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bootcor.dep Bootstrapped Correlation Difference Test for Dependent Correlations

Description

Derivation of bootstrap confidence intervals for the calculation of correlation differences for depen-
dent correlations.

Usage

bootcor.dep(target,
x1,
x2,
k = 5000,
alpha = .05,
digit = 3,
seed = 1234)

Arguments

target A vector containing the values for the target variable for which the correlations
of the two competing variables x1 and x2 should be compared.

x1 A vector containing the values of the first variable being correlated with the
target variable.

x2 A vector containing the values of the second variable being correlated with the
target variable.

k The number of bootstrap samples that should be drawn. The default is 5000.

alpha Likelihood of Type I error. The default is .05.

digit Number of digits in the output. The default is 3.

seed A random seed to make the results reproducible.

Details

Bivariate correlation analyses as well as correlation difference tests possess very strict statistical
requirements that are not necessarily fulfilled when using the basic diffcor.dep() function from
this package (Wilcox, 2013 <doi:10.1016/C2010-0-67044-1>). For instance, if the assumption of
a normal distribution does not hold, the significance test can lead to false positive or false negative
conclusions. To address potential deviations from normal distribution, the present function applies
bootstrapping to the data. The output provides a confidence interval for the difference between the
empirically observed correlations of two competing variables with a target variable, whereby the
interval is derived from bootstrapping..
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Value

r_target_1 The empircally observed correlation between the first variable and the target
variable.

r_target_2 The empircally observed correlation between the second variable and the target
variable.

M Mean of the confidence interval of the correlation difference between r_target_1
and r_target_2.

LL Lower limit of the confidence interval of the correlation difference between
r_target_1 and r_target_2, given the entered Type I-level.

UL Upper limit of the confidence interval of the correlation difference between
r_target_1 and r_target_2, given the entered Type I-level.

Author(s)

Christian Blötner <c.bloetner@gmail.com>

References

Wilcox, R. (2013). Introduction to robust estimation and hypothesis testing. Elsevier. https://doi.org/10.1016/C2010-
0-67044-1

Examples

df <- data.frame(target = rnorm(1000),
var1 = rnorm(1000),
var2 = rnorm(1000))

bootcor.dep(target = df$target,
x1 = df$var1,
x2 = df$var2,
k = 5000,
alpha = .05,
digit = 3,
seed = 1234)

bootcor.one Bootstrapped Correlation Difference Test between an Empirical and
an Expected Correlation

Description

Derivation of bootstrap confidence intervals for the calculation of correlation differences between
the empirically observed correlation coefficient and a threshold against which this coefficient is
tested.
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Usage

bootcor.one(x,
y,
r_target,
k = 5000,
alpha = .05,
digit = 3,
seed = 1234)

Arguments

x A vector containing the values of the first variable being involved in the correla-
tion.

y A vector containing the values of the second variable being involved in the cor-
relation.

r_target A single value against which the correlation between x and y is tested.

k The number of bootstrap samples to be drawn. The default is 5000.

alpha Likelihood of Type I error. The default is .05.

digit Number of digits in the output. The default is 3.

seed A random seed to make the results reproducible.

Details

Bivariate correlation analyses as well as correlation difference tests possess very strict statistical
requirements that are not necessarily fulfilled when using the basic diffcor.one() function from
this package (Wilcox, 2013 <doi:10.1016/C2010-0-67044-1>). For instance, if the assumption of
a normal distribution does not hold, the significance test can lead to false positive or false negative
conclusions. To address potential deviations from normal distribution, the present function applies
bootstrapping to the data. The output provides a confidence interval for the difference between the
empirically observed correlation coefficient and the threshold against which this coefficient should
be tested, whereby the interval is derived from bootstrapping samples.

Value

r_emp The empircally observed correlation between x and y.

r_target The threshold against which r_emp is tested.

M Mean of the confidence interval of the correlation difference between r_emp and
r_target.

LL Lower limit of the confidence interval of the correlation difference between
r_emp and r_target, given the entered Type I-level.

UL Upper limit of the confidence interval of the correlation difference between
r_emp and r_target, given the entered Type I-level.

Author(s)

Christian Blötner <c.bloetner@gmail.com>
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References

Wilcox, R. (2013). Introduction to robust estimation and hypothesis testing. Elsevier. https://doi.org/10.1016/C2010-
0-67044-1

Examples

df <- data.frame(a = rnorm(1000),
b = rnorm(1000))

bootcor.one(x = df$a,
y = df$b,
r_target = .10,
k = 5000,
alpha = .05,
digit = 3,
seed = 1234)

bootcor.two Bootstrapped Correlation Difference Test between Correlations from
Two Independent Samples

Description

Derivation of bootstrap confidence intervals for the calculation of correlation differences between
the empirically observed correlations obtained from two independent samples.

Usage

bootcor.two(x1,
y1,
x2,
y2,
k = 5000,
alpha = .05,
digit = 3,
seed = 1234)

Arguments

x1 A vector containing the values of the first variable being involved in the correla-
tion in Sample 1.

y1 A vector containing the values of the second variable being involved in the cor-
relation in Sample 1.

x2 A vector containing the values of the first variable being involved in the correla-
tion in Sample 2.

y2 A vector containing the values of the second variable being involved in the cor-
relation in Sample 2.
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k The number of bootstrap samples that should be drawn. The default is 5000.

alpha Likelihood of Type I error. The default is .05.

digit Number of digits in the output. The default is 3.

seed A random seed to make the results reproducible.

Details

Bivariate correlation analyses as well as correlation difference tests possess very strict statistical
requirements that are not necessarily fulfilled when using the basic diffcor.two() function from
this package (Wilcox, 2013 <doi:10.1016/C2010-0-67044-1>). For instance, if the assumption of
a normal distribution does not hold, the significance test can lead to false positive or false negative
conclusions. To address potential deviations from normal distribution, the present function applies
bootstrapping to the data. The output provides a confidence interval for the difference between the
empirically observed correlation coefficients obtained from two independent samples, whereby the
interval is derived from bootstrapping.

Value

r1 The empircally observed correlation between x and y in Sample 1.

r2 The empircally observed correlation between x and y in Sample 2.

M Mean of the confidence interval of the correlation difference between the corre-
lations from the two samples.

LL Lower limit of the confidence interval of the correlation difference between the
correlations from the two samples, given the entered Type I-level.

UL Upper limit of the confidence interval of the correlation difference between the
correlations from the two samples, given the entered Type I-level.

Author(s)

Christian Blötner <c.bloetner@gmail.com>

References

Wilcox, R. (2013). Introduction to robust estimation and hypothesis testing. Elsevier. https://doi.org/10.1016/C2010-
0-67044-1

Examples

df1 <- data.frame(a = rnorm(1000),
b = rnorm(1000))

df2 <- data.frame(x = rnorm(600),
y = rnorm(600))

bootcor.two(x1 = df1$a,
y1 = df1$b,
x2 = df2$x,
y2 = df2$y,
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k = 5000,
alpha = .05,
digit = 3,
seed = 1234)

diffcor.dep Fisher’s z-Tests of dependent correlations

Description

Tests if the correlation between two variables (r12) differs from the correlation between the first
and a third one (r13), given the intercorrelation of the compared constructs (r23). All correlations
are automatically transformed with the Fisher z-transformation prior to computations. The output
provides the compared correlations, test statistic as z-score, and p-values.

Usage

diffcor.dep(r12, r13, r23, n, cor.names = NULL,
alternative = c("one.sided", "two.sided"), digit = 3)

Arguments

r12 Correlation between the criterion with which both competing variables are cor-
related and the first of the two competing variables.

r13 Correlation between the criterion with which both competing variables are cor-
related and the second of the two competing variables.

r23 Intercorrelation between the two competing variables.

n Sample size in which the observed effect was found

cor.names OPTIONAL, label for the correlation. DEFAULT is NULL

alternative A character string specifying if you wish to test one-sided or two-sided differ-
ences

digit Number of digits in the output for all parameters, DEFAULT = 3

Value

r12 Correlation between the criterion with which both competing variables are cor-
related and the first of the two competing variables.

r13 Correlation between the criterion with which both competing variables are cor-
related and the second of the two competing variables.

r23 Intercorrelation between the two competing variables.

z Test statistic for correlation difference in units of z distribution

p p value for one- or two-sided testing, depending on alternative = c("one.sided",
"two.sided)
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Author(s)

Christian Blötner <c.bloetner@gmail.com>

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erl-
baum.

Eid, M., Gollwitzer, M., & Schmitt, M. (2015). Statistik und Forschungsmethoden (4.Auflage)
[Statistics and research methods (4th ed.)]. Beltz.

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin,
87, 245-251.

Examples

diffcor.dep(r12 = .76, r13 = .70, r23 = .50, n = 271, digit = 4,
cor.names = NULL, alternative = "two.sided")

diffcor.one Fisher’s z-test of difference between an empirical and a hypothesized
correlation

Description

The function tests whether an observed correlation differs from an expected one, for example, in
construct validation. All correlations are automatically transformed with the Fisher z-transformation
prior to computations. The output provides the compared correlations, a z-score, a p-value, a con-
fidence interval, and the effect size Cohens q. According to Cohen (1988), q = |.10|, |.30| and |.50|
are considered small, moderate, and large differences, respectively.

Usage

diffcor.one(emp.r, hypo.r, n, alpha = .05, cor.names = NULL,
alternative = c("one.sided", "two.sided"), digit = 3)

Arguments

emp.r Empirically observed correlation

hypo.r Hypothesized correlation which shall be tested

n Sample size in which the observed effect was found

alpha Likelihood of Type I error, DEFAULT = .05

cor.names OPTIONAL, label for the correlation (e.g., "IQ-performance"). DEFAULT is
NULL

digit Number of digits in the output for all parameters, DEFAULT = 3

alternative A character string specifying if you wish to test one-sided or two-sided differ-
ences
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Value

r_exp Vector of the expected correlations

r_obs Vector of the empirically observed correlations

LL Lower limit of the confidence interval of the empirical correlation, given the
specified alpha level, DEFAULT = 95 percent

UL Upper limit of the confidence interval of the empirical correlation, given the
specified alpha level, DEFAULT = 95 percent

z Test statistic for correlation difference in units of z distribution

p p value for one- or two-sided testing, depending on alternative = c("one.sided",
"two.sided)

Cohen_q Effect size measure for differences of independent correlations

Author(s)

Christian Blötner <c.bloetner@gmail.com>

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erl-
baum.

Eid, M., Gollwitzer, M., & Schmitt, M. (2015). Statistik und Forschungsmethoden (4.Auflage)
[Statistics and research methods (4th ed.)]. Beltz.

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin,
87, 245-251.

Examples

diffcor.one(c(.76, .53, -.32), c(.70, .35, -.40),
c(225, 250, 210),
cor.names = c("a-b", "c-d", "e-f"), digit = 2, alternative = "one.sided")

diffcor.two Fisher’s z-Tests for differences of correlations in two independent sam-
ples

Description

Tests whether the correlation between two variables differs across two independent studies/samples.
The correlations are automatically transformed with the Fisher z-transformation prior to computa-
tions. The output provides the compared correlations, test statistic as z-score, p-values, confidence
intervals of the empirical correlations, and the effect size Cohens q. According to Cohen (1988), q
= |.10|, |.30| and |.50| are considered small, moderate, and large differences, respectively.
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Usage

diffcor.two(r1, r2, n1, n2, alpha = .05, cor.names = NULL,
alternative = c("one.sided", "two.sided"), digit = 3)

Arguments

r1 Correlation coefficient in first sample
r2 Correlation coefficient in second sample
n1 First sample size
n2 Second sample size
alpha Likelihood of Type I error, DEFAULT = .05
cor.names OPTIONAL, label for the correlation (e.g., "IQ-performance"). DEFAULT is

NULL
digit Number of digits in the output for all parameters, DEFAULT = 3
alternative A character string specifying if you wish to test one-sided or two-sided differ-

ences

Value

r1 Vector of the empirically observed correlations in the first sample
r2 Vector of the empirically observed correlations in the second sample
LL1 Lower limit of the confidence interval of the first empirical correlation, given

the specified alpha level, DEFAULT = 95 percent
UL1 Upper limit of the confidence interval of the first empirical correlation, given the

specified alpha level, DEFAULT = 95 percent
LL2 Lower limit of the confidence interval of the second empirical correlation, given

the specified alpha level, DEFAULT = 95 percent
UL2 Upper limit of the confidence interval of the second empirical correlation, given

the specified alpha level, DEFAULT = 95 percent
z Test statistic for correlation difference in units of z distribution
p p value for one- or two-sided testing, depending on alternative = c("one.sided",

"two.sided)
Cohen_q Effect size measure for differences of independent correlations

Author(s)

Christian Blötner <c.bloetner@gmail.com>

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erl-
baum.

Eid, M., Gollwitzer, M., & Schmitt, M. (2015). Statistik und Forschungsmethoden (4.Auflage)
[Statistics and research methods (4th ed.)]. Beltz.

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin,
87, 245-251.
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Examples

diffcor.two(r1 = c(.39, .52, .22),
r2 = c(.29, .44, .12),
n1 = c(66, 66, 66), n2 = c(96, 96, 96), alpha = .01,
cor.names = c("a-b", "c-d", "e-f"), alternative = "one.sided")

diffpwr.dep Monte Carlo Simulation for the correlation difference between depen-
dent correlations

Description

Computation of a Monte Carlo simulation to estimate the statistical power of the comparison be-
tween the correlations of a variable with two competing variables that are also correlated with each
other.

Usage

diffpwr.dep(n,
rho12,
rho13,
rho23,
alpha = 0.05,
n.samples = 1000,
seed = 1234)

Arguments

n Sample size to be tested in the Monte Carlo simulation.

rho12 Assumed population correlation between the criterion with which both compet-
ing variables are correlated and the first of the two competing variables.

rho13 Assumed population correlation between the criterion with which both compet-
ing variables are correlated and the second of the two competing variables.

rho23 Assumed population correlation between the two competing variables.

alpha Type I error. Default is .05.

n.samples Number of samples generated in the Monte Carlo simulation. The recommended
minimum is 1,000 iterations, which is also the default.

seed To make the results reproducible, it is recommended to set a random seed.

Details

Depending on the number of generated samples (n.samples), correlation coefficients simulated.
For each simulated sample, it is checked whether the correlations r12 and r13 differ, given the
correlation r23. The ratio of simulated z-tests of the correlation difference tests exceeding the
critical z-value, given the intended alpha-level and sample size, equals the achieved statistical
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power(see Muthén & Muthén, 2002 <doi:10.1207/S15328007SEM0904_8>; Robert & Casella,
2010 <doi:10.1007/978-1-4419-1576-4>, for overviews of the Monte Carlo method).

It should be noted that the Pearson correlation coefficient is sensitive to linear association, but
also to a host of statistical issues such as univariate and bivariate outliers, range restrictions, and
heteroscedasticity (e.g., Duncan & Layard, 1973 <doi:10.1093/BIOMET/60.3.551>; Wilcox, 2013
<doi:10.1016/C2010-0-67044-1>). Thus, every power analysis requires that specific statistical pre-
requisites are fulfilled and can be invalid with regard to the actual data if the prerequisites do not
hold, potentially biasing Type I error rates.

Value

As dataframe with the following parameters

rho12 Assumed population correlation between the criterion with which both compet-
ing variables are correlated and the first of the two competing variables.

cov12 Coverage. Indicates the ratio of simulated confidence intervals including the
assumed effect size rho12.

bias12_M Difference between the mean of the distribution of the simulated correlations
and rho12, divided by rho12.

bias12_Md Difference between the median of the distribution of the simulated correlations
and rho12, divided by rho12.

rho13 Assumed population correlation between the criterion with which both compet-
ing variables are correlated and the second of the two competing variables.

cov13 Coverage. Indicates the ratio of simulated confidence intervals including the
assumed effect size rho13.

bias13_M Difference between the mean of the distribution of the simulated correlations
and rho13, divided by rho13.

bias13_Md Difference between the median of the distribution of the simulated correlations
and rho13, divided by rho13.

rho23 Assumed population correlation between the two competing variables.

cov23 Coverage. Indicates the ratio of simulated confidence intervals including the
assumed effect size rho23.

bias23_M Difference between the mean of the distribution of the simulated correlations
and rho23, divided by rho23.

bias23_Md Difference between the median of the distribution of the simulated correlations
and rho23, divided by rho23.

n Sample size to be tested in the Monte Carlo simulation.

pwr Statistical power as the ratio of simulated difference tests that yielded statistical
significance.

Biases should be as close to zero as possible and coverage should be ideally between .91 and .98
(Muthén & Muthén, 2002 <doi:10.1207/S15328007SEM0904_8>).

Author(s)

Christian Blötner <c.bloetner@gmail.com>
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References

Duncan, G. T., & Layard, M. W. (1973). A Monte-Carlo study of asymptotically robust tests for
correlation coefficients. Biometrika, 60, 551–558. https://doi.org/10.1093/BIOMET/60.3.551

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size
and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 599–620.
https://doi.org/10.1207/S15328007SEM0904_8

Robert, C., & Casella, G. (2010). Introducing Monte Carlo methods with R. Springer. https://doi.org/10.1007/978-
1-4419-1576-4

Wilcox, R. (2013). Introduction to robust estimation and hypothesis testing. Elsevier. https://doi.org/10.1016/C2010-
0-67044-1

Examples

diffpwr.dep(n.samples = 1000,
n = 250,
rho12 = .30,
rho13 = .45,
rho23 = .50,
alpha = .05,
seed = 1234)

diffpwr.one Difference Between an Assumed Sample Correlation and a Population
Correlation

Description

Computation of a Monte Carlo simulation to estimate the statistical power the correlation difference
between an assumed sample correlation and an assumed population correlation against which the
correlation should be tested.

Usage

diffpwr.one(n,
r,
rho,
alpha = .05,
n.samples = 1000,
seed = 1234)

Arguments

n Sample size to be tested in the Monte Carlo simulation.

r Assumed observed correlation.

rho Correlation coefficient against which to test (reflects the null hypothesis).

alpha Type I error. Default is .05.
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n.samples Number of samples generated in the Monte Carlo simulation. The recommended
minimum is 1,000 iterations, which is also the default.

seed To make the results reproducible, it is recommended to set a random seed.

Details

Depending on the number of generated samples (n.samples), correlation coefficients of size r are
simulated. Confidence intervals are constructed around the simulated correlation coefficients. For
each simulated coefficient, it is then checked whether the hypothesized correlation cofficient (rho)
falls within this interval. All correlations are automatically transformed with the Fisher z-transformation
prior to computations. The ratio of simulated confidence intervals excluding the hypothesized co-
efficient equals the statistical power, given the intended alpha-level and sample size (see Robert &
Casella, 2010 <doi:10.1007/978-1-4419-1576-4>, for an overview of the Monte Carlo method).

It should be noted that the Pearson correlation coefficient is sensitive to linear association, but
also to a host of statistical issues such as univariate and bivariate outliers, range restrictions, and
heteroscedasticity (e.g., Duncan & Layard, 1973 <doi:10.1093/BIOMET/60.3.551>; Wilcox, 2013
<doi:10.1016/C2010-0-67044-1>). Thus, every power analysis requires that specific statistical pre-
requisites are fulfilled and can be invalid with regard to the actual data if the prerequisites do not
hold, potentially biasing Type I error rates.

Value

As dataframe with the following parameters

r Empirically observed correlation.

rho Correlation against which r should be tested.

n The sample size entered in the function.

cov Coverage. Indicates the ratio of simulated confidence intervals including the
assumed correlation r. Should be between .91 and .98 (Muthén & Muthén, 2002
<doi:10.1207/S15328007SEM0904_8>).

bias_M Difference between the mean of the distribution of the simulated correlations
and rho, divided by rho.

bias_Md Difference between the median of the distribution of the simulated correlations
and rho, divided by rho.

pwr Statistical power as the ratio of simulated confidence intervals excluding rho.

Author(s)

Christian Blötner <c.bloetner@gmail.com>

References

Duncan, G. T., & Layard, M. W. (1973). A Monte-Carlo study of asymptotically robust tests for
correlation coefficients. Biometrika, 60, 551–558. https://doi.org/10.1093/BIOMET/60.3.551

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size
and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 599–620.
https://doi.org/10.1207/S15328007SEM0904_8
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Robert, C., & Casella, G. (2010). Introducing Monte Carlo methods with R. Springer. https://doi.org/10.1007/978-
1-4419-1576-4

Wilcox, R. (2013). Introduction to robust estimation and hypothesis testing. Elsevier. https://doi.org/10.1016/C2010-
0-67044-1

Examples

diffpwr.one(n = 500,
r = .30,
rho = .40,
alpha = .05,
n.samples = 1000,
seed = 1234)

diffpwr.two Monte Carlo Simulation for the correlation difference between two
correlations that were observed in two independent samples

Description

Computation of a Monte Carlo simulation to estimate the statistical power the correlation difference
between the correlation coefficients detected in two independent samples (e.g., original study and
replication study).

Usage

diffpwr.two(n1,
n2,
rho1,
rho2,
alpha = .05,
n.samples = 1000,
seed = 1234)

Arguments

n1 Sample size to be tested in the Monte Carlo simulation for the first sample.

n2 Sample size to be tested in the Monte Carlo simulation for the second sample.

rho1 Assumed population correlation to be observed in the first sample.

rho2 Assumed population correlation to be observed in the second sample.

alpha Type I error. Default is .05.

n.samples Number of samples generated in the Monte Carlo simulation. The recommended
minimum is 1,000 iterations, which is also the default.

seed To make the results reproducible, a random seed is specified.



16 diffpwr.two

Details

Depending on the number of generated samples (n.samples), correlation coefficients are simulated.
For each simulated pair of coefficients, it is then checked whether the confidence intervals (with
given alpha level) of the correlations overlap. All correlations are automatically transformed with
the Fisher z-transformation prior to computations. The ratio of simulated non- overlapping confi-
dence intervals equals the statistical power, given the alpha-level and sample sizes (see Robert &
Casella, 2010 <doi:10.1007/978-1-4419-1576-4>, for an overview of the Monte Carlo method).

It should be noted that the Pearson correlation coefficient is sensitive to linear association, but
also to a host of statistical issues such as univariate and bivariate outliers, range restrictions, and
heteroscedasticity (e.g., Duncan & Layard, 1973 <doi:10.1093/BIOMET/60.3.551>; Wilcox, 2013
<doi:10.1016/C2010-0-67044-1>). Thus, every power analysis requires that specific statistical pre-
requisites are fulfilled and can be invalid with regard to the actual data if the prerequisites do not
hold, potentially biasing Type I error rates.

Value

As dataframe with the following parameters

rho1 Assumed population correlation to be observed in the first sample.

n1 Sample size of the first sample.

cov1 Coverage. Ratio of simulated confidence intervals including rho1.

bias1_M Difference between the mean of the distribution of the simulated correlations
and rho1, divided by rho1.

bias1_Md Difference between the median of the distribution of the simulated correlations
and rho1, divided by rho1.

rho2 Assumed population correlation to be observed in the second sample.

n2 The sample size of the second sample.

cov2 Coverage. Ratio of simulated confidence intervals including rho2.

bias2_M Difference between the mean of the distribution of the simulated correlations
and rho2, divided by rho2.

bias2_Md Difference between the median of the distribution of the simulated correlations
and rho2, divided by rho2.

pwr Statistical power as the ratio of simulated non-verlapping confidence intervals.

Biases should be as close to zero as possible and coverage should be ideally between .91 and .98
(Muthén & Muthén, 2002 <doi:10.1207/S15328007SEM0904_8>).

Author(s)

Christian Blötner <c.bloetner@gmail.com>

References

Duncan, G. T., & Layard, M. W. (1973). A Monte-Carlo study of asymptotically robust tests for
correlation coefficients. Biometrika, 60, 551–558. https://doi.org/10.1093/BIOMET/60.3.551
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Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size
and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 599–620.
https://doi.org/10.1207/S15328007SEM0904_8

Robert, C., & Casella, G. (2010). Introducing Monte Carlo methods with R. Springer. https://doi.org/10.1007/978-
1-4419-1576-4

Wilcox, R. (2013). Introduction to robust estimation and hypothesis testing. Elsevier. https://doi.org/10.1016/C2010-
0-67044-1

Examples

diffpwr.two(n1 = 1000,
n2 = 594,
rho1 = .45,
rho2 = .39,
alpha = .05,
n.samples = 1000,
seed = 1234)

visual_mc Visualization of the simulated parameters

Description

To evaluate the quality of the Monte Carlo simulation beyond bias and coverage parameters (Muthén
& Muthén, 2002), it can be helpful to also inspect the simulated parameters visually. To this end,
visual_mc() can be used to visualize the simulated parameters (including corresponding confidence
intervals) in relation to the targeted parameter.

Usage

visual_mc(rho,
n,
alpha = .05,
n.intervals = 100,
seed = 1234)

Arguments

rho Targeted correlation coefficient of the simulation.

n An integer reflecting the sample size.

alpha Type I error. Default is .05.

n.intervals An integer reflecting the number of simulated parameters that should be visual-
ized in the graphic. Default is 100.

seed To make the results reproducible, a random seed is specified.
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Value

A plot in which the targeted correlation coefficient is visualized with a dashed red line and the
simulated correlation coefficients are visualized by black squares and confidence intervals (level
depending on the specification made in the argument alpha).

Author(s)

Christian Blötner <c.bloetner@gmail.com>

References

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size
and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 599–620.
https://doi.org/10.1207/S15328007SEM0904_8

Examples

visual_mc(rho = .25,
n = 300,
alpha = .05,
n.intervals = 100,
seed = 1234)
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