
RFC 8825
Overview: Real-Time Protocols for Browser-Based
Applications

Abstract
This document gives an overview and context of a protocol suite intended for use with real-time
applications that can be deployed in browsers -- "real-time communication on the Web".

It intends to serve as a starting and coordination point to make sure that (1) all the parts that are
needed to achieve this goal are findable and (2) the parts that belong in the Internet protocol
suite are fully specified and on the right publication track.

This document is an applicability statement -- it does not itself specify any protocol, but it
specifies which other specifications implementations are supposed to follow to be compliant with
Web Real-Time Communication (WebRTC).

Stream: Internet Engineering Task Force (IETF)
RFC: 8825
Category: Standards Track
Published: January 2021
ISSN: 2070-1721
Author: H. Alvestrand

Google

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8825

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

Alvestrand Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8825
https://www.rfc-editor.org/info/rfc8825

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Principles and Terminology

2.1. Goals of This Document

2.2. Relationship between API and Protocol

2.3. On Interoperability and Innovation

2.4. Terminology

3. Architecture and Functionality Groups

4. Data Transport

5. Data Framing and Securing

6. Data Formats

7. Connection Management

8. Presentation and Control

9. Local System Support Functions

10. IANA Considerations

11. Security Considerations

12. References

12.1. Normative References

12.2. Informative References

Acknowledgements

Author's Address

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 2

https://trustee.ietf.org/license-info

1. Introduction
The Internet was, from very early in its lifetime, considered a possible vehicle for the
deployment of real-time, interactive applications -- with the most easily imaginable being audio
conversations (aka "Internet telephony") and video conferencing.

The first attempts to build such applications were dependent on special networks, special
hardware, and custom-built software, often at very high prices or of low quality, placing great
demands on the infrastructure.

As the available bandwidth has increased, and as processors and other hardware have become
ever faster, the barriers to participation have decreased, and it has become possible to deliver a
satisfactory experience on commonly available computing hardware.

Still, there are a number of barriers to the ability to communicate universally -- one of these is
that there is, as of yet, no single set of communication protocols that all agree should be made
available for communication; another is the sheer lack of universal identification systems (such
as is served by telephone numbers or email addresses in other communications systems).

Development of "The Universal Solution" has, however, proved hard.

The last few years have also seen a new platform rise for deployment of services: the browser-
embedded application, or "web application". It turns out that as long as the browser platform has
the necessary interfaces, it is possible to deliver almost any kind of service on it.

Traditionally, these interfaces have been delivered by plugins, which had to be downloaded and
installed separately from the browser; in the development of HTML5 , application
developers see much promise in the possibility of making those interfaces available in a
standardized way within the browser.

This memo describes a set of building blocks that (1) can be made accessible and controllable
through a JavaScript API in a browser and (2) together form a sufficient set of functions to allow
the use of interactive audio and video in applications that communicate directly between
browsers across the Internet. The resulting protocol suite is intended to enable all the
applications that are described as required scenarios in the WebRTC "use cases" document

.

Other efforts -- for instance, the W3C Web Real-Time Communications, Web Applications
Security, and Devices and Sensors Working Groups -- focus on making standardized APIs and
interfaces available, within or alongside the HTML5 effort, for those functions. This memo
concentrates on specifying the protocols and subprotocols that are needed to specify the
interactions over the network.

Operators should note that deployment of WebRTC will result in a change in the nature of
signaling for real-time media on the network and may result in a shift in the kinds of devices
used to create and consume such media. In the case of signaling, WebRTC session setup will

[HTML5]

[RFC7478]

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 3

2. Principles and Terminology

2.1. Goals of This Document
The goal of the WebRTC protocol specification is to specify a set of protocols that, if all are
implemented, will allow an implementation to communicate with another implementation using
audio, video, and data sent along the most direct possible path between the participants.

This document is intended to serve as the roadmap to the WebRTC specifications. It defines terms
used by other parts of the WebRTC protocol specifications, lists references to other specifications
that don't need further elaboration in the WebRTC context, and gives pointers to other
documents that form part of the WebRTC suite.

By reading this document and the documents it refers to, it should be possible to have all
information needed to implement a WebRTC-compatible implementation.

2.2. Relationship between API and Protocol
The total WebRTC effort consists of two major parts, each consisting of multiple documents:

A protocol specification, done in the IETF
A JavaScript API specification, defined in a series of W3C documents

typically occur over TLS-secured web technologies using application-specific protocols.
Operational techniques that involve inserting network elements to interpret the Session
Description Protocol (SDP) -- through either (1) the endpoint asking the network for a SIP server

 or (2) the transparent insertion of SIP Application Layer Gateways (ALGs) -- will not
work with such signaling. In the case of networks using cooperative endpoints, the approaches
defined in may serve as a suitable replacement for . The increase in
browser-based communications may also lead to a shift away from dedicated real-time-
communications hardware, such as SIP desk phones. This will diminish the efficacy of
operational techniques that place dedicated real-time devices on their own network segment,
address range, or VLAN for purposes such as applying traffic filtering and QoS. Applying the
markings described in may be appropriate replacements for such techniques.

While this document formally relies on , at the time of its publication, the majority of
WebRTC implementations support the version of Interactive Connectivity Establishment (ICE)
that is described in and use a pre-standard version of the Trickle ICE mechanism
described in . The "ice2" attribute defined in can be used to detect the
version in use by a remote endpoint and to provide a smooth transition from the older
specification to the newer one.

This memo uses the term "WebRTC" (note the case used) to refer to the overall effort consisting of
both IETF and W3C efforts.

[RFC3361]

[RFC8155] [RFC3361]

[RFC8837]

[RFC8445]

[RFC5245]
[RFC8838] [RFC8445]

•
• [W3C.WD-webrtc]

[W3C.WD-mediacapture-streams]

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 4

Agent:

Application Programming Interface (API):

Browser:

Data Channel:

ICE Agent:

Interactive:

Media:

Media Path:

Protocol:

Together, these two specifications aim to provide an environment where JavaScript embedded in
any page, when suitably authorized by its user, is able to set up communication using audio,
video, and auxiliary data, as long as the browser supports these specifications. The browser
environment does not constrain the types of application in which this functionality can be used.

The protocol specification does not assume that all implementations implement this API; it is not
intended to be necessary for interoperation to know whether the entity one is communicating
with is a browser or another device implementing the protocol specification.

The goal of cooperation between the protocol specification and the API specification is that for all
options and features of the protocol specification, it should be clear which API calls to make to
exercise that option or feature; similarly, for any sequence of API calls, it should be clear which
protocol options and features will be invoked. Both are subject to constraints of the
implementation, of course.

The following terms are used across the documents specifying the WebRTC suite, with the
specific meanings given here. Not all terms are used in this document. Other terms are used per
their commonly used meanings.

Undefined term. See "SDP Agent" and "ICE Agent".

A specification of a set of calls and events, usually
tied to a programming language or an abstract formal specification such as WebIDL, with its
defined semantics.

Used synonymously with "interactive user agent" as defined in . See also the
"WebRTC Browser" (aka "WebRTC User Agent") definition below.

An abstraction that allows data to be sent between WebRTC endpoints in the
form of messages. Two endpoints can have multiple data channels between them.

An implementation of the Interactive Connectivity Establishment (ICE) protocol
. An ICE Agent may also be an SDP Agent, but there exist ICE Agents that do not use

SDP (for instance, those that use Jingle).

Communication between multiple parties, where the expectation is that an action
from one party can cause a reaction by another party, and the reaction can be observed by
the first party, where the total time required for the action/reaction/observation is on the
order of no more than hundreds of milliseconds.

Audio and video content. Not to be confused with "transmission media" such as wires.

The path that media data follows from one WebRTC endpoint to another.

A specification of a set of data units, their representation, and rules for their
transmission, with their defined semantics. A protocol is usually thought of as going between
systems.

[HTML5]

[RFC8445]
[XEP-0166]

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 5

Real-Time Media:

SDP Agent:

Signaling:

Signaling Path:

WebRTC Browser (also called a "WebRTC User Agent" or "WebRTC UA"):

WebRTC Non-Browser:

WebRTC Endpoint:

WebRTC-Compatible Endpoint:

WebRTC Gateway:

Media where the generation and display of content are intended to occur
closely together in time (on the order of no more than hundreds of milliseconds). Real-time
media can be used to support interactive communication.

The protocol implementation involved in the Session Description Protocol (SDP)
offer/answer exchange, as defined in .

Communication that happens in order to establish, manage, and control media paths
and data paths.

The communication channels used between entities participating in signaling to
transfer signaling. There may be more entities in the signaling path than in the media path.

 Something that
conforms to both the protocol specification and the JavaScript API cited above.

Something that conforms to the protocol specification but does not
claim to implement the JavaScript API. This can also be called a "WebRTC device" or "WebRTC
native application".

Either a WebRTC browser or a WebRTC non-browser. It conforms to the
protocol specification.

An endpoint that is able to successfully communicate with a
WebRTC endpoint but may fail to meet some requirements of a WebRTC endpoint. This may
limit where in the network such an endpoint can be attached or may limit the security
guarantees that it offers to others. It is not constrained by this specification; when it is
mentioned at all, it is to note the implications on WebRTC-compatible endpoints of the
requirements placed on WebRTC endpoints.

A WebRTC-compatible endpoint that mediates media traffic to non-WebRTC
entities.

All WebRTC browsers are WebRTC endpoints, so any requirement on a WebRTC endpoint also
applies to a WebRTC browser.

A WebRTC non-browser may be capable of hosting applications in a way that is similar to the
way in which a browser can host JavaScript applications, typically by offering APIs in other
languages. For instance, it may be implemented as a library that offers a C++ API intended to be
loaded into applications. In this case, security considerations similar to those for JavaScript may
be needed; however, since such APIs are not defined or referenced here, this document cannot
give any specific rules for those interfaces.

WebRTC gateways are described in a separate document .

2.3. On Interoperability and Innovation
The "Mission statement for the IETF" states that "The benefit of a standard to the
Internet is in interoperability - that multiple products implementing a standard are able to work
together in order to deliver valuable functions to the Internet's users."

[RFC3264], Section 3

[WebRTC-Gateways]

[RFC3935]

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc3264#section-3

Communication on the Internet frequently occurs in two phases:

Two parties communicate, through some mechanism, what functionality they are both able
to support.
They use that shared communicative functionality to communicate or, failing to find
anything in common, give up on communication.

There are often many choices that can be made for communicative functionality; the history of
the Internet is rife with the proposal, standardization, implementation, and success or failure of
many types of options, in all sorts of protocols.

The goal of having a mandatory-to-implement function set is to prevent negotiation failure, not
to preempt or prevent negotiation.

The presence of a mandatory-to-implement function set serves as a strong changer of the
marketplace of deployment in that it gives a guarantee that you can communicate successfully as
long as (1) you conform to a specification and (2) the other party is willing to accept
communication at the base level of that specification.

The alternative (that is, not having a mandatory-to-implement function) does not mean that you
cannot communicate; it merely means that in order to be part of the communications
partnership, you have to implement the standard "and then some". The "and then some" is
usually called a profile of some sort; in the version most antithetical to the Internet ethos, that
"and then some" consists of having to use a specific vendor's product only.

2.4. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

•

•

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Architecture and Functionality Groups
For browser-based applications, the model for real-time support does not assume that the
browser will contain all the functions needed for an application such as a telephone or a video
conference. The vision is that the browser will have the functions needed for a web application,
working in conjunction with its backend servers, to implement these functions.

This means that two vital interfaces need specification: the protocols that browsers use to talk to
each other, without any intervening servers; and the APIs that are offered for a JavaScript
application to take advantage of the browser's functionality.

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 7

Note that HTTPS and WebSockets are also offered to the JavaScript application through browser
APIs.

As for all protocol and API specifications, there is no restriction that the protocols can only be
used to talk to another browser; since they are fully specified, any endpoint that implements the
protocols faithfully should be able to interoperate with the application running in the browser.

A commonly imagined model of deployment is depicted in Figure 2. ("JS" stands for JavaScript.)

Figure 1: Browser Model

 +------------------------+ On-the-wire
 | | Protocols
 | Servers |--------->
 | |
 | |
 +------------------------+
 ^
 |
 |
 | HTTPS/
 | WebSockets
 |
 |
 +----------------------------+
 | JavaScript/HTML/CSS |
 +----------------------------+
 Other ^ ^ RTC
 APIs | | APIs
 +---|-----------------|------+
 | | | |
 | +---------+|
 | | Browser || On-the-wire
 | Browser | RTC || Protocols
 | | Function|----------->
 | | ||
 | | ||
 | +---------+|
 +---------------------|------+
 |
 V
 Native OS Services

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 8

In this drawing, the critical part to note is that the media path ("low path") goes directly between
the browsers, so it has to be conformant to the specifications of the WebRTC protocol suite; the
signaling path ("high path") goes via servers that can modify, translate, or manipulate the signals
as needed.

If the two web servers are operated by different entities, the inter-server signaling mechanism
needs to be agreed upon, by either standardization or other means of agreement. Existing
protocols (e.g., SIP or the Extensible Messaging and Presence Protocol (XMPP)

) could be used between servers, while either a standards-based or proprietary
protocol could be used between the browser and the web server.

For example, if both operators' servers implement SIP, SIP could be used for communication
between servers, along with either a standardized signaling mechanism (e.g., SIP over
WebSockets) or a proprietary signaling mechanism used between the application running in the
browser and the web server. Similarly, if both operators' servers implement XMPP, XMPP could
be used for communication between XMPP servers, with either a standardized signaling
mechanism (e.g., XMPP over WebSockets or Bidirectional-streams Over Synchronous HTTP
(BOSH)) or a proprietary signaling mechanism used between the application running
in the browser and the web server.

The choice of protocols for client-server and inter-server signaling, and the definition of the
translation between them, are outside the scope of the WebRTC protocol suite described in this
document.

Figure 2: Browser RTC Trapezoid

 +-----------+ +-----------+
 | Web | | Web |
 | | | |
 | |------------------| |
 | Server | Signaling Path | Server |
 | | | |
 +-----------+ +-----------+
 / \
 / \ Application-defined
 / \ over
 / \ HTTPS/WebSockets
 / Application-defined over \
 / HTTPS/WebSockets \
 / \
 +-----------+ +-----------+
 |JS/HTML/CSS| |JS/HTML/CSS|
 +-----------+ +-----------+
 +-----------+ +-----------+
Browser	--------------------------------	Browser
	Media Path	
 +-----------+ +-----------+

[RFC3261]
[RFC6120]

[XEP-0124]

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 9

Data transport:

Data framing:

Data formats:

Connection management:

Presentation and control:

Local system support functions:

The functionality groups that are needed in the browser can be specified, more or less from the
bottom up, as:

For example, TCP and UDP, and the means to securely set up connections
between entities, as well as the functions for deciding when to send data: congestion
management, bandwidth estimation, and so on.

RTP, the Stream Control Transmission Protocol (SCTP), DTLS, and other data
formats that serve as containers, and their functions for data confidentiality and integrity.

Codec specifications, format specifications, and functionality specifications for
the data passed between systems. Audio and video codecs, as well as formats for data and
document sharing, belong in this category. In order to make use of data formats, a way to
describe them (e.g., a session description) is needed.

For example, setting up connections, agreeing on data formats,
changing data formats during the duration of a call. SDP, SIP, and Jingle/XMPP belong in this
category.

What needs to happen in order to ensure that interactions behave in
an unsurprising manner. This can include floor control, screen layout, voice-activated image
switching, and other such functions, where part of the system requires cooperation between
parties. Centralized Conferencing (XCON) and Cisco /Tandberg's Telepresence
Interoperability Protocol (TIP) were some attempts at specifying this kind of functionality;
many applications have been built without standardized interfaces to these functions.

Functions that need not be specified uniformly, because each
participant may implement these functions as they choose, without affecting the bits on the
wire in a way that others have to be cognizant of. Examples in this category include echo
cancellation (some forms of it), local authentication and authorization mechanisms, OS access
control, and the ability to do local recording of conversations.

Within each functionality group, it is important to preserve both freedom to innovate and the
ability for global communication. Freedom to innovate is helped by doing the specification in
terms of interfaces, not implementation; any implementation able to communicate according to
the interfaces is a valid implementation. The ability to communicate globally is helped by both
(1) having core specifications be unencumbered by IPR issues and (2) having the formats and
protocols be fully enough specified to allow for independent implementation.

One can think of the first three groups as forming a "media transport infrastructure" and of the
last three groups as forming a "media service". In many contexts, it makes sense to use a
common specification for the media transport infrastructure, which can be embedded in
browsers and accessed using standard interfaces, and "let a thousand flowers bloom" in the
"media service" layer; to achieve interoperable services, however, at least the first five of the six
groups need to be specified.

[RFC6501]

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 10

5. Data Framing and Securing
The format for media transport is RTP . Implementation of the Secure Real-time
Transport Protocol (SRTP) is for all implementations.

The detailed considerations for usage of functions from RTP and SRTP are given in .
The security considerations for the WebRTC use case are provided in , and the resulting
security functions are described in .

Considerations for the transfer of data that is not in RTP format are described in , and a
supporting protocol for establishing individual data channels is described in . WebRTC
endpoints implement these two specifications.

WebRTC endpoints implement , , , and the requirements they
include.

7. Connection Management
The methods, mechanisms, and requirements for setting up, negotiating, and tearing down
connections comprise a large subject, and one where it is desirable to have both interoperability
and freedom to innovate.

4. Data Transport
Data transport refers to the sending and receiving of data over the network interfaces, the choice
of network-layer addresses at each end of the communication, and the interaction with any
intermediate entities that handle the data but do not modify it (such as Traversal Using Relays
around NAT (TURN) relays).

It includes necessary functions for congestion control, retransmission, and in-order delivery.

WebRTC endpoints implement the transport protocols described in .MUST [RFC8835]

[RFC3550]
[RFC3711] REQUIRED

[RFC8834]
[RFC8826]

[RFC8827]

[RFC8831]
[RFC8832]

MUST

MUST [RFC8834] [RFC8826] [RFC8827]

6. Data Formats
The intent of this specification is to allow each communications event to use the data formats
that are best suited for that particular instance, where a format is supported by both sides of the
connection. However, a minimum standard is greatly helpful in order to ensure that
communication can be achieved. This document specifies a minimum baseline that will be
supported by all implementations of this specification and leaves further codecs to be included at
the will of the implementer.

WebRTC endpoints that support audio and/or video implement the codecs and profiles
required in and .

MUST
[RFC7874] [RFC7742]

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 11

The following principles apply:

The WebRTC media negotiations will be capable of representing the same SDP offer/answer
semantics that are used in SIP, in such a way that it is possible to build a signaling
gateway between SIP and the WebRTC media negotiation.
It will be possible to gateway between legacy SIP devices that support ICE and appropriate
RTP/SDP mechanisms, codecs, and security mechanisms without using a media gateway. A
signaling gateway to convert between the signaling on the web side and the SIP signaling
may be needed.
When an SDP for a new codec is specified, no other standardization should be required for it
to be possible to use that codec in the web browsers. Adding new codecs that might have
new SDP parameters should not change the APIs between the browser and the JavaScript
application. As soon as the browsers support the new codecs, old applications written before
the codecs were specified should automatically be able to use the new codecs where
appropriate, with no changes to the JavaScript applications.

The particular choices made for WebRTC, and their implications for the API offered by a browser
implementing WebRTC, are described in .

WebRTC browsers implement .

WebRTC endpoints implement those functions described in that relate to the
network layer (e.g., BUNDLE , "rtcp-mux" , and Trickle ICE), but
these endpoints do not need to support the API functionality described in .

8. Presentation and Control
The most important part of control is the users' control over the browser's interaction with input/
output devices and communications channels. It is important that the users have some way of
figuring out where their audio, video, or texting is being sent; for what purported reason; and
what guarantees are made by the parties that form part of this control channel. This is largely a
local function between the browser, the underlying operating system, and the user interface; this
is specified in the peer connection API and the media capture API

.

WebRTC browsers implement these two specifications.

9. Local System Support Functions
These functions are characterized by the fact that the quality of an implementation strongly
influences the user experience, but the exact algorithm does not need coordination. In some
cases (for instance, echo cancellation, as described below), the overall system definition may
need to specify that the overall system needs to have some characteristics for which these
facilities are useful, without requiring them to be implemented a certain way.

1.
[RFC3264]

2.

3.

[RFC8829]

MUST [RFC8829]

MUST [RFC8829]
[RFC8843] [RFC5761] [RFC8838]

[RFC8829]

[W3C.WD-webrtc] [W3C.WD-
mediacapture-streams]

MUST

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 12

Local functions include echo cancellation; volume control; camera management, including focus,
zoom, and pan/tilt controls (if available); and more.

One would want to see certain parts of the system conform to certain properties; for instance:

Echo cancellation should be good enough to achieve the suppression of acoustical feedback
loops below a perceptually noticeable level.
Privacy concerns be satisfied; for instance, if remote control of a camera is offered, the
APIs should be available to let the local participant figure out who's controlling the camera
and possibly decide to revoke the permission for camera usage.
Automatic Gain Control (AGC), if present, should normalize a speaking voice into a
reasonable dB range.

The requirements on WebRTC systems with regard to audio processing are found in ,
and that document includes more guidance about echo cancellation and AGC; the APIs for
control of local devices are found in .

WebRTC endpoints implement the processing functions in . (Together with the
requirement in Section 6, this means that WebRTC endpoints implement the whole
document.)

•

• MUST

•

[RFC7874]

[W3C.WD-mediacapture-streams]

MUST [RFC7874]
MUST

10. IANA Considerations
This document has no IANA actions.

Security of the components:

Security of the communication channels:

Security of the partners' identities:

11. Security Considerations
Security of the web-enabled real-time communications comes in several pieces:

The browsers, and other servers involved. The most target-rich
environment here is probably the browser; the aim here should be that the introduction of
these components introduces no additional vulnerability.

It should be easy for participants to reassure
themselves of the security of their communication -- by verifying the crypto parameters of the
links that they participate in, and to get reassurances from the other parties to the
communication that those parties promise that appropriate measures are taken.

Verifying that the participants are who they say they are
(when positive identification is appropriate) or that their identities cannot be uncovered
(when anonymity is a goal of the application).

The security analysis, and the requirements derived from that analysis, are contained in
.

It is also important to read the security sections of and
.

[RFC8826]

[W3C.WD-mediacapture-streams]
[W3C.WD-webrtc]

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 13

[RFC2119]

[RFC3264]

[RFC3550]

[RFC3711]

[RFC7742]

[RFC7874]

[RFC8174]

[RFC8445]

[RFC8826]

[RFC8827]

[RFC8829]

[RFC8831]

12. References

12.1. Normative References

, , ,
, , March 1997,
.

,
, , , June 2002,

.

,
, , , ,

July 2003, .

,
, , , March

2004, .

, , ,
, March 2016, .

, ,
, , May 2016,
.

, ,
, , , May 2017,

.

,

, , , July 2018,
.

, , ,
, January 2021, .

, , , ,
January 2021, .

,
, , , January 2021,

.

, , ,
, January 2021, .

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Rosenberg, J. and H. Schulzrinne "An Offer/Answer Model with Session
Description Protocol (SDP)" RFC 3264 DOI 10.17487/RFC3264
<https://www.rfc-editor.org/info/rfc3264>

Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson "RTP: A Transport
Protocol for Real-Time Applications" STD 64 RFC 3550 DOI 10.17487/RFC3550

<https://www.rfc-editor.org/info/rfc3550>

Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K. Norrman "The Secure
Real-time Transport Protocol (SRTP)" RFC 3711 DOI 10.17487/RFC3711

<https://www.rfc-editor.org/info/rfc3711>

Roach, A.B. "WebRTC Video Processing and Codec Requirements" RFC 7742 DOI
10.17487/RFC7742 <https://www.rfc-editor.org/info/rfc7742>

Valin, JM. and C. Bran "WebRTC Audio Codec and Processing Requirements"
RFC 7874 DOI 10.17487/RFC7874 <https://www.rfc-editor.org/info/
rfc7874>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Keranen, A., Holmberg, C., and J. Rosenberg "Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal" RFC 8445 DOI 10.17487/RFC8445 <https://www.rfc-
editor.org/info/rfc8445>

Rescorla, E. "Security Considerations for WebRTC" RFC 8826 DOI 10.17487/
RFC8826 <https://www.rfc-editor.org/info/rfc8826>

Rescorla, E. "WebRTC Security Architecture" RFC 8827 DOI 10.17487/RFC8827
<https://www.rfc-editor.org/info/rfc8827>

Uberti, J., Jennings, C., and E. Rescorla, Ed. "JavaScript Session Establishment
Protocol (JSEP)" RFC 8829 DOI 10.17487/RFC8829 <https://
www.rfc-editor.org/info/rfc8829>

Jesup, R., Loreto, S., and M. Tüxen "WebRTC Data Channels" RFC 8831 DOI
10.17487/RFC8831 <https://www.rfc-editor.org/info/rfc8831>

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 14

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc3550
https://www.rfc-editor.org/info/rfc3711
https://www.rfc-editor.org/info/rfc7742
https://www.rfc-editor.org/info/rfc7874
https://www.rfc-editor.org/info/rfc7874
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8826
https://www.rfc-editor.org/info/rfc8827
https://www.rfc-editor.org/info/rfc8829
https://www.rfc-editor.org/info/rfc8829
https://www.rfc-editor.org/info/rfc8831

[RFC8832]

[RFC8834]

[RFC8835]

[W3C.WD-mediacapture-streams]

[W3C.WD-webrtc]

[HTML5]

[RFC3261]

[RFC3361]

[RFC3935]

[RFC5245]

[RFC5761]

[RFC6120]

,
, , , January 2021,

.

,
, , , January 2021,

.

, , , ,
January 2021, .

,
, ,

.

,
, ,

.

12.2. Informative References

, , January 2021,
.

, , ,
, June 2002, .

,
, , ,

August 2002, .

, , , ,
, October 2004, .

,
,

, , April 2010,
.

,
, , , April 2010,

.

, ,
, , March 2011,

.

Jesup, R., Loreto, S., and M. Tüxen "WebRTC Data Channel Establishment
Protocol" RFC 8832 DOI 10.17487/RFC8832 <https://www.rfc-
editor.org/info/rfc8832>

Perkins, C., Westerlund, M., and J. Ott "Media Transport and Use of RTP in
WebRTC" RFC 8834 DOI 10.17487/RFC8834 <https://www.rfc-
editor.org/info/rfc8834>

Alvestrand, H. "Transports for WebRTC" RFC 8835 DOI 10.17487/RFC8835
<https://www.rfc-editor.org/info/rfc8835>

Jennings, C., Aboba, B., Bruaroey, J-I., and H. Boström
"Media Capture and Streams" W3C Candidate Recommendation <https://
www.w3.org/TR/mediacapture-streams/>

Jennings, C., Boström, H., and J-I. Bruaroey "WebRTC 1.0: Real-time
Communication Between Browsers" W3C Proposed Recommendation <https://
www.w3.org/TR/webrtc/>

WHATWG "HTML - Living Standard" <https://
html.spec.whatwg.org/>

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,
Handley, M., and E. Schooler "SIP: Session Initiation Protocol" RFC 3261 DOI
10.17487/RFC3261 <https://www.rfc-editor.org/info/rfc3261>

Schulzrinne, H. "Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option
for Session Initiation Protocol (SIP) Servers" RFC 3361 DOI 10.17487/RFC3361

<https://www.rfc-editor.org/info/rfc3361>

Alvestrand, H. "A Mission Statement for the IETF" BCP 95 RFC 3935 DOI
10.17487/RFC3935 <https://www.rfc-editor.org/info/rfc3935>

Rosenberg, J. "Interactive Connectivity Establishment (ICE): A Protocol for
Network Address Translator (NAT) Traversal for Offer/Answer Protocols" RFC
5245 DOI 10.17487/RFC5245 <https://www.rfc-editor.org/info/
rfc5245>

Perkins, C. and M. Westerlund "Multiplexing RTP Data and Control Packets on a
Single Port" RFC 5761 DOI 10.17487/RFC5761 <https://www.rfc-
editor.org/info/rfc5761>

Saint-Andre, P. "Extensible Messaging and Presence Protocol (XMPP): Core" RFC
6120 DOI 10.17487/RFC6120 <https://www.rfc-editor.org/info/
rfc6120>

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 15

https://www.rfc-editor.org/info/rfc8832
https://www.rfc-editor.org/info/rfc8832
https://www.rfc-editor.org/info/rfc8834
https://www.rfc-editor.org/info/rfc8834
https://www.rfc-editor.org/info/rfc8835
https://www.w3.org/TR/mediacapture-streams/
https://www.w3.org/TR/mediacapture-streams/
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3361
https://www.rfc-editor.org/info/rfc3935
https://www.rfc-editor.org/info/rfc5245
https://www.rfc-editor.org/info/rfc5245
https://www.rfc-editor.org/info/rfc5761
https://www.rfc-editor.org/info/rfc5761
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6120

[RFC6501]

[RFC7478]

[RFC8155]

[RFC8837]

[RFC8838]

[RFC8843]

[WebRTC-Gateways]

[XEP-0124]

[XEP-0166]

,
, ,

, March 2012, .

,
, , , March 2015,

.

,
, , , April 2017,

.

,
, ,

, January 2021, .

,
,

, , January 2021,
.

,
, , ,

January 2021, .

, ,
, , 21 January 2016,

.

,
, ,

November 2016, .

,
, , September 2018,

.

Novo, O., Camarillo, G., Morgan, D., and J. Urpalainen "Conference Information
Data Model for Centralized Conferencing (XCON)" RFC 6501 DOI 10.17487/
RFC6501 <https://www.rfc-editor.org/info/rfc6501>

Holmberg, C., Hakansson, S., and G. Eriksson "Web Real-Time Communication
Use Cases and Requirements" RFC 7478 DOI 10.17487/RFC7478
<https://www.rfc-editor.org/info/rfc7478>

Patil, P., Reddy, T., and D. Wing "Traversal Using Relays around NAT (TURN)
Server Auto Discovery" RFC 8155 DOI 10.17487/RFC8155 <https://
www.rfc-editor.org/info/rfc8155>

Jones, P., Dhesikan, S., Jennings, C., and D. Druta "Differentiated Services Code
Point (DSCP) Packet Markings for WebRTC QoS" RFC 8837 DOI 10.17487/
RFC8837 <https://www.rfc-editor.org/info/rfc8837>

Ivov, E., Uberti, J., and P. Saint-Andre "Trickle ICE: Incremental Provisioning of
Candidates for the Interactive Connectivity Establishment (ICE) Protocol" RFC
8838 DOI 10.17487/RFC8838 <https://www.rfc-editor.org/info/
rfc8838>

Holmberg, C., Alvestrand, H., and C. Jennings "Negotiating Media Multiplexing
Using the Session Description Protocol (SDP)" RFC 8843 DOI 10.17487/RFC8843

<https://www.rfc-editor.org/info/rfc8843>

Alvestrand, H. and U. Rauschenbach "WebRTC Gateways" Work in
Progress Internet-Draft, draft-ietf-rtcweb-gateways-02 <https://
tools.ietf.org/html/draft-ietf-rtcweb-gateways-02>

Paterson, I., Smith, D., Saint-Andre, P., Moffitt, J., Stout, L., and W. Tilanus
"Bidirectional-streams Over Synchronous HTTP (BOSH)" XSF XEP 0124

<https://xmpp.org/extensions/xep-0124.html>

Ludwig, S., Beda, J., Saint-Andre, P., McQueen, R., Egan, S., and J. Hildebrand
"Jingle" XSF XEP 0166 <https://xmpp.org/extensions/
xep-0166.html>

Acknowledgements
The number of people who have taken part in the discussions surrounding this document are too
numerous to list, or even to identify. The people listed below have made special, identifiable
contributions; this does not mean that others' contributions are less important.

Thanks to , , , , and , who
offered technical contributions to various draft versions of this document.

Thanks to , , and others at Skype for the ASCII drawings in
Section 3.

Cary Bran Cullen Jennings Colin Perkins Magnus Westerlund Jörg Ott

Jonathan Rosenberg Matthew Kaufman

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 16

https://www.rfc-editor.org/info/rfc6501
https://www.rfc-editor.org/info/rfc7478
https://www.rfc-editor.org/info/rfc8155
https://www.rfc-editor.org/info/rfc8155
https://www.rfc-editor.org/info/rfc8837
https://www.rfc-editor.org/info/rfc8838
https://www.rfc-editor.org/info/rfc8838
https://www.rfc-editor.org/info/rfc8843
https://tools.ietf.org/html/draft-ietf-rtcweb-gateways-02
https://tools.ietf.org/html/draft-ietf-rtcweb-gateways-02
https://xmpp.org/extensions/xep-0124.html
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0166.html

Thanks to , , , , ,
, , , , , ,

, and for document review.

Alissa Cooper Björn Höhrmann Colin Perkins Colton Shields Eric Rescorla Heath
Matlock Henry Sinnreich Justin Uberti Keith Drage Magnus Westerlund Olle E. Johansson
Sean Turner Simon Leinen

Author's Address
Harald T. Alvestrand
Google
Kungsbron 2
SE- 11122 Stockholm
Sweden

 harald@alvestrand.no Email:

RFC 8825 WebRTC Overview January 2021

Alvestrand Standards Track Page 17

mailto:harald@alvestrand.no

	RFC 8825
	Overview: Real-Time Protocols for Browser-Based Applications
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Principles and Terminology
	2.1. Goals of This Document
	2.2. Relationship between API and Protocol
	2.3. On Interoperability and Innovation
	2.4. Terminology

	3. Architecture and Functionality Groups
	4. Data Transport
	5. Data Framing and Securing
	6. Data Formats
	7. Connection Management
	8. Presentation and Control
	9. Local System Support Functions
	10. IANA Considerations
	11. Security Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Acknowledgements
	Author's Address

 Overview: Real-Time Protocols for Browser-Based Applications

 Google

 Kungsbron 2
 Stockholm

 11122
 Sweden

 harald@alvestrand.no

 This document gives an overview and context of a protocol suite
 intended for use with real-time applications that can be deployed in
 browsers -- "real-time communication on the Web".
 It intends to serve as a starting and coordination point to make sure
 that (1) all the parts that are needed to achieve this goal are findable
 and (2) the parts that belong in the Internet protocol suite are fully
 specified and on the right publication track.
 This document is an applicability statement -- it does not itself
 specify any protocol, but it specifies which other specifications
 implementations are supposed to follow to be compliant with Web
 Real-Time Communication (WebRTC).

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Principles and Terminology

 . Goals of This Document

 . Relationship between API and Protocol

 . On Interoperability and Innovation

 . Terminology

 . Architecture and Functionality Groups

 . Data Transport

 . Data Framing and Securing

 . Data Formats

 . Connection Management

 . Presentation and Control

 . Local System Support Functions

 . IANA Considerations

 . Security Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Author's Address

 Introduction
 The Internet was, from very early in its lifetime, considered a
 possible vehicle for the deployment of real-time, interactive
 applications -- with the most easily imaginable being audio conversations
 (aka "Internet telephony") and video conferencing.
 The first attempts to build such applications were dependent on special networks,
 special hardware, and custom-built software, often at very high prices or
 of low quality, placing great demands on the infrastructure.

 As the available bandwidth has increased, and as processors and other
 hardware have become ever faster, the barriers to participation have
 decreased, and it has become possible to deliver a satisfactory
 experience on commonly available computing hardware.
 Still, there are a number of barriers to the ability to communicate
 universally -- one of these is that there is, as of yet, no single set of
 communication protocols that all agree should be made available for
 communication; another is the sheer lack of universal identification
 systems (such as is served by telephone numbers or email addresses in
 other communications systems).
 Development of "The Universal Solution" has, however, proved hard.
 The last few years have also seen a new platform rise for deployment
 of services: the browser-embedded application, or "web application". It
 turns out that as long as the browser platform has the necessary
 interfaces, it is possible to deliver almost any kind of service
 on it.
 Traditionally, these interfaces have been delivered by plugins, which
 had to be downloaded and installed separately from the browser; in the
 development of HTML5 , application developers see much promise in the
 possibility of making those interfaces available in a standardized way
 within the browser.
 This memo describes a set of building blocks that (1) can be made
 accessible and controllable through a JavaScript API in a browser and
 (2) together form a sufficient set of functions to allow the use of
 interactive audio and video in applications that communicate directly
 between browsers across the Internet. The resulting protocol suite is
 intended to enable all the applications that are described as required
 scenarios in the WebRTC "use cases" document .
 Other efforts -- for instance, the W3C Web Real-Time Communications,
 Web Applications Security, and Devices and Sensors Working Groups -- focus
 on making standardized APIs and interfaces available, within or
 alongside the HTML5 effort, for those functions. This memo concentrates
 on specifying the protocols and subprotocols that are needed to specify
 the interactions over the network.
 Operators should note that deployment of WebRTC will result in a
 change in the nature of signaling for real-time media on the network
 and may result in a shift in the kinds of devices used to create and
 consume such media. In the case of signaling, WebRTC session setup
 will typically occur over TLS-secured web technologies using
 application-specific protocols. Operational techniques that involve
 inserting network elements to interpret the Session Description Protocol
 (SDP) -- through either (1) the endpoint asking the network for a SIP server or (2) the transparent
 insertion of SIP Application Layer Gateways (ALGs) -- will not work
 with such signaling. In the case of networks using cooperative
 endpoints, the approaches defined in may serve
 as a suitable replacement for . The increase in
 browser-based communications may also lead to a shift away from
 dedicated real-time-communications hardware, such as SIP
 desk phones. This will diminish the efficacy of operational
 techniques that place dedicated real-time devices on their own
 network segment, address range, or VLAN for purposes such as
 applying traffic filtering and QoS. Applying the markings
 described in may be
 appropriate replacements for such techniques.
 While this document formally relies on ,
at the time of its publication, the majority of WebRTC implementations
support the version of Interactive Connectivity Establishment (ICE)
that is described in and use a
pre-standard version of the Trickle ICE mechanism described in
 . The "ice2" attribute defined in can be used to detect the version in use by a
remote endpoint and to provide a smooth transition from the older
specification to the newer one.
 This memo uses the term "WebRTC" (note the case used) to refer to the
 overall effort consisting of both IETF and W3C efforts.

 Principles and Terminology

 Goals of This Document
 The goal of the WebRTC protocol specification is to specify a set
 of protocols that, if all are implemented, will allow an
 implementation to communicate with another implementation using audio,
 video, and data sent along the most direct possible path between the
 participants.
 This document is intended to serve as the roadmap to the WebRTC
 specifications. It defines terms used by other parts of the WebRTC
 protocol specifications, lists references to other specifications that
 don't need further elaboration in the WebRTC context, and gives
 pointers to other documents that form part of the WebRTC suite.
 By reading this document and the documents it refers to, it should
 be possible to have all information needed to implement a
 WebRTC-compatible implementation.

 Relationship between API and Protocol
 The total WebRTC effort consists of two major parts, each
 consisting of multiple documents:

 A protocol specification, done in the IETF
 A JavaScript API specification, defined in a series of W3C
 documents

 Together, these two specifications aim to provide an
 environment where JavaScript embedded in any page, when suitably
 authorized by its user, is able to set up communication using audio,
 video, and auxiliary data, as long as the browser supports these
 specifications. The browser environment does not constrain the types of
 application in which this functionality can be used.
 The protocol specification does not assume that all implementations
 implement this API; it is not intended to be necessary for
 interoperation to know whether the entity one is communicating with is
 a browser or another device implementing the protocol specification.
 The goal of cooperation between the protocol specification and the
 API specification is that for all options and features of the protocol
 specification, it should be clear which API calls to make to exercise
 that option or feature; similarly, for any sequence of API calls, it
 should be clear which protocol options and features will be invoked.
 Both are subject to constraints of the implementation, of course.
 The following terms are used across the documents specifying the
 WebRTC suite, with the specific meanings given here. Not all terms are
 used in this document. Other terms are used per their commonly used
 meanings.

 Agent:
 Undefined term. See "SDP Agent" and "ICE
 Agent".
 Application Programming Interface (API):
 A
 specification of a set of calls and events, usually tied to a
 programming language or an abstract formal specification such as
 WebIDL, with its defined semantics.
 Browser:
 Used synonymously with "interactive user
 agent" as defined in .
 See also the "WebRTC Browser" (aka "WebRTC User Agent") definition below.
 Data Channel:
 An abstraction that allows data to be
 sent between WebRTC endpoints in the form of messages. Two
 endpoints can have multiple data channels between them.
 ICE Agent:
 An implementation of the Interactive Connectivity Establishment (ICE) protocol . An ICE Agent may also
 be an SDP Agent, but there exist ICE Agents that do not use SDP
 (for instance, those that use Jingle
).
 Interactive:
 Communication between multiple parties,
 where the expectation is that an action from one party can cause a
 reaction by another party, and the reaction can be observed by the
 first party, where the total time required for the
 action/reaction/observation is on the order of no more than
 hundreds of milliseconds.
 Media:
 Audio and video content. Not to be confused
 with "transmission media" such as wires.
 Media Path:
 The path that media data follows from
 one WebRTC endpoint to another.
 Protocol:
 A specification of a set of data units,
 their representation, and rules for their transmission, with their
 defined semantics. A protocol is usually thought of as going
 between systems.
 Real-Time Media:
 Media where the generation
 and display of content are intended to occur closely together in
 time (on the order of no more than hundreds of milliseconds).
 Real-time media can be used to support interactive
 communication.
 SDP Agent:
 The protocol implementation involved in
 the Session Description Protocol (SDP) offer/answer exchange, as
 defined in .
 Signaling:
 Communication that happens in order to
 establish, manage, and control media paths and data paths.
 Signaling Path:
 The communication channels used
 between entities participating in signaling to transfer signaling.
 There may be more entities in the signaling path than in the media
 path.
 WebRTC Browser (also called a "WebRTC User Agent" or "WebRTC UA"):
 Something that conforms to both the protocol
 specification and the JavaScript API cited above.
 WebRTC Non-Browser:
 Something that conforms to
 the protocol specification but does not claim to implement the
 JavaScript API. This can also be called a "WebRTC device" or
 "WebRTC native application".
 WebRTC Endpoint:
 Either a WebRTC browser or a
 WebRTC non-browser. It conforms to the protocol specification.
 WebRTC-Compatible Endpoint:
 An endpoint that is able
 to successfully communicate with a WebRTC endpoint but may fail to
 meet some requirements of a WebRTC endpoint. This may limit where
 in the network such an endpoint can be attached or may limit the
 security guarantees that it offers to others. It is not
 constrained by this specification; when it is mentioned at all, it
 is to note the implications on WebRTC-compatible endpoints of the
 requirements placed on WebRTC endpoints.
 WebRTC Gateway:
 A WebRTC-compatible endpoint that
 mediates media traffic to non-WebRTC entities.

 All WebRTC browsers are WebRTC endpoints, so any requirement
 on a WebRTC endpoint also applies to a WebRTC browser.
 A WebRTC non-browser may be capable of hosting applications in a
 way that is similar to the way in which a browser can host JavaScript
 applications, typically by offering APIs in other languages. For
 instance, it may be implemented as a library that offers a C++ API
 intended to be loaded into applications. In this case,
 security considerations similar to those for JavaScript may be needed; however,
 since such APIs are not defined or referenced here, this document
 cannot give any specific rules for those interfaces.
 WebRTC gateways are described in a separate document .

 On Interoperability and Innovation
 The "Mission statement for the IETF" states
 that "The benefit of a standard to the Internet is in interoperability
 - that multiple products implementing a standard are able to work
 together in order to deliver valuable functions to the Internet's
 users."
 Communication on the Internet frequently occurs in two phases:

 Two parties communicate, through some mechanism, what
 functionality they are both able to support.
 They use that shared communicative functionality to
 communicate or, failing to find anything in common, give up on
 communication.

 There are often many choices that can be made for
 communicative functionality; the history of the Internet is rife with
 the proposal, standardization, implementation, and success or failure
 of many types of options, in all sorts of protocols.
 The goal of having a mandatory-to-implement function set is to
 prevent negotiation failure, not to preempt or prevent
 negotiation.
 The presence of a mandatory-to-implement function set serves as a
 strong changer of the marketplace of deployment in that it gives a
 guarantee that you can communicate successfully as long as (1) you conform to a specification and
 (2) the other party is willing to accept communication at the base level of
 that specification.
 The alternative (that is, not having a mandatory-to-implement
 function) does not mean that you cannot communicate; it merely
 means that in order to be part of the communications partnership,
 you have to implement the standard "and then some". The "and then some" is usually called a
 profile of some sort; in the version most antithetical to the Internet
 ethos, that "and then some" consists of having to use a specific
 vendor's product only.

 Terminology
 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL",
 " SHALL NOT", " SHOULD",
 " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are
 to be interpreted as described in BCP 14
 when, and only when, they appear in all capitals,
 as shown here.

 Architecture and Functionality Groups
 For browser-based applications, the model for real-time support does
 not assume that the browser will contain all the functions needed for
 an application such as a telephone or a video conference. The vision is
 that the browser will have the functions needed for a web application,
 working in conjunction with its backend servers, to implement these
 functions.
 This means that two vital interfaces need specification: the
 protocols that browsers use to talk to each other, without any
 intervening servers; and the APIs that are offered for a JavaScript
 application to take advantage of the browser's functionality.

 Browser Model

 +------------------------+ On-the-wire
 | | Protocols
 | Servers |--------->
 | |
 | |
 +------------------------+
 ^
 |
 |
 | HTTPS/
 | WebSockets
 |
 |
 +----------------------------+
 | JavaScript/HTML/CSS |
 +----------------------------+
 Other ^ ^ RTC
 APIs | | APIs
 +---|-----------------|------+
 | | | |
 | +---------+|
 | | Browser || On-the-wire
 | Browser | RTC || Protocols
 | | Function|----------->
 | | ||
 | | ||
 | +---------+|
 +---------------------|------+
 |
 V
 Native OS Services

 Note that HTTPS and WebSockets are also offered to the JavaScript
 application through browser APIs.
 As for all protocol and API specifications, there is no restriction
 that the protocols can only be used to talk to another browser; since
 they are fully specified, any endpoint that implements the protocols
 faithfully should be able to interoperate with the application running
 in the browser.
 A commonly imagined model of deployment is depicted in . ("JS" stands for JavaScript.)

 Browser RTC Trapezoid

 +-----------+ +-----------+
 | Web | | Web |
 | | | |
 | |------------------| |
 | Server | Signaling Path | Server |
 | | | |
 +-----------+ +-----------+
 / \
 / \ Application-defined
 / \ over
 / \ HTTPS/WebSockets
 / Application-defined over \
 / HTTPS/WebSockets \
 / \
 +-----------+ +-----------+
 |JS/HTML/CSS| |JS/HTML/CSS|
 +-----------+ +-----------+
 +-----------+ +-----------+
Browser	--------------------------------	Browser
	Media Path	
 +-----------+ +-----------+

 In this drawing, the critical part to note is that the media path
 ("low path") goes directly between the browsers, so it has to be
 conformant to the specifications of the WebRTC protocol suite; the
 signaling path ("high path") goes via servers that can modify, translate,
 or manipulate the signals as needed.
 If the two web servers are operated by different entities, the
 inter-server signaling mechanism needs to be agreed upon, by either
 standardization or other means of agreement. Existing protocols
 (e.g., SIP or the Extensible
 Messaging and Presence Protocol (XMPP))
 could be used between servers, while either a standards-based or
 proprietary protocol could be used between the browser and the web
 server.
 For example, if both operators' servers implement SIP, SIP could be
 used for communication between servers, along with either a standardized
 signaling mechanism (e.g., SIP over WebSockets) or a proprietary
 signaling mechanism used between the application running in the browser
 and the web server. Similarly, if both operators' servers implement
 XMPP, XMPP could be used
 for communication between XMPP servers, with either a standardized
 signaling mechanism (e.g., XMPP over WebSockets or Bidirectional-streams
 Over Synchronous HTTP (BOSH)) or a proprietary signaling mechanism used between the
 application running in the browser and the web server.
 The choice of protocols for client-server and inter-server
 signaling, and the definition of the translation between them, are outside
 the scope of the WebRTC protocol suite described in this document.
 The functionality groups that are needed in the browser can be
 specified, more or less from the bottom up, as:

 Data transport:
 For example, TCP and UDP, and the means to securely set up
 connections between entities, as well as the functions for deciding
 when to send data: congestion management, bandwidth estimation, and
 so on.
 Data framing:
 RTP, the Stream Control Transmission Protocol (SCTP), DTLS, and other data formats that serve
 as containers, and their functions for data confidentiality and
 integrity.
 Data formats:
 Codec specifications, format specifications, and
 functionality specifications for the data passed between systems.
 Audio and video codecs, as well as formats for data and document
 sharing, belong in this category. In order to make use of data
 formats, a way to describe them (e.g., a session description) is
 needed.
 Connection management:
 For example, setting up connections, agreeing on data
 formats, changing data formats during the duration of a call. SDP,
 SIP, and Jingle/XMPP belong in this category.
 Presentation and control:
 What needs to happen in order to ensure
 that interactions behave in an unsurprising manner. This can
 include floor control, screen layout, voice-activated image
 switching, and other such functions, where part of the system
 requires cooperation between parties. Centralized Conferencing
 (XCON) and Cisco/Tandberg's Telepresence Interoperability Protocol
 (TIP) were some attempts at specifying this kind of functionality;
 many applications have been built without standardized interfaces to
 these functions.
 Local system support functions:
 Functions that need not be
 specified uniformly, because each participant may implement these
 functions as they choose, without affecting the bits
 on the wire in a way that others have to be cognizant of. Examples
 in this category include echo cancellation (some forms of it), local
 authentication and authorization mechanisms, OS access control, and
 the ability to do local recording of conversations.

 Within each functionality group, it is important to preserve
 both freedom to innovate and the ability for global communication.
 Freedom to innovate is helped by doing the specification in terms of
 interfaces, not implementation; any implementation able to communicate
 according to the interfaces is a valid implementation. The ability to
 communicate globally is helped by both (1) having core specifications be
 unencumbered by IPR issues and (2) having the formats and protocols be
 fully enough specified to allow for independent implementation.
 One can think of the first three groups as forming a "media transport
 infrastructure" and of the last three groups as forming a "media
 service". In many contexts, it makes sense to use a common specification
 for the media transport infrastructure, which can be embedded in
 browsers and accessed using standard interfaces, and "let a thousand
 flowers bloom" in the "media service" layer; to achieve interoperable
 services, however, at least the first five of the six groups need to be
 specified.

 Data Transport
 Data transport refers to the sending and receiving of data over the
 network interfaces, the choice of network-layer addresses at each end of
 the communication, and the interaction with any intermediate entities
 that handle the data but do not modify it (such as Traversal Using
 Relays around NAT (TURN) relays).
 It includes necessary functions for congestion control,
 retransmission, and in-order delivery.
 WebRTC endpoints MUST implement the transport protocols described in
 .

 Data Framing and Securing
 The format for media transport is RTP .
 Implementation of the Secure Real-time Transport Protocol (SRTP) is REQUIRED for all
 implementations.
 The detailed considerations for usage of functions from RTP and SRTP
 are given in . The security
 considerations for the WebRTC use case are provided in , and the resulting security
 functions are described in .
 Considerations for the transfer of data that is not in RTP format are
 described in , and a
 supporting protocol for establishing individual data channels is
 described in . WebRTC
 endpoints MUST implement these two specifications.
 WebRTC endpoints MUST implement , , , and the requirements they
 include.

 Data Formats
 The intent of this specification is to allow each communications
 event to use the data formats that are best suited for that particular
 instance, where a format is supported by both sides of the connection.
 However, a minimum standard is greatly helpful in order to ensure that
 communication can be achieved. This document specifies a minimum
 baseline that will be supported by all implementations of this
 specification and leaves further codecs to be included at the will of
 the implementer.
 WebRTC endpoints that support audio and/or video MUST implement the
 codecs and profiles required in and .

 Connection Management
 The methods, mechanisms, and requirements for setting up, negotiating,
 and tearing down connections comprise a large subject, and one where it is
 desirable to have both interoperability and freedom to innovate.
 The following principles apply:

 The WebRTC media negotiations will be capable of representing the
 same SDP offer/answer semantics that are
 used in SIP, in such a way that it is possible to build a
 signaling gateway between SIP and the WebRTC media negotiation.
 It will be possible to gateway between legacy SIP devices that
 support ICE and appropriate RTP/SDP mechanisms, codecs, and
 security mechanisms without using a media gateway. A signaling
 gateway to convert between the signaling on the web side and the SIP
 signaling may be needed.
 When an SDP for a new codec is specified, no other standardization
 should be required for it to be possible to use that codec in the web
 browsers. Adding new codecs that might have new SDP parameters should
 not change the APIs between the browser and the JavaScript application. As
 soon as the browsers support the new codecs, old applications
 written before the codecs were specified should automatically be
 able to use the new codecs where appropriate, with no changes to the
 JavaScript applications.

 The particular choices made for WebRTC, and their implications
 for the API offered by a browser implementing WebRTC, are described in
 .
 WebRTC browsers MUST implement .
 WebRTC endpoints MUST implement those functions
 described in that relate to the network layer (e.g., BUNDLE , "rtcp-mux" , and Trickle ICE), but these endpoints do not need to support the API
 functionality described in .

 Presentation and Control
 The most important part of control is the users' control over the
 browser's interaction with input/output devices and communications
 channels. It is important that the users have some way of figuring out
 where their audio, video, or texting is being sent; for what purported
 reason; and what guarantees are made by the parties that form part of
 this control channel. This is largely a local function between the
 browser, the underlying operating system, and the user interface; this is
 specified in the peer connection API and the media capture API .
 WebRTC browsers MUST implement these two specifications.

 Local System Support Functions
 These functions are characterized by the fact that the quality of an implementation strongly influences the user experience, but the exact
 algorithm does not need coordination. In some cases (for instance, echo
 cancellation, as described below), the overall system definition may
 need to specify that the overall system needs to have some
 characteristics for which these facilities are useful, without requiring
 them to be implemented a certain way.
 Local functions include echo cancellation; volume control; camera
 management, including focus, zoom, and pan/tilt controls (if available); and
 more.
 One would want to see certain parts of the system conform to certain
 properties; for instance:

 Echo cancellation should be good enough to achieve the
 suppression of acoustical feedback loops below a perceptually
 noticeable level.
 Privacy concerns MUST be satisfied; for instance, if remote
 control of a camera is offered, the APIs should be available to let
 the local participant figure out who's controlling the camera and
 possibly decide to revoke the permission for camera usage.
 Automatic Gain Control (AGC), if present, should normalize a speaking
 voice into a reasonable dB range.

 The requirements on WebRTC systems with regard to audio
 processing are found in ,
and that document includes more
 guidance about echo cancellation and AGC; the APIs for control
 of local devices are found in .
 WebRTC endpoints MUST implement the processing functions in . (Together with the requirement in , this means that WebRTC endpoints MUST implement the
 whole document.)

 IANA Considerations
 This document has no IANA actions.

 Security Considerations
 Security of the web-enabled real-time communications comes in several
 pieces:

 Security of the components:
 The browsers, and other servers
 involved. The most target-rich environment here is probably the
 browser; the aim here should be that the introduction of these
 components introduces no additional vulnerability.
 Security of the communication channels:
 It should be easy for participants to reassure themselves of the
	 security of their communication
 -- by verifying the crypto parameters of the links that they
 participate in, and to get reassurances from the other parties to
 the communication that those parties promise that appropriate measures are
 taken.
 Security of the partners' identities:
 Verifying that the
 participants are who they say they are (when positive identification
 is appropriate) or that their identities cannot be uncovered (when
 anonymity is a goal of the application).

 The security analysis, and the requirements derived from that
 analysis, are contained in .
 It is also important to read the security sections of and .

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 An Offer/Answer Model with Session Description Protocol (SDP)

 This document defines a mechanism by which two entities can make use of the Session Description Protocol (SDP) to arrive at a common view of a multimedia session between them. In the model, one participant offers the other a description of the desired session from their perspective, and the other participant answers with the desired session from their perspective. This offer/answer model is most useful in unicast sessions where information from both participants is needed for the complete view of the session. The offer/answer model is used by protocols like the Session Initiation Protocol (SIP). [STANDARDS-TRACK]

 RTP: A Transport Protocol for Real-Time Applications

 This memorandum describes RTP, the real-time transport protocol. RTP provides end-to-end network transport functions suitable for applications transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network services. RTP does not address resource reservation and does not guarantee quality-of- service for real-time services. The data transport is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks, and to provide minimal control and identification functionality. RTP and RTCP are designed to be independent of the underlying transport and network layers. The protocol supports the use of RTP-level translators and mixers. Most of the text in this memorandum is identical to RFC 1889 which it obsoletes. There are no changes in the packet formats on the wire, only changes to the rules and algorithms governing how the protocol is used. The biggest change is an enhancement to the scalable timer algorithm for calculating when to send RTCP packets in order to minimize transmission in excess of the intended rate when many participants join a session simultaneously. [STANDARDS-TRACK]

 The Secure Real-time Transport Protocol (SRTP)

 This document describes the Secure Real-time Transport Protocol (SRTP), a profile of the Real-time Transport Protocol (RTP), which can provide confidentiality, message authentication, and replay protection to the RTP traffic and to the control traffic for RTP, the Real-time Transport Control Protocol (RTCP). [STANDARDS-TRACK]

 WebRTC Video Processing and Codec Requirements

 This specification provides the requirements and considerations for WebRTC applications to send and receive video across a network. It specifies the video processing that is required as well as video codecs and their parameters.

 WebRTC Audio Codec and Processing Requirements

 This document outlines the audio codec and processing requirements for WebRTC endpoints.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal

 This document describes a protocol for Network Address Translator (NAT) traversal for UDP-based communication. This protocol is called Interactive Connectivity Establishment (ICE). ICE makes use of the Session Traversal Utilities for NAT (STUN) protocol and its extension, Traversal Using Relay NAT (TURN).
 This document obsoletes RFC 5245.

 Security Considerations for WebRTC

 WebRTC Security Architecture

 JavaScript Session Establishment Protocol (JSEP)

 WebRTC Data Channels

 WebRTC Data Channel Establishment Protocol

 Media Transport and Use of RTP in WebRTC

 Transports for WebRTC

 Media Capture and Streams

 W3C Candidate Recommendation

 WebRTC 1.0: Real-time Communication Between Browsers

 W3C Proposed Recommendation

 Informative References

 HTML - Living Standard

 WHATWG

 SIP: Session Initiation Protocol

 This document describes Session Initiation Protocol (SIP), an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences. [STANDARDS-TRACK]

 Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option for Session Initiation Protocol (SIP) Servers

 A Mission Statement for the IETF

 This memo gives a mission statement for the IETF, tries to define the terms used in the statement sufficiently to make the mission statement understandable and useful, argues why the IETF needs a mission statement, and tries to capture some of the debate that led to this point. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols

 This document describes a protocol for Network Address Translator (NAT) traversal for UDP-based multimedia sessions established with the offer/answer model. This protocol is called Interactive Connectivity Establishment (ICE). ICE makes use of the Session Traversal Utilities for NAT (STUN) protocol and its extension, Traversal Using Relay NAT (TURN). ICE can be used by any protocol utilizing the offer/answer model, such as the Session Initiation Protocol (SIP). [STANDARDS-TRACK]

 Multiplexing RTP Data and Control Packets on a Single Port

 This memo discusses issues that arise when multiplexing RTP data packets and RTP Control Protocol (RTCP) packets on a single UDP port. It updates RFC 3550 and RFC 3551 to describe when such multiplexing is and is not appropriate, and it explains how the Session Description Protocol (SDP) can be used to signal multiplexed sessions. [STANDARDS-TRACK]

 Extensible Messaging and Presence Protocol (XMPP): Core

 The Extensible Messaging and Presence Protocol (XMPP) is an application profile of the Extensible Markup Language (XML) that enables the near-real-time exchange of structured yet extensible data between any two or more network entities. This document defines XMPP's core protocol methods: setup and teardown of XML streams, channel encryption, authentication, error handling, and communication primitives for messaging, network availability ("presence"), and request-response interactions. This document obsoletes RFC 3920. [STANDARDS-TRACK]

 Conference Information Data Model for Centralized Conferencing (XCON)

 RFC 5239 defines centralized conferencing (XCON) as an association of participants with a central focus. The state of a conference is represented by a conference object. This document defines an XML- based conference information data model to be used for conference objects. A conference information data model is designed to convey information about the conference and about participation in the conference. The conference information data model defined in this document constitutes an extension of the data format specified in the Session Initiation Protocol (SIP) event package for conference State. [STANDARDS-TRACK]

 Web Real-Time Communication Use Cases and Requirements

 This document describes web-based real-time communication use cases. Requirements on the browser functionality are derived from the use cases.
 This document was developed in an initial phase of the work with rather minor updates at later stages. It has not really served as a tool in deciding features or scope for the WG's efforts so far. It is being published to record the early conclusions of the WG. It will not be used as a set of rigid guidelines that specifications and implementations will be held to in the future.

 Traversal Using Relays around NAT (TURN) Server Auto Discovery

 Current Traversal Using Relays around NAT (TURN) server discovery mechanisms are relatively static and limited to explicit configuration. These are usually under the administrative control of the application or TURN service provider, and not the enterprise, ISP, or the network in which the client is located. Enterprises and ISPs wishing to provide their own TURN servers need auto-discovery mechanisms that a TURN client could use with minimal or no configuration. This document describes three such mechanisms for TURN server discovery.
 This document updates RFC 5766 to relax the requirement for mutual authentication in certain cases.

 Differentiated Services Code Point (DSCP) Packet Markings for WebRTC QoS

 Trickle ICE: Incremental Provisioning of Candidates for the Interactive Connectivity Establishment (ICE) Protocol

 Negotiating Media Multiplexing Using the Session Description Protocol (SDP)

 WebRTC Gateways

 This document describes interoperability considerations for a class of WebRTC-compatible endpoints called "WebRTC gateways", which interconnect between WebRTC endpoints and devices that are not WebRTC endpoints.

 Work in Progress

 Bidirectional-streams Over Synchronous HTTP (BOSH)

 ian.paterson@clientside.co.uk

 dizzyd@jabber.org

 stpeter@jabber.org

 jack@chesspark.com

 lance@andyet.com

 winfried@tilanus.com

 Jingle

 scottlu@google.com

 jbeda@google.com

 stpeter@jabber.org

 robert.mcqueen@collabora.co.uk

 seanegan@google.com

 jhildebr@cisco.com

 Acknowledgements
 The number of people who have taken part in the discussions
 surrounding this document are too numerous to list, or even to identify.
 The people listed below have made special, identifiable contributions; this does
 not mean that others' contributions are less important.
 Thanks to , , , , and , who offered technical contributions to various
 draft versions of this document.
 Thanks to , , and others at Skype for
 the ASCII drawings in .
 Thanks to , , ,
 , , , ,
 , ,
 , ,
 , and for document review.

 Author's Address

 Google

 Kungsbron 2
 Stockholm

 11122
 Sweden

 harald@alvestrand.no

