data was sharpened and more stringently used,
avoiding less well-defined alternative terms such as "syntax error", "decoding error", and "strict
mode" outside of examples. Also, a third level of requirements that an application has on its
input data beyond CBOR-level validity is now explicitly called out. Well-formed (processable at
all), valid (checked by a validity-checking generic decoder), and expected input (as checked by
the application) are treated as a hierarchy of layers of acceptability.

The handling of non-well-formed simple values was clarified in text and pseudocode. Appendix F
was added to discuss well-formedness errors and provide examples for them. The pseudocode
was updated to be more portable, and some portability considerations were added.

The discussion of validity has been sharpened in two areas. Map validity (handling of duplicate
keys) was clarified, and the domain of applicability of certain implementation choices explained.
Also, while streamlining the terminology for tags, tag numbers, and tag content, discussion was
added on tag validity, and the restrictions were clarified on tag content, in general and
specifically for tag 1.

An implementation note (and note for future tag definitions) was added to Section 3.4 about
defining tags with semantics that depend on serialization order.

[RFC7493]

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 64



Tag 35 is not defined by this document; the registration based on the definition in RFC 7049
remains in place.

Terminology was introduced in Section 3 for "argument" and "head", simplifying further
discussion.

The security considerations (Section 10) were mostly rewritten and significantly expanded; in
multiple other places, the document is now more explicit that a decoder cannot simply condone
well-formedness errors.

Acknowledgements 
CBOR was inspired by MessagePack. MessagePack was developed and promoted by 

 ("frsyuki"). This reference to MessagePack is solely for attribution; CBOR is not
intended as a version of, or replacement for, MessagePack, as it has different design goals and
requirements.

The need for functionality beyond the original MessagePack specification became obvious to
many people at about the same time around the year 2012. BinaryPack is a minor derivation of
MessagePack that was developed by  for the binaryjs project. A similar, but different,
extension was made by  for his msgpack-js and msgpack-js-browser projects. Many
people have contributed to the discussion about extending MessagePack to separate text string
representation from byte string representation.

The encoding of the additional information in CBOR was inspired by the encoding of length
information designed by  for CoAP.

This document also incorporates suggestions made by many people, notably , 
, , , , , , 

, , , , , , 
, , , and .  provided an extensive

review during IESG processing. , , , and 
provided further IESG comments, which included an IoT directorate review by .

Sadayuki
Furuhashi

Eric Zhang
Tim Caswell

Klaus Hartke

Dan Frost James
Manger Jeffrey Yasskin Joe Hildebrand Keith Moore Laurence Lundblade Matthew Lepinski
Michael Richardson Nico Williams Peter Occil Phillip Hallam-Baker Ray Polk Stuart Cheshire
Tim Bray Tony Finch Tony Hansen Yaron Sheffer Benjamin Kaduk

Éric Vyncke Erik Kline Robert Wilton Roman Danyliw
Eve Schooler

Authors' Addresses 
Carsten Bormann
Universität Bremen TZI
Postfach 330440

  D-28359 Bremen
Germany

 +49-421-218-63921 Phone:
 cabo@tzi.org Email:

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 65

tel:+49-421-218-63921
mailto:cabo@tzi.org


Paul Hoffman
ICANN

 paul.hoffman@icann.org Email:

RFC 8949 CBOR November 2020

Bormann & Hoffman Standards Track Page 66

mailto:paul.hoffman@icann.org

	RFC 8949
	Concise Binary Object Representation (CBOR)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Objectives
	1.2. Terminology

	2. CBOR Data Models
	2.1. Extended Generic Data Models
	2.2. Specific Data Models

	3. Specification of the CBOR Encoding
	3.1. Major Types
	3.2. Indefinite Lengths for Some Major Types
	3.2.1. The "break" Stop Code
	3.2.2. Indefinite-Length Arrays and Maps
	3.2.3. Indefinite-Length Byte Strings and Text Strings
	3.2.4. Summary of Indefinite-Length Use of Major Types

	3.3. Floating-Point Numbers and Values with No Content
	3.4. Tagging of Items
	3.4.1. Standard Date/Time String
	3.4.2. Epoch-Based Date/Time
	3.4.3. Bignums
	3.4.4. Decimal Fractions and Bigfloats
	3.4.5. Content Hints
	3.4.5.1. Encoded CBOR Data Item
	3.4.5.2. Expected Later Encoding for CBOR-to-JSON Converters
	3.4.5.3. Encoded Text

	3.4.6. Self-Described CBOR


	4. Serialization Considerations
	4.1. Preferred Serialization
	4.2. Deterministically Encoded CBOR
	4.2.1. Core Deterministic Encoding Requirements
	4.2.2. Additional Deterministic Encoding Considerations
	4.2.3. Length-First Map Key Ordering


	5. Creating CBOR-Based Protocols
	5.1. CBOR in Streaming Applications
	5.2. Generic Encoders and Decoders
	5.3. Validity of Items
	5.3.1. Basic validity
	5.3.2. Tag validity

	5.4. Validity and Evolution
	5.5. Numbers
	5.6. Specifying Keys for Maps
	5.6.1. Equivalence of Keys

	5.7. Undefined Values

	6. Converting Data between CBOR and JSON
	6.1. Converting from CBOR to JSON
	6.2. Converting from JSON to CBOR

	7. Future Evolution of CBOR
	7.1. Extension Points
	7.2. Curating the Additional Information Space

	8. Diagnostic Notation
	8.1. Encoding Indicators

	9. IANA Considerations
	9.1. CBOR Simple Values Registry
	9.2. CBOR Tags Registry
	9.3. Media Types Registry
	9.4. CoAP Content-Format Registry
	9.5. Structured Syntax Suffix Registry

	10. Security Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Examples of Encoded CBOR Data Items
	Appendix B. Jump Table for Initial Byte
	Appendix C. Pseudocode
	Appendix D. Half-Precision
	Appendix E. Comparison of Other Binary Formats to CBOR's Design Objectives
	E.1. ASN.1 DER, BER, and PER
	E.2. MessagePack
	E.3. BSON
	E.4. MSDTP: RFC 713
	E.5. Conciseness on the Wire
	Appendix F. Well-Formedness Errors and Examples
	F.1. Examples of CBOR Data Items That Are Not Well-Formed
	Appendix G. Changes from RFC 7049
	G.1. Errata Processing and Clerical Changes
	G.2. Changes in IANA Considerations
	G.3. Changes in Suggestions and Other Informational Components
	Acknowledgements
	Authors' Addresses


