First we load the pcds
package:
Due to geometry invariance of PE- and CS-PCDs for uniform data (which will be the vertices of the PCDs) in any triangle in 2D space, most computations (and if needed data generation and simulations) can be done in the standard equilateral triangle, and for AS-PCD, one can restrict attention to the standard basic triangle. The standard equilateral triangle is \(T_e=T(A,B,C)\) with vertices \(A=(0,0)\), \(B=(1,0)\), and \(C=(1/2,\sqrt{3}/2)\) and the standard basic triangle is \(T_b=T(A,B,C')\) with vertices \(A=(0,0)\), \(B=(1,0)\), and \(C'=(c_1,c_2))\) with \(0 < c_1 \le 1/2\), \(c_2>0\), and \((1-c_1)^2+c_2^2 \le 1\).
Most of the PCD functions we will illustrate in this section are counterparts of the functions in Section “VS1_1_2DArtiData” (i.e. one-interval counterparts of the functions for the multiple-triangle setting). Sometimes we will be focusing on the standard equilateral triangle (for speed and ease of computation).
For more detail on the construction and appealing properties of PCDs in triangles, see Ceyhan (2010) and Ceyhan (2012).
We first choose an arbitrary triangle \(T=T(A,B,C)\) with vertices \(A=(1,1)\), \(B=(2,0)\), and \(C=(1.5,2)\), which happens to be an obtuse triangle, and choose an arbitrary point in the interior of this triangle as the center (to construct the vertex or edge regions).
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-5
set.seed(1)
Xp<-runif.tri(n,Tr)$g #try also Xp<-cbind(runif(n,1,2),runif(n,0,2))
M<-c(1.6,1.2) #try also M<-as.numeric(runif.tri(1,Tr)$g) or M="CC"
Then we generate \(n=\) 5 \(\mathcal{X}\) points inside the triangle \(T\) using the function runif.tri
in pcds
.
\(\mathcal{X}\) points are denoted as Xp
and \(\mathcal{Y}\) points in Section “VS1_1_2DArtiData”
correspond to the vertices of the triangle \(T\).
Hence, if the argument Yp
is used for a function for multiple triangles,
it is replaced with tri
a \(3 \times 2\) matrix in which rows represent the vertices of the triangle
for a function written for a general triangle,
with c1,c2
for a basic triangle,
or omitted for the standard equilateral triangle.
We plot the triangle \(T\) and the \(\mathcal{X}\) points in it using the below code,
and also add the vertex names using the text
function from base R
.
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
plot(Tr,pch=".",xlab="",ylab="",xlim=Xlim,ylim=Ylim+c(0,.1),main="Points in One Triangle")
polygon(Tr)
points(Xp)
#add the vertex names and annotation
txt<-rbind(Tr)
xc<-txt[,1]+c(-.01,.015,.02)
yc<-txt[,2]+c(.02,.02,.02)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
Alternatively, we can use the plotDelaunay.tri
function in pcds
to obtain the same plot by executing plotDelaunay.tri(Xp,Tr,xlab="x",ylab="y")
.
Arc-Slice (AS) proximity region for a point is the intersection of the triangle containing the point
and the circle centered the point with radius being
the minimum distance from the point to the vertices of the triangle.
So, we first check whether a point is inside a circle or not by using the function in.circle
which returns TRUE
if the point is inside the circle, and FALSE
otherwise.
This function takes arguments p,cent,rad,boundary
where
p
is a 2D point to be checked whether it is inside the circle or not,cent
a 2D point in Cartesian coordinates which serves as the center of the circle,rad
a positive real number which serves as the radius of the circle,boundary
a logical parameter (default=TRUE
) to include boundary or not, so if it is TRUE
,
the function checks if the point, p
, lies in the closure of the circle (i.e., interior and
boundary combined); else, it checks if p
lies in the interior of the circle.cent<-c(1,1); rad<-1; p<-c(1.4,1.2) #try also cent<-runif(2); rad<-runif(1); p<-runif(2);
in.circle(p,cent,rad)
p<-c(.4,-.2)
in.circle(p,cent,rad)
#> [1] TRUE
#> [1] FALSE
The circle for an AS proximity region of an \(\mathcal{X}\) point \(x\) is centered at the point \(x\)
with radius being the distance from \(x\) to the closest class \(\mathcal{Y}\) point
(which is the closest vertex of the triangle \(T\) in the one triangle setting).
The radius of a point from one class with respect to points from the other class is provided by the function radius
which takes arguments p,Y
where
p
is the point to find the radius for andY
is the matrix of non-target points.The function also returns the index and coordinates of the class \(\mathcal{Y}\) point closest to the class \(\mathcal{X}\) point.
This function works for points in other dimensions as well.
See ? radius
for further description.
ny<-5
Y<-cbind(runif(ny),runif(ny))
A<-c(1,1);
radius(A,Y)
#> $rad
#> [1] 0.3767951
#>
#> $index.of.clYpnt
#> [1] 4
#>
#> $closest.Ypnt
#> [1] 0.6684667 0.8209463
The radii of points from one class with respect to points from the other class are found by using the function radii
which takes arguments x,y
where
x
is a set of \(d\)-dimensional points for which the radii are computed. Radius of an x
point equals to the
distance to the closest y
point
andy
is a set of \(d\)-dimensional points representing the reference points for the balls. That is, radius
of an x
point is defined as the minimum distance to the y
points.In addition to the radii, the function also returns the indices and coordinates of the class \(\mathcal{Y}\) points closest to the class \(\mathcal{X}\) points.
This function works for points in other dimensions as well.
See ? radii
for further description.
nx<-6
ny<-5
X<-cbind(runif(nx),runif(nx))
Y<-cbind(runif(ny),runif(ny))
Rad<-radii(X,Y)
Rad
#> $radiuses
#> [1] 0.38015546 0.23618472 0.02161322 0.48477828 0.05674010 0.16819521
#>
#> $indices.of.closest.points
#> [1] 4 4 4 4 1 3
#>
#> $closest.points
#> [,1] [,2]
#> [1,] 0.51863426 0.4590657
#> [2,] 0.51863426 0.4590657
#> [3,] 0.51863426 0.4590657
#> [4,] 0.51863426 0.4590657
#> [5,] 0.07067905 0.4068302
#> [6,] 0.31627171 0.2936034
The function NAStri
is used for the construction of AS proximity regions taking the arguments
p
the point for which the AS proximity region is to be found,tri
the support triangle,M
is the center to construct the vertex regions with defaultM="CC"
(i.e. the circumcenter),rv
the index of the vertex regions that the point p
resides in with default rv=NULL
and dec
a positive integer the number of decimals (default is 4) to round the
barycentric coordinates when checking whether the end points fall on the boundary of the triangle tri
or not.NAStri
returns the proximity region as end points of the straight line segments on the boundary of the proximity region
(which also fall on the boundary of the triangle),
the end points of the arc slices which are the parts of the defining circle falling in the interior of the triangle
and the angles between the vectors joining P
and the end points of the arc slices and the horizontal line crossing the point P
.
It is also possible to specify the index of the vertex region for the point P
with the argument rv=k
for \(k=1,2,3\),
where \(k\) refers to the vertex in \(k\)-th row for the triangle Tr
(but this must be computed before such as in the code Rv<-rel.vert.triCC(P1,Tr)$rv; NAStri(P1,Tr,M,Rv)
and it must be compatible with
the vertex region for the point P
).
P<-c(1.8,.5)
NAStri(P,Tr,M)
#> $L
#> [,1] [,2]
#> [1,] 2 0
#> [2,] 2 0
#>
#> $R
#> [,1] [,2]
#> [1,] 1.741176 1.035294
#> [2,] 1.300000 0.700000
#>
#> $arc.slices
#> [,1] [,2]
#> [1,] 1.741176 1.035294
#> [2,] 1.300000 0.700000
#>
#> $Angles
#> [1] 1.680247 2.761086
Indicator for the presence of an arc from a (data or \(\mathcal{X}\)) point to another for AS-PCDs is the function IarcAStri
.
One can use it for points in the data set or for arbitrary points (as if they were in the data set).
It takes the arguments,
p1
a 2D point whose AS proximity region is constructed,p2
another 2D point. The function determines whether p2
is inside the AS proximity region of p1
or not,tri
vertices of the support triangle, stacked row-wise, i.e., each row representing a vertex of the triangle,M
the center of the triangle to construct the vertex regions with, default is M="CC"
i.e., the circumcenter of tri
and rv
the index of the M
-vertex region in tri
containing the point, either 1,2,3 or NULL
(which is the default).This function returns \(I(p2 \in N_{AS}(p1))\), that is, returns 1 if p2
is in \(N_{AS}(p1)\), 0 otherwise.
#between two arbitrary points P1 and P2
P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcAStri(P1,P2,Tr,M)
#> [1] 0
#between the first two points in Xp
IarcAStri(Xp[1,],Xp[2,],Tr,M)
#> [1] 0
AS proximity regions are defined with respect to the
vertices of the triangle (i.e., with respect to the vertex regions they reside in) and
vertex regions in each triangle are based on the center M
for circumcenter or \(M=(\alpha,\beta,\gamma)\) in barycentric coordinates in the
interior of the triangle; default is M="CC"
i.e., circumcenter of the triangle.
See Ceyhan (2005), Ceyhan (2010), and Ceyhan (2012) for more on AS-PCDs.
Number of arcs of the AS-PCD can be computed by the function num.arcsAStri
.
The function num.arcsAStri
is an object of class “NumArcs
”
and takes Xp,tri,M="CC"
as its arguments
where Xp
is the data set, and the others are as above
and returns the list of
desc
: A description of the PCD and the outputnum.arcs
: Number of arcs of the AS-PCD,num.in.tri
: Number of Xp
points in the triangle tri
,ind.in.tri
: The vector of indices of the Xp
points that reside in the triangle.tess.points
: vertices of the support triangle (i.e. Yp
points)vertices
: vertices of the PCD (i.e. Xp
points)Narcs = num.arcsAStri(Xp,Tr) #with default M="CC"; try also num.arcsAStri(Xp,Tr,M)
summary(Narcs)
#> Call:
#> num.arcsAStri(Xp = Xp, tri = Tr)
#>
#> Description of the output:
#> Number of Arcs of the AS-PCD and the Related Quantities with vertices Xp in One Triangle
#>
#> Number of data (Xp) points in the triangle = 5
#> Number of arcs in the digraph = 10
#>
#> Indices of data points in the triangle:
#> 1 2 3 4 5
#>
#plot(Narcs)
The arc density of the AS-PCD can be computed by the function ASarc.dens.tri
.
It takes the arguments Xp,tri,M="CC",in.tri.only
where Xp
is the data set (or \(\mathcal{X}\) points)
tri,M="CC"
are as above.
in.tri.only
is a logical argument (default is FALSE
) for considering only the points
inside the triangle or all the points as the vertices of the digraph.
if in.tri.only=TRUE
, arc density is computed only for
the points inside the triangle (i.e., arc density of the subdigraph
induced by the vertices in the triangle is computed),
otherwise arc density of the entire digraph (i.e., digraph with all the vertices) is computed.
The incidence matrix of the AS-PCD for the one triangle case can be found by inci.matAStri
,
using the inci.matAStri(Xp,Tr,M)
command.
It takes the same arguments as the function num.arcsAStri
.
Plot of the arcs in the digraph AS-PCD, which is based on the \(M\)-vertex regions with \(M=(\) 1.6,1.2 \()\),
can be obtained by the function plotASarcs.tri
, which is the one-tri counterpart of the function plotASarcs
.
It takes arguments Xp,tri,M="CC"
(as in num.arcsAStri
) and other options for the plot function.
See the help page for the function using ? plotASarcs.tri
.
Plot of the arcs of the above AS-PCD,
together with the vertex regions (with the option vert.reg = TRUE
).
Or, one can use the default center M="CC"
, and can add vertex names and text to the figure (with vertex regions)
using the below code.
The part M = as.numeric(arcsAStri(Xp,Tr)$param)
is optional,
for the below annotation of the plot since circumcenter is used for the vertex regions.
oldpar <- par(pty = "s")
plotASarcs.tri(Xp,Tr,asp=1,xlab="",ylab="",vert.reg = TRUE); M = (arcsAStri(Xp,Tr)$param)$c
CC<-circumcenter.tri(Tr)
#determine whether the center used for vertex regions is circumcenter or not
if (identical(M,CC) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}
#add the vertex names and annotation
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]+c(-.02,.02,.02,.05,.05,-0.03,-.01)
yc<-txt[,2]+c(.02,.02,.02,.07,.02,.05,-.06)
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)
par(oldpar)
Plot of the AS proximity regions can be obtained by the function plotASregs.tri
.
It takes arguments Xp,tri,M="CC"
(as in num.arcsAStri
) and other options for the plot function.
See the help page for the function using ? plotASregs.tri
.
M<-c(1.6,1.2) #try also M<-c(1.6620051,0.8136604) or M="CC"
oldpar <- par(pty = "s")
plotASregs.tri(Xp,Tr,M,vert.reg = T,xlab="",ylab="")
The function arcsAStri
is an object of class “PCDs
”.
It takes arguments Xp,tri,M="CC"
(as in ASarc.dens.tri
).
The output list is as in the function arcsAS
(see Section “VS1_1_2DArtiData”).
The plot
function returns the same plot as in plotASarcs.tri
with \(M=(\) 1.6,1.2 \()\),
hence we comment it out below.
M=c(1.6,1.2) #try also M=c(1.6620051,0.8136604)
Arcs<-arcsAStri(Xp,Tr,M) #try also Arcs<-arcsAStri(Xp,Tr) #uses the default center, namely circumcenter for M
Arcs
#> Call:
#> arcsAStri(Xp = Xp, tri = Tr, M = M)
#>
#> Type:
#> [1] "Arc Slice Proximity Catch Digraph (AS-PCD) for 2D Points in the Triangle with Center M = (1.6,1.2)"
summary(Arcs)
#> Call:
#> arcsAStri(Xp = Xp, tri = Tr, M = M)
#>
#> Type of the digraph:
#> [1] "Arc Slice Proximity Catch Digraph (AS-PCD) for 2D Points in the Triangle with Center M = (1.6,1.2)"
#>
#> Vertices of the digraph = Xp
#> Partition points of the region = Tr
#>
#> Selected tail (or source) points of the arcs in the digraph
#> (first 6 or fewer are printed)
#> [,1] [,2]
#> [1,] 1.265509 0.7442478
#> [2,] 1.687023 0.7682074
#> [3,] 1.687023 0.7682074
#> [4,] 1.687023 0.7682074
#> [5,] 1.380035 1.5548904
#> [6,] 1.267221 0.7722282
#>
#> Selected head (or end) points of the arcs in the digraph
#> (first 6 or fewer are printed)
#> [,1] [,2]
#> [1,] 1.267221 0.7722282
#> [2,] 1.265509 0.7442478
#> [3,] 1.267221 0.7722282
#> [4,] 1.482080 1.1991317
#> [5,] 1.482080 1.1991317
#> [6,] 1.265509 0.7442478
#>
#> Parameters of the digraph
#> $center
#> [1] 1.6 1.2
#>
#> Various quantities of the digraph
#> number of vertices number of partition points
#> 5.0 3.0
#> number of triangles number of arcs
#> 1.0 10.0
#> arc density
#> 0.5
plot(Arcs)
To see the code and the plot for the arcs using the plot.PCDs
function,
with vertex names and annotation added to the plot,
type ? arcsAStri
.
In this section, we use the same triangle \(T\) and generate data as in Section 2.1.
#A<-c(1,1); B<-c(2,0); C<-c(1.5,2); Tr<-rbind(A,B,C); n<-5
#set.seed(1); Xp<-runif.tri(n,Tr)$g
M<-c(1.6,1.0) #try also M<-as.numeric(runif.tri(1,Tr)$g)
r<-1.5 #try also r<-2
And choose the expansion parameter \(r=\) 1.5 to illustrate proportional edge (PE) proximity regions and the associated PCDs.
The function NPEtri
is used for the construction of PE proximity regions taking the arguments
p,tri,r,M=c(1,1,1),rv=NULL
where
p,tri,rv=NULL
are as in the function NAStri
,
andM
is the center to construct the vertex regions with default M=c(1,1,1)
(i.e. the center of mass),rv
the index of the vertex regions that the point p
resides in with default rv=NULL
andr
is the expansion parameter (must be \(\ge 1\)).NPEtri
returns the PE proximity region (i.e., the vertices of the triangular proximity region).
Indicator for the presence of an arc from a (data or \(\mathcal{X}\)) point to another for PE-PCDs is the function IarcPEtri
.
One can use it for points in the data set or for arbitrary points (as if they were in the data set).
It takes the arguments, p1,p2,tri,r,M=c(1,1,1),rv=NULL
where
-p1,p2,tri,rv=NULL
are as in IarcAStri
and
- r,M=c(1,1,1)
are as in NPEtri
.
This function returns \(I(p2 \in N_{PE}(p1))\),
that is, returns 1 if p2
is in \(N_{PE}(p1)\), 0 otherwise.
P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcPEtri(P1,P2,Tr,r,M)
#> [1] 1
IarcPEtri(Xp[1,],Xp[5,],Tr,r,M) #try also IarcPEtri(Xp[5,],Xp[1,],Tr,r,M)
#> [1] 0
Number of arcs of the PE-PCD can be computed by the function num.arcsPEtri
,
which is an object of class “NumArcs
” and takes arguments Xp,tri,r,M=c(1,1,1)
where Xp
is the data set, and the others are as above.
The output is as in num.arcsAStri
.
Narcs = num.arcsPEtri(Xp,Tr,r,M)
summary(Narcs)
#> Call:
#> num.arcsPEtri(Xp = Xp, tri = Tr, r = r, M = M)
#>
#> Description of the output:
#> Number of Arcs of the PE-PCD with vertices Xp and Quantities Related to the Support Triangle
#>
#> Number of data (Xp) points in the triangle = 5
#> Number of arcs in the digraph = 7
#>
#> Indices of data points in the triangle:
#> 1 2 3 4 5
#>
#plot(Narcs)
The arc density of the PE-PCD can be computed by the function PEarc.dens.tri
.
It takes the arguments Xp,tri,r,M,in.tri.only
where Xp
is the data set (or \(\mathcal{X}\) points)
r,tri,M
are as above, in.tri.only
is as in ASarc.dens.tri
,
and returns output as list with elements
arc.dens
, arc density of PE-PCD whose vertices are the 2D numerical data set, Xp
,std.arc.dens
, the arc density standardized by the mean and asymptotic variance of the arc
density of PE-PCD for uniform data in the triangle tri
, andcaveat
a warning as "The standardized arc density is only correct when M is the center of mass in the current version"
.The standardized arc density is only correct when \(M\) is the center of mass in the current version.
The incidence matrix of the PE-PCD for the one triangle case can be found by the function inci.matPEtri
, using e.g. the inci.matPEtri(Xp,Tr,r,M)
command.
It takes the same arguments as the function num.arcsPEtri
.
Plot of the arcs in the digraph PE-PCD, which is based on the \(M\)-vertex regions with \(M=\)(1.6,1),
can be obtained by the function plotPEarcs.tri
, which is the one-tri counterpart of the function plotPEarcs
.
It takes arguments Xp,tri,r,M=c(1,1,1)
(as in num.arcsPEtri
) and other options for the plot function.
See the help page for the function using ? plotPEarcs.tri
.
Plot of the arcs of the above PE-PCD, together with the vertex regions
(with the option vert.reg = TRUE
)
and vertex names added to the figure.
plotPEarcs.tri(Xp,Tr,r,M,xlab="",ylab="",vert.reg = TRUE)
#add vertex labels and text to the figure (with vertex regions)
ifelse(isTRUE(all.equal(M,circumcenter.tri(Tr))),
{Ds<-rbind((B+C)/2,(A+C)/2,(A+B)/2); cent.name="CC"},{Ds<-prj.cent2edges(Tr,M); cent.name="M"})
#> [1] "M"
txt<-rbind(Tr,M,Ds)
xc<-txt[,1]+c(-.02,.02,.02,.02,.04,-0.03,-.01)
yc<-txt[,2]+c(.02,.02,.02,.05,.02,.04,-.06)
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)
Plots of the PE proximity regions can be obtained by the function plotPEregs.tri
.
It takes arguments Xp,tri,r,M=c(1,1,1)
(as in num.arcsPEtri
) and other options for the plot function.
See the help page for the function using ? plotPEregs.tri
.
M<-c(1.6,1.2) #try also M<-c(1.6620051,0.8136604) or M="CC"
plotPEregs.tri(Xp,Tr,r,M,vert.reg = T,xlab="",ylab="")
The function ArcsPEtri
is an object of class “PCDs
”.
It takes arguments Xp,tri,r,M=c(1,1,1)
(as in num.arcsPEtri
).
The output list is as in the arcsAStri
except the parameters
of the digraph (center for PE-PCD and the expansion parameter).
The plot
function returns the same plot as in plotPEarcs.tri
,
hence we comment it out below.
Arcs<-ArcsPEtri(Xp,Tr,r,M) #or try with the default center Arcs<-ArcsPEtri(Xp,Tr,r); M= (Arcs$param)$cent
Arcs
#> Call:
#> ArcsPEtri(Xp = Xp, tri = Tr, r = r, M = M)
#>
#> Type:
#> [1] "Proportional Edge Proximity Catch Digraph (PE-PCD) for 2D Points in the Triangle with Expansion Parameter r = 1.5 and Center M = (1.6,1.2)"
summary(Arcs)
#> Call:
#> ArcsPEtri(Xp = Xp, tri = Tr, r = r, M = M)
#>
#> Type of the digraph:
#> [1] "Proportional Edge Proximity Catch Digraph (PE-PCD) for 2D Points in the Triangle with Expansion Parameter r = 1.5 and Center M = (1.6,1.2)"
#>
#> Vertices of the digraph = Xp
#> Partition points of the region = Tr
#>
#> Selected tail (or source) points of the arcs in the digraph
#> (first 6 or fewer are printed)
#> [,1] [,2]
#> [1,] 1.265509 0.7442478
#> [2,] 1.380035 1.5548904
#> [3,] 1.380035 1.5548904
#> [4,] 1.380035 1.5548904
#> [5,] 1.380035 1.5548904
#> [6,] 1.267221 0.7722282
#>
#> Selected head (or end) points of the arcs in the digraph
#> (first 6 or fewer are printed)
#> [,1] [,2]
#> [1,] 1.267221 0.7722282
#> [2,] 1.265509 0.7442478
#> [3,] 1.687023 0.7682074
#> [4,] 1.267221 0.7722282
#> [5,] 1.482080 1.1991317
#> [6,] 1.265509 0.7442478
#>
#> Parameters of the digraph
#> $center
#> [1] 1.6 1.2
#>
#> $`expansion parameter`
#> [1] 1.5
#>
#> Various quantities of the digraph
#> number of vertices number of partition points
#> 5.0 3.0
#> number of triangles number of arcs
#> 1.0 10.0
#> arc density
#> 0.5
plot(Arcs)
To see the code and the plot for the arcs using the plot.PCDs
function,
with vertex names and annotation added to the plot,
type ? ArcsPEtri
.
We use the same triangle \(T\) and generated data as Section 2.2.
And choose the expansion parameter \(\tau=\) 1.5 to illustrate central similarity proximity regions and the associated PCDs.
The function NCStri
is used for the construction of CS proximity regions taking the arguments
p,tri,t,M=c(1,1,1),re=NULL
where
p,tri,M=c(1,1,1)
are as in the function NPEtri
,
andre
the index of the edge regions that the point p
resides in with default re=NULL
andt
is the expansion parameter (must be \(> 0\)).NCStri
returns the CS proximity region (i.e., the vertices of the triangular proximity region).
P<-c(1.8,.5)
NCStri(P,Tr,tau,M)
#> [,1] [,2]
#> [1,] 1.74375 0.9500
#> [2,] 1.51250 0.4875
#> [3,] 1.97500 0.0250
Indicator for the presence of an arc from a (data or \(\mathcal{X}\)) point to another for CS-PCDs is the function IarcCStri
.
One can use it for points in the data set or for arbitrary points (as if they were in the data set).
It takes the arguments, p1,p2,tri,t,M,re=NULL
where p1,p2,tri,M
are as in IarcPEtri
and t,re=NULL
are as in NCStri
.
This function returns \(I(p2 \in N_{CS}(p1))\), that is, returns 1 if p2
is in \(N_{CS}(p1)\), 0 otherwise.
P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcCStri(P1,P2,Tr,tau,M)
#> [1] 1
IarcCStri(Xp[1,],Xp[2,],Tr,tau,M)
#> [1] 0
Number of arcs of the CS-PCD can be computed by the function num.arcsCStri
.
The output is as in num.arcsPEtri
.
Number of arcs of the CS-PCD can be computed by the function num.arcsCStri
,
which is an object of class “NumArcs
” and takes arguments Xp,tri,t,M=c(1,1,1)
where Xp
is the data set, and the others are as above.
The output is as in num.arcsPEtri
.
Narcs = num.arcsCStri(Xp,Tr,t=.5,M)
summary(Narcs)
#> Call:
#> num.arcsCStri(Xp = Xp, tri = Tr, t = 0.5, M = M)
#>
#> Description of the output:
#> Number of Arcs of the CS-PCD with vertices Xp and Quantities Related to the Support Triangle
#>
#> Number of data (Xp) points in the triangle = 5
#> Number of arcs in the digraph = 0
#>
#> Indices of data points in the triangle:
#> 1 2 3 4 5
#>
#plot(Narcs)
The arc density of the CS-PCD can be computed by the function CSarc.dens.tri
.
It takes the arguments Xp,tri,t,M=c(1,1,1),in.tri.only=FALSE
where Xp
is the data set (or \(\mathcal{X}\) points)
tri,t,M=c(1,1,1),in.tri.only=FALSE
are as above
and in.tri.only
is as in ASarc.dens.tri
.
The incidence matrix of the CS-PCD for the one triangle case can be found by inci.matCStri
, using the inci.matCStri(Xp,Tr,tau,M)
command.
It takes the same arguments as the function num.arcsCStri
.
Plot of the arcs in the digraph CS-PCD, which is based on the \(M\)-edge regions with \(M=\)(1.6,1.2).
can be obtained by the function plotCSarcs.tri
, which is the one-tri counterpart of the function plotCSarcs
.
It takes arguments Xp,tri,t,M=c(1,1,1)
(as in num.arcsPEtri
) and other options for the plot function.
See the help page for the function using ? plotCSarcs.tri
.
Plot of the arcs of the above CS-PCD, together with the edge regions
(with the option edge.reg = TRUE
)
and vertex names added to the figure.
t<-1.5 #try also t<-2
plotCSarcs.tri(Xp,Tr,t,M,xlab="",ylab="",edge.reg = TRUE)
txt<-rbind(Tr,M)
xc<-txt[,1]+c(-.02,.02,.02,.03)
yc<-txt[,2]+c(.02,.02,.02,.03)
txt.str<-c("A","B","C","M")
text(xc,yc,txt.str)
Plot of the CS proximity regions can be obtained by the function plotCSregs.tri
,
the first is for all points, the second is for two \(\mathcal{X}\) points only (for better visualization).
It takes arguments Xp,tri,t,M=c(1,1,1)
(as in num.arcsCStri
) and other options for the plot function.
See the help page for the function using ? plotCSregs.tri
.
The function arcsCStri
is an object of class “PCDs
”.
It takes arguments Xp,tri,t,M=c(1,1,1)
(as in num.arcsCStri
).
The output list is as in the ArcsPEtri
.
The plot
function returns the same plot as in plotCSarcs.tri
,
hence we comment it out below.
Arcs<-arcsCStri(Xp,Tr,t,M)
Arcs
#> Call:
#> arcsCStri(Xp = Xp, tri = Tr, t = t, M = M)
#>
#> Type:
#> [1] "Central Similarity Proximity Catch Digraph (CS-PCD) for 2D Points in the Triangle with Expansion Parameter t = 1.5 and Center M = (1.6,1.2)"
summary(Arcs)
#> Call:
#> arcsCStri(Xp = Xp, tri = Tr, t = t, M = M)
#>
#> Type of the digraph:
#> [1] "Central Similarity Proximity Catch Digraph (CS-PCD) for 2D Points in the Triangle with Expansion Parameter t = 1.5 and Center M = (1.6,1.2)"
#>
#> Vertices of the digraph = Xp
#> Partition points of the region = Tr
#>
#> Selected tail (or source) points of the arcs in the digraph
#> (first 6 or fewer are printed)
#> [,1] [,2]
#> [1,] 1.687023 0.7682074
#> [2,] 1.687023 0.7682074
#> [3,] 1.687023 0.7682074
#> [4,] 1.267221 0.7722282
#> [5,] 1.482080 1.1991317
#> [6,] 1.482080 1.1991317
#>
#> Selected head (or end) points of the arcs in the digraph
#> (first 6 or fewer are printed)
#> [,1] [,2]
#> [1,] 1.265509 0.7442478
#> [2,] 1.267221 0.7722282
#> [3,] 1.482080 1.1991317
#> [4,] 1.265509 0.7442478
#> [5,] 1.265509 0.7442478
#> [6,] 1.687023 0.7682074
#>
#> Parameters of the digraph
#> $center
#> [1] 1.6 1.2
#>
#> $`expansion parameter`
#> [1] 1.5
#>
#> Various quantities of the digraph
#> number of vertices number of partition points
#> 5.0 3.0
#> number of triangles number of arcs
#> 1.0 8.0
#> arc density
#> 0.4
plot(Arcs)
To see the code and the plot for the arcs using the plot.PCDs
function,
with vertex names and annotation added to the plot,
type ? arcsCStri
.
We first define the standard equilateral triangle \(T_e=T(A,B,C)\) with vertices \(A=(0,0)\), \(B=(1,0)\), and \(C=(1/2,\sqrt{3}/2)\).
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-5 #try also n<-10, 50, or 100
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-c(.6,.2) #try also M<-c(1,1,1)
Then we generate data or \(\mathcal{X}\) points of size \(n=\) 5 using the function runif.std.tri
in the pcds
package,
and choose the arbitrary center \(M=(\) 1.6,1.2 \()\) in the interior of \(T_e\).
Notice that the argument tri
is redundant for the functions specific to the standard equilateral triangle,
hence they are omitted for the functions which have counterparts in Section 2.2.
Plot of the triangle \(T_e\) and the \(\mathcal{X}\) points in it can be obtained by the below code,
and we also add the vertex names and
annotation using the text
function from base R
.
We use asp=1
in the below plot so that the standard equilateral triangle is plotted with equal length edges.
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
plot(Te,asp=1,pch=".",xlab="",ylab="",xlim=Xlim,ylim=Ylim,main="Points in Standard Equilateral Triangle")
polygon(Te)
points(Xp)
#add the vertex names and annotation
txt<-rbind(Te)
xc<-txt[,1]+c(-.02,.02,.02)
yc<-txt[,2]+c(.01,.01,.01)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
Alternatively, we can use the plotDelaunay.tri
function in pcds
to obtain the same plot by executing plotDelaunay.tri(Xp,Te,xlab="x",ylab="y",main="Points in Standard Equilateral Triangle")
command.
Indicator for the presence of an arc from a (data or \(\mathcal{X}\)) point to another for PE-PCDs is the function IarcPEstd.tri
.
One can use it for points in the data set or for arbitrary points (as if they were in the data set).
It takes the arguments, p1,p2,r,M=c(1,1,1),rv=NULL
as in IarcPEtri
.
P1<-as.numeric(runif.tri(1,Te)$g)
P2<-as.numeric(runif.tri(1,Te)$g)
r=2
IarcPEstd.tri(P1,P2,r,M)
#> [1] 1
IarcPEstd.tri(Xp[1,],Xp[2,],r,M)
#> [1] 1
Number of arcs of the PE-PCD can be computed by the function num.arcsPEstd.tri
which
which is an object of class “NumArcs
” and takes arguments as the function num.arcsPEtri
.
The output is as in num.arcsPEtri
.
Narcs = num.arcsPEstd.tri(Xp,r=1.25,M)
summary(Narcs)
#> Call:
#> num.arcsPEstd.tri(Xp = Xp, r = 1.25, M = M)
#>
#> Description of the output:
#> Number of Arcs of the PE-PCD and the Related Quantities with vertices Xp in the Standard Equilateral Triangle
#>
#> Number of data (Xp) points in the triangle = 5
#> Number of arcs in the digraph = 5
#>
#> Indices of data points in the triangle:
#> 1 2 3 4 5
#>
#plot(Narcs)
The incidence matrix of the PE-PCD for the one triangle case can be found by inci.matPETe
,
using the inci.matPETe(Xp,r,M)
command.
We use the same setting for the data points and the center as in Section 2.4.
Notice that the argument tri
is redundant for the functions specific to the standard equilateral triangle,
hence they are omitted for the functions which have counterparts in Section 2.3.
Indicator for the presence of an arc from a (data or \(\mathcal{X}\)) point to another for CS-PCDs is the function IarcPEstd.tri
.
P1<-as.numeric(runif.tri(1,Te)$g)
P2<-as.numeric(runif.tri(1,Te)$g)
tau=1
IarcCSstd.tri(P1,P1,tau,M)
IarcCSstd.tri(P1,P2,tau,M)
IarcCSstd.tri(Xp[1,],Xp[2,],tau,M)
Number of arcs of the CS-PCD can be computed by the function num.arcsCSstd.tri
which is an object of class “NumArcs
” and its
arguments and output are as in num.arcsCStri
.
set.seed(123)
M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)
Narcs = num.arcsCStri(Xp,Te,t=1.5,M)
summary(Narcs)
#> Call:
#> num.arcsCStri(Xp = Xp, tri = Te, t = 1.5, M = M)
#>
#> Description of the output:
#> Number of Arcs of the CS-PCD with vertices Xp and Quantities Related to the Support Triangle
#>
#> Number of data (Xp) points in the triangle = 5
#> Number of arcs in the digraph = 3
#>
#> Indices of data points in the triangle:
#> 1 2 3 4 5
#>
#plot(Narcs)
The incidence matrix of the CS-PCD for the one triangle case can be found by inci.matCSstd.tri
,
using e.g. the inci.matCSstd.tri(Xp,t=1.5,M)
command.
The PCDs are constructed using proximity regions, and proximity region of an \(\mathcal{X}\) point depends on its location relative to the \(\mathcal{Y}\) points. In particular, AS- and PE-PCDs depend on the vertex regions and CS-PCDs depend on edge regions. We will illustrate the vertex and edge regions in this section. These regions partition the Delaunay cell (e.g., Delaunay triangle in \(\mathbb R^2\)) based on a center or central point in the triangle.
We first check whether a point is inside a triangle or not which can be done using the function in.triangle
,
which takes arguments p,tri,boundary=FALSE
where
p
, a 2D point to be checked whether it is inside the triangle or not,tri
A \(3 \times 2\) matrix with each row representing a vertex of the triangle,boundary
, a logical parameter (default=TRUE
) to include boundary or not, so if it is TRUE
,
the function checks if the point, p
, lies in the closure of the triangle (i.e., interior and boundary
combined); else, it checks if p
lies in the interior of the triangle.The function gives TRUE
if the point is inside the triangle, and FALSE
otherwise.
It also returns the barycentric coordinates of the point with respect to the triangle.
A<-c(1,1); B<-c(2,0); C<-c(1.5,2); p<-c(1.4,1.2)
Tr<-rbind(A,B,C)
in.triangle(p,Tr)
#> $in.tri
#> [1] TRUE
#>
#> $barycentric
#> [1] 0.4 0.2 0.4
We now illustrate circumcenter of a triangle.
The function circumcenter.tri
takes tri
as its sole argument for a triangle and
returns the circumcenter of the triangle as its output.
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C); #the vertices of the triangle Tr
(CC<-circumcenter.tri(Tr)) #the circumcenter
#> [1] 2.083333 1.083333
We plot the circumcenter of an obtuse triangle below (so circumcenter is outside of the triangle)
using the below code,
see also the help page with ? circumcenter.tri
for the code to generate this figure.
Notice that in the code we used asp=1
so that lines joining CC to the edges of the triangle
appear perpendicular to the edges.
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],CC[1])
Ylim<-range(Tr[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
oldpar <- par(pty="s")
plot(A,asp=1,pch=".",xlab="",ylab="",
main="Circumcenter of a Triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(rbind(CC))
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.08,.08,.08,.12,-.09,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.03,-.06,.02,.06,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)
par(oldpar)
The function circumcenter.basic.tri
is a special case of circumcenter.tri
and takes the argument c1,c2
and returns the circumcenter of the standard basic triangle.
The function center.nondegPE
takes arguments tri,r
which are the triangle and the expansion parameter for the PE proximity regions, respectively.
It returns the three centers for non-degenerate asymptotic distribution of
domination number of PE-PCDs for \(r \in (1,1.5)\) and the center of mass for \(r=1.5\).
This center is not defined for \(r > 1.5\), as the asymptotic distribution is degenerate in this case.
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
r<-1.35
(Ms<-center.nondegPE(Tr,r))
#> [,1] [,2]
#> M1 1.388889 1.0000000
#> M2 1.611111 0.7777778
#> M3 1.500000 1.2222222
We plot the non-degeneracy centers for the triangle Tr
using the below code,
type also ? center.nondegPE
for the code to generate this figure.
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",
main="Centers of nondegeneracy of the domination number\n of the PE-PCD in a triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Ms,pch=".",col=1)
polygon(Ms,lty=2)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.03)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
xc<-Ms[,1]+c(-.04,.04,.03)
yc<-Ms[,2]+c(.02,.02,.05)
txt.str<-c(expression(M[1]),"M2","M3")
text(xc,yc,txt.str)
The function prj.cent2edges
returns the projections of a point (e.g., a center) \(M\) inside a triangle to its edges,
i.e., it returns the intersection point where the line joining a vertex to \(M\) crosses the opposite edge.
The line segments between \(M\) the intersection points define the \(M\)-vertex regions.
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-c(1.6,1.0) #try also M<-as.numeric(runif.tri(1,Tr)$g)
(Ds<-prj.cent2edges(Tr,M)) #try also prj.cent2edges(Tr,M=c(1,1))
#> [,1] [,2]
#> [1,] 1.750000 1.0000000
#> [2,] 1.333333 1.6666667
#> [3,] 1.666667 0.3333333
We plot the projections of center \(M\) to the edges of the triangle Tr
using the below code,
type also ? prj.cent2edges
for the code to generate this figure.
M<-c(1.6,1.0)
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tr)} #need to run this when M is given in barycentric coordinates
plot(Tr,pch=".",xlab="",ylab="",
main="Projection of Center M to the edges of a triangle",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.04,-.02)
yc<-txt[,2]+c(-.02,.04,.04,-.06)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
The function prj.cent2edges.basic.tri
is a special case of prj.cent2edges
taking arguments c1,c2
instead of tri
and returning projections of \(M\) to the edges in the standard basic triangle.
The function prj.nondegPEcent2edges
takes arguments
tri
, a \(3 \times 2\) matrix with each row representing a vertex of the triangle.r
, a positive real number which serves as the expansion parameter in PE proximity region,
must be in \((1,1.5]\) for this function.cent
, an index of the center (as \(1,2,3\) corresponding to \(M_1,\,M_2,\,M_3\)) which gives nondegenerate asymptotic
distribution of the domination number of PE-PCD for uniform data in tri
for expansion parameter r
in \((1,1.5]\);
default cent=1
.This function returns the projections of nondegeneracy centers (i.e. centers for non-degenerate asymptotic distribution of domination number of PE-PCDs) to its edges, i.e., it returns the intersection point where the line joining a vertex to a non-degeneracy center \(M_i\) crosses the opposite edge. The line segments between \(M_i\) the intersection points will provide the \(M_i\)-vertex regions.
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
r<-1.35
prj.nondegPEcent2edges(Tr,r,cent=2)
#> [,1] [,2]
#> [1,] 1.825 0.70
#> [2,] 1.250 1.50
#> [3,] 1.650 0.35
We plot the projections of the non-degeneracy center \(M_1\) to the edges of a triangle using the below code,
type also ? prj.nondegPEcent2edges
for the code to generate this figure.
Ms<-center.nondegPE(Tr,r)
M1=Ms[1,]
Ds<-prj.nondegPEcent2edges(Tr,r,cent=1)
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",
main="Projections from a non-degeneracy center for domination number\n of PE-PCD to the edges of the triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Ms,pch=".",col=1)
polygon(Ms,lty=2)
xc<-Tr[,1]+c(-.02,.03,.02)
yc<-Tr[,2]+c(-.02,.04,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
txt<-Ms
xc<-txt[,1]+c(-.02,.04,-.04)
yc<-txt[,2]+c(-.02,.04,.04)
txt.str<-c("M1","M2","M3")
text(xc,yc,txt.str)
points(Ds,pch=4,col=2)
L<-rbind(M1,M1,M1); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2,lwd=2,col=4)
txt<-Ds
xc<-txt[,1]+c(-.02,.04,-.04)
yc<-txt[,2]+c(-.02,.04,.04)
txt.str<-c("D1","D2","D3")
text(xc,yc,txt.str)
The function in.triangle
takes arguments
p
, a 2D point to be checked whether it is inside the triangle or not,tri
, a \(3 \times 2\) matrix with each row representing a vertex of the triangle,boundary
, a logical parameter (default=FALSE
) to include boundary or not, so if it is TRUE
,
the function checks if the point, p
, lies in the closure of the triangle (i.e., interior and boundary
combined) else it checks if p
lies in the interior of the triangle.This function can be used to check whether a point p
is inside a triangle tri
or not.
On the other hand in.tri.all
takes arguments Xp,tri,boundary
where
Xp
is a 2D data set and tri,boundary
are as in the function in.triangle
.
This function checks whether all of the points in a data set are inside the triangle or not.
We check in.tri.all
with \(n=5\) data points generated uniformly in the unit square and in the triangle.
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
p<-c(1.4,1.2)
Tr<-rbind(A,B,C)
in.triangle(p,Tr)
#> $in.tri
#> [1] TRUE
#>
#> $barycentric
#> [1] 0.4 0.2 0.4
#data set and checking all points in it are inside the triangle or not
n<-5
Xp1<-cbind(runif(n),runif(n))
in.tri.all(Xp1,Tr)
#> [1] FALSE
The function is.std.eq.tri
takes the argument tri
(a \(3 \times 2\) matrix for a triangle) and
can be used for checking the triangle tri
is standard equilateral triangle or not,
regardless of the order of the vertices.
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C) #try adding +10^(-16) to each vertex
is.std.eq.tri(Te)
#> [1] TRUE
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
is.std.eq.tri(Tr)
#> [1] FALSE
The function as.basic.tri
takes the arguments tri,scaled
where
-tri
is as in is.std.eq.tri
and
-scaled
is a logical argument for scaling the resulting triangle. If scaled=TRUE
, then the resulting triangle is
scaled to be a regular basic triangle, i.e., longest edge having unit length,
else the new triangle \(T(A,B,C)\) is nonscaled. The default is scaled=FALSE
.
It converts any triangle to a basic triangle (up to translation and rotation),
so that the output triangle is \(T(A',B',C')\) so that edges in decreasing length are \(A'B'\), \(B'C'\), and \(A'C'\).
The option scaled
scales the output triangle when scaled=TRUE
so that longest edge \(A'B'\) has unit length
(default is scaled=FALSE
).
Most of the times,
the resulting triangle will still need to be translated and/or rotated to be in the standard basic triangle form.
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
as.basic.tri(rbind(B,C,A))
#> $tri
#> [,1] [,2]
#> A 0.0 0.0
#> B 1.0 0.0
#> C 0.4 0.6
#>
#> $desc
#> [1] "Edges (in decreasing length are) AB, BC, and AC"
#>
#> $orig.order
#> [1] 3 1 2
x<-c(1,1); y<-c(2,0); z<-c(1.5,2);
as.basic.tri(rbind(x,y,z))
#> $tri
#> [,1] [,2]
#> A 1.5 2
#> B 2.0 0
#> C 1.0 1
#>
#> $desc
#> [1] "Edges (in decreasing length are) AB, BC, and AC"
#>
#> $orig.order
#> [1] 3 2 1
as.basic.tri(rbind(x,y,z),scaled = TRUE)
#> $tri
#> [,1] [,2]
#> A 0.7276069 0.9701425
#> B 0.9701425 0.0000000
#> C 0.4850713 0.4850713
#>
#> $desc
#> [1] "Edges (in decreasing length are) AB, BC, and AC"
#>
#> $orig.order
#> [1] 3 2 1
The function tri2std.basic.tri
converts a triangle to the standard basic triangle form,
and its output only returns \(c_1,c_2\) in $Cvec
and
also the original order of the vertices in the input triangle
by $orig.order
.
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
tri2std.basic.tri(rbind(B,C,A))
#> $Cvec
#> [1] 0.4 0.6
#>
#> $orig.order
#> [1] 3 1 2
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
tri2std.basic.tri(rbind(A,B,C))
#> $Cvec
#> [1] 0.4117647 0.3529412
#>
#> $orig.order
#> [1] 3 2 1
Barycentric coordinates are very useful in defining and analyzing the triangular (and simplicial) proximity regions.
So, we provide functions to convert barycentric coordinates to Cartesian coordinates (bary2cart
) and vice versa (cart2bary
).
Both functions take the arguments P,tri
where P
is th point to change the coordinates for and tri
is the reference triangle
(as a \(3\times2\) matrix).
As the names suggest,
the function cart2bary
converts the point P
in Cartesian coordinates
to barycentric coordinates with respect to the triangle tri
,
and bary2cart
converts the point P
in barycentric coordinates with respect to the triangle tri
to Cartesian coordinates.
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
cart2bary(c(1.4,1.2),Tr)
#> [1] 0.4 0.2 0.4
bary2cart(c(1.4,1.2,1),Tr)
#> [1] 1.4722222 0.9444444
CM<-(A+B+C)/3; CM
#> [1] 1.5 1.0
cart2bary(CM,Tr)
#> [1] 0.3333333 0.3333333 0.3333333
bary2cart(c(1,1,1),Tr)
#> [1] 1.5 1.0
The function index.delaunay.tri
takes the arguments
p
, a 2D point; the index of the Delaunay triangle in which p
resides is to be determined.
It is an argument for index.delaunay.tri
.Yp
, a set of 2D points from which Delaunay triangulation is constructed,DTmesh
, Delaunay triangles based on Yp
, default is NULL
,
which is computed via interp::tri.mesh
function
in interp
package. interp::triangles
function returns a triangulation data structure from the triangulation object
created by tri.mesh
.This function returns the index of the Delaunay triangle in which the given point resides.
Similarly, the function indices.delaunay.tri
takes the arguments Xp,Yp,DTmesh
where
Xp
is the set of data points for which the indices of the Delaunay
triangles they reside is to be determined and Yp,DTmesh
are as in index.delaunay.tri
.
This function returns the indices of triangles for all the points in a data set as a vector.
We generate \(n_x=\) 10 \(\mathcal{X}\) points uniformly in the convex hull of \(n_y=\) 5 \(\mathcal{Y}\) points
using the function runif.multi.tri
in pcds
package.
set.seed(1)
Yp<-cbind(runif(ny),runif(ny))
Xp<-runif.multi.tri(nx,Yp)$g #data under CSR in the convex hull of Ypoints
#try also Xp<-cbind(runif(nx),runif(nx))
index.delaunay.tri(Xp[10,],Yp)
#> [1] 2
#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove") #Delaunay triangulation
index.delaunay.tri(Xp[10,],Yp,DTY)
#> [1] 2
(tr.ind<-indices.delaunay.tri(Xp,Yp,DTY)) #indices of the Delaunay triangles
#> [1] 3 3 1 4 3 2 3 3 2 2
We provide the scatterplot of \(\mathcal{X}\) points (labeled according to the Delaunay triangle they reside in),
and the Delaunay triangulation
of \(n_y=\) 5 \(\mathcal{Y}\) points using the below code. Type also ? indices.delaunay.tri
.
Xlim<-range(Yp[,1],Xp[,1])
Ylim<-range(Yp[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
# plot of the data in the convex hull of Y points together with the Delaunay triangulation
plot(Xp,main="X Points in Delaunay Triangles for Y Points", xlab=" ", ylab=" ",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),pch=".")
interp::plot.triSht(DTY, add=TRUE, do.points = TRUE,pch=16,col="blue")
text(Xp,labels = factor(tr.ind) )