The SingleCellComplexHeatMap
package provides a powerful
and flexible way to visualize single-cell RNA-seq data using complex
heatmaps that simultaneously display both gene expression levels (as
color intensity) and expression percentages (as circle sizes). This
dual-information approach allows for comprehensive visualization of
expression patterns across different cell types and conditions.
library(SingleCellComplexHeatMap)
library(Seurat)
library(dplyr)
# Load optional color packages for testing
if (requireNamespace("ggsci", quietly = TRUE)) {
library(ggsci)
}
if (requireNamespace("viridis", quietly = TRUE)) {
library(viridis)
}
# For this vignette, we'll use the built-in pbmc_small dataset
data("pbmc_small", package = "SeuratObject")
seurat_obj <- pbmc_small
# Add example metadata for demonstration
set.seed(123)
seurat_obj$timepoint <- sample(c("Mock", "6hpi", "24hpi"), ncol(seurat_obj), replace = TRUE)
seurat_obj$celltype <- sample(c("T_cell", "B_cell", "Monocyte"), ncol(seurat_obj), replace = TRUE)
seurat_obj$group <- paste(seurat_obj$timepoint, seurat_obj$celltype, sep = "_")
# Check the structure
head(seurat_obj@meta.data)
#> orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8
#> ATGCCAGAACGACT SeuratProject 70 47 0
#> CATGGCCTGTGCAT SeuratProject 85 52 0
#> GAACCTGATGAACC SeuratProject 87 50 1
#> TGACTGGATTCTCA SeuratProject 127 56 0
#> AGTCAGACTGCACA SeuratProject 173 53 0
#> TCTGATACACGTGT SeuratProject 70 48 0
#> letter.idents groups RNA_snn_res.1 timepoint celltype
#> ATGCCAGAACGACT A g2 0 24hpi B_cell
#> CATGGCCTGTGCAT A g1 0 24hpi Monocyte
#> GAACCTGATGAACC B g2 0 24hpi Monocyte
#> TGACTGGATTCTCA A g2 0 6hpi T_cell
#> AGTCAGACTGCACA A g2 0 24hpi B_cell
#> TCTGATACACGTGT A g1 0 6hpi T_cell
#> group
#> ATGCCAGAACGACT 24hpi_B_cell
#> CATGGCCTGTGCAT 24hpi_Monocyte
#> GAACCTGATGAACC 24hpi_Monocyte
#> TGACTGGATTCTCA 6hpi_T_cell
#> AGTCAGACTGCACA 24hpi_B_cell
#> TCTGATACACGTGT 6hpi_T_cell
The simplest way to create a complex heatmap is to provide a Seurat object and a list of features:
# Define genes to visualize
features <- c("CD3D", "CD3E", "CD8A", "IL32", "CD79A")
# Create basic heatmap
heatmap_basic <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
group_by = "group"
)
For more complex analyses, you can group genes by functional categories:
# Define gene groups
gene_groups <- list(
"T_cell_markers" = c("CD3D", "CD3E", "CD8A", "IL32"),
"B_cell_markers" = c("CD79A", "CD79B", "MS4A1"),
"Activation_markers" = c("GZMK", "CCL5")
)
# Get all genes from groups
all_genes <- c("CD3D", "CD3E", "CD8A", "IL32","CD79A", "CD79B", "MS4A1","GZMK", "CCL5")
# Create advanced heatmap with gene grouping
heatmap_advanced <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = all_genes,
gene_classification = gene_groups,
group_by = "group",
time_points_order = c("Mock", "6hpi", "24hpi"),
cell_types_order = c("T_cell", "B_cell", "Monocyte"),
color_range = c(-2, 0, 2),
color_palette = c("navy", "white", "firebrick"),
max_circle_size = 3,
split_by = "time"
)
The complex heatmap displays two types of information simultaneously:
This dual approach allows you to distinguish between genes that are: - Highly expressed in few cells (small intense circles) - Moderately expressed in many cells (large moderate circles) - Highly expressed in many cells (large intense circles)
For optimal functionality, your group identifiers should follow the
format "timepoint_celltype"
:
# Example of proper data preparation
seurat_obj@meta.data <- seurat_obj@meta.data %>%
mutate(
# Create combined group for time course + cell type analysis
time_celltype = paste(timepoint, celltype, sep = "_"),
# Or create other combinations as needed
cluster_time = paste(RNA_snn_res.0.8, timepoint, sep = "_")
)
head(seurat_obj@meta.data[, c("timepoint", "celltype", "time_celltype","cluster_time")])
#> timepoint celltype time_celltype cluster_time
#> ATGCCAGAACGACT 24hpi B_cell 24hpi_B_cell 0_24hpi
#> CATGGCCTGTGCAT 24hpi Monocyte 24hpi_Monocyte 0_24hpi
#> GAACCTGATGAACC 24hpi Monocyte 24hpi_Monocyte 1_24hpi
#> TGACTGGATTCTCA 6hpi T_cell 6hpi_T_cell 0_6hpi
#> AGTCAGACTGCACA 24hpi B_cell 24hpi_B_cell 0_24hpi
#> TCTGATACACGTGT 6hpi T_cell 6hpi_T_cell 0_6hpi
Here, we test the ability to change the default titles for the annotation tracks.
heatmap <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
gene_classification = gene_groups,
group_by = "group",
time_points_order = c("Mock", "6hpi", "24hpi"),
# NEW: Custom annotation titles
gene_group_title = "Gene Function",
time_point_title = "Time Point",
cell_type_title = "Cell Type",
split_by = "time"
)
You can customize colors for different components:
# Custom color schemes
heatmap_colors <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
gene_classification = gene_groups,
group_by = "group",
color_range = c(-1.5, 0, 1.5,3), # 4-point gradient
color_palette = c("darkblue", "blue", "white", "red"), # 4 colors
gene_color_palette = "Spectral",
time_color_palette = "Set2",
celltype_color_palette = "Pastel1"
)
ggsci
Palettesif (requireNamespace("ggsci", quietly = TRUE)) {
heatmap_colors <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
gene_classification = gene_groups,
group_by = "group",
time_points_order = c("Mock", "6hpi", "24hpi"),
# NEW: Using ggsci color vectors
gene_color_palette = pal_npg()(3),
time_color_palette = pal_lancet()(3),
celltype_color_palette = pal_jama()(4),
# Custom expression heatmap colors
color_range = c(-2, 0, 2),
color_palette = c("#2166AC", "#F7F7F7", "#B2182B")
)
}
viridis
and Custom Colorsif (requireNamespace("ggsci", quietly = TRUE)) {
heatmap_colors <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
gene_classification = gene_groups,
group_by = "group",
time_points_order = c("Mock", "6hpi", "24hpi"),
# NEW: Using ggsci color vectors
gene_color_palette = pal_npg()(3),
time_color_palette = pal_lancet()(3),
celltype_color_palette = pal_jama()(4),
# Custom expression heatmap colors
color_range = c(-2, 0, 2),
color_palette = c("#2166AC", "#F7F7F7", "#B2182B")
)
}
# Publication-ready styling
heatmap_publication <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = all_genes,
gene_classification = gene_groups,
group_by = "group",
max_circle_size = 2.5,
row_fontsize = 12,
col_fontsize = 12,
row_title_fontsize = 14,
col_title_fontsize = 12,
percentage_legend_title = "Fraction of cells",
percentage_legend_labels = c("0", "20", "40", "60", "80"),
legend_side = "right"
)
This test demonstrates how to remove cell borders and column annotations for a cleaner look.
heatmap_con <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
gene_classification = gene_groups,
group_by = "group",
# NEW: Visual control parameters
show_cell_borders = FALSE,
show_column_annotation = FALSE,
# Other parameters for a clean plot
split_by = "none",
cluster_cells = TRUE
)
This test shows how to replace default gene names (e.g., symbols) with custom labels on the y-axis.
# Create a mapping for a subset of genes
gene_mapping <- c(
"CD3D" = "T-cell Receptor CD3d",
"CD79A" = "B-cell Antigen Receptor CD79a",
"GZMK" = "Granzyme K",
"NKG7" = "Natural Killer Cell Granule Protein 7"
)
heatmap_map <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
gene_classification = gene_groups,
group_by = "group",
# NEW: Gene name mapping
gene_name_mapping = gene_mapping,
row_fontsize = 9
)
You can control clustering behavior for both genes and cells:
# Custom clustering
heatmap_clustering <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
group_by = "group",
cluster_cells = TRUE,
cluster_features = TRUE,
clustering_distance_rows = "pearson",
clustering_method_rows = "ward.D2",
clustering_distance_cols = "euclidean",
clustering_method_cols = "complete"
)
For time course experiments, focus on temporal patterns:
# Time course focused analysis
heatmap_time <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
group_by = "group",
time_points_order = c("Mock", "6hpi", "24hpi"),
cell_types_order = c("T_cell", "B_cell", "Monocyte"),
split_by = "time",
show_celltype_annotation = TRUE,
show_time_annotation = TRUE
)
For cell type-focused analysis:
# Cell type focused analysis
heatmap_celltype <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
group_by = "celltype",
split_by = "celltype",
show_time_annotation = FALSE,
show_celltype_annotation = TRUE
)
For basic expression visualization without grouping:
# Simple analysis
heatmap_sample <- create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
gene_classification = NULL, # No gene grouping
group_by = "group",
show_time_annotation = FALSE,
show_celltype_annotation = FALSE,
split_by = "none"
)
This final example combines several new and existing features to create a highly customized, publication-ready plot.
create_single_cell_complex_heatmap(
seurat_object = seurat_obj,
features = features,
gene_classification = gene_groups,
group_by = "group",
time_points_order = c("Mock", "6hpi", "24hpi"),
# --- New Features ---
gene_group_title = "Functional Category",
time_point_title = "Time Post-Infection",
cell_type_title = "Cell Identity",
show_cell_borders = TRUE,
cell_border_color = "white",
gene_name_mapping = c("MS4A1" = "CD20"),
# --- Color Customization ---
color_range = c(-2, 0, 2),
color_palette = c("#0072B2", "white", "#D55E00"), # Colorblind-friendly
gene_color_palette = "Dark2",
time_color_palette = "Set2",
celltype_color_palette = "Paired",
# --- Layout and Font ---
row_fontsize = 10,
col_fontsize = 9,
row_title_fontsize = 12,
col_title_fontsize = 12,
col_name_rotation = 45,
legend_side = "right",
merge_legends = TRUE,
# --- Clustering and Splitting ---
cluster_features = FALSE, # Rows are already grouped
cluster_cells = FALSE, # Columns are already grouped
split_by = "time"
)
The package provides helper functions for step-by-step analysis:
# Prepare matrices
matrices <- prepare_expression_matrices(
seurat_object = seurat_obj,
features = features,
group_by = "group",
idents = NULL # Use all groups
)
# Check the structure
dim(matrices$exp_mat)
#> [1] 5 9
dim(matrices$percent_mat)
#> [1] 5 9
head(matrices$dotplot_data)
#> avg.exp pct.exp features.plot id avg.exp.scaled
#> CD3D 105.56974 25.00 CD3D 24hpi_B_cell 0.40882740
#> CD3E 27.84701 18.75 CD3E 24hpi_B_cell -0.90555550
#> CD8A 20.66799 12.50 CD8A 24hpi_B_cell 0.91030585
#> IL32 70.30069 37.50 IL32 24hpi_B_cell -0.07758342
#> CD79A 56.25748 31.25 CD79A 24hpi_B_cell 0.58606789
#> CD3D1 192.27796 62.50 CD3D 24hpi_Monocyte 1.25892500
# Create gene annotations
if (!is.null(gene_groups)) {
gene_ann <- create_gene_annotations(
exp_mat = matrices$exp_mat,
percent_mat = matrices$percent_mat,
gene_classification = gene_groups,
color_palette = "Set1"
)
# Check results
dim(gene_ann$exp_mat_ordered)
levels(gene_ann$annotation_df$GeneGroup)
}
#> [1] "T_cell_markers" "B_cell_markers" "Activation_markers"
# Create cell annotations
cell_ann <- create_cell_annotations(
exp_mat = matrices$exp_mat,
percent_mat = matrices$percent_mat,
time_points_order = c("Mock", "6hpi", "24hpi"),
cell_types_order = c("T_cell", "B_cell", "Monocyte"),
show_time_annotation = TRUE,
show_celltype_annotation = TRUE
)
# Check results
dim(cell_ann$exp_mat_ordered)
#> [1] 5 9
head(cell_ann$annotation_df)
#> id Time Point Cell Type
#> 1 Mock_T_cell Mock T_cell
#> 2 Mock_B_cell Mock B_cell
#> 3 Mock_Monocyte Mock Monocyte
#> 4 6hpi_T_cell 6hpi T_cell
#> 5 6hpi_B_cell 6hpi B_cell
#> 6 6hpi_Monocyte 6hpi Monocyte
You can save plots directly from the function:
merge_legends = TRUE
for cleaner layoutsidents
parameter includes valid groupsIf you encounter issues:
?create_single_cell_complex_heatmap
sessionInfo()
#> R version 4.3.3 (2024-02-29)
#> Platform: x86_64-conda-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#>
#> Matrix products: default
#> BLAS/LAPACK: /public3/home/fanxr/bin/miniforge3/envs/Monocle2/lib/libopenblasp-r0.3.28.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=zh_CN.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=zh_CN.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=zh_CN.UTF-8 LC_MESSAGES=zh_CN.UTF-8
#> [7] LC_PAPER=zh_CN.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=zh_CN.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: NA
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] viridis_0.6.5 viridisLite_0.4.2
#> [3] ggsci_3.2.0 dplyr_1.1.4
#> [5] Seurat_5.1.0 SeuratObject_5.0.2
#> [7] sp_2.1-4 SingleCellComplexHeatMap_0.1.2
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 jsonlite_1.8.9 shape_1.4.6.1
#> [4] magrittr_2.0.3 spatstat.utils_3.1-2 farver_2.1.2
#> [7] rmarkdown_2.29 GlobalOptions_0.1.2 vctrs_0.6.5
#> [10] ROCR_1.0-11 Cairo_1.6-2 spatstat.explore_3.3-4
#> [13] htmltools_0.5.8.1 sass_0.4.9 sctransform_0.4.1
#> [16] parallelly_1.41.0 KernSmooth_2.23-26 bslib_0.8.0
#> [19] htmlwidgets_1.6.4 ica_1.0-3 plyr_1.8.9
#> [22] plotly_4.10.4 zoo_1.8-12 cachem_1.1.0
#> [25] igraph_2.0.3 mime_0.12 lifecycle_1.0.4
#> [28] iterators_1.0.14 pkgconfig_2.0.3 Matrix_1.6-5
#> [31] R6_2.5.1 fastmap_1.2.0 fitdistrplus_1.2-2
#> [34] future_1.34.0 shiny_1.10.0 clue_0.3-66
#> [37] digest_0.6.37 colorspace_2.1-1 patchwork_1.3.0
#> [40] S4Vectors_0.40.2 tensor_1.5 RSpectra_0.16-2
#> [43] irlba_2.3.5.1 progressr_0.15.1 spatstat.sparse_3.1-0
#> [46] httr_1.4.7 polyclip_1.10-7 abind_1.4-5
#> [49] compiler_4.3.3 withr_3.0.2 doParallel_1.0.17
#> [52] fastDummies_1.7.5 MASS_7.3-60.0.1 rjson_0.2.23
#> [55] tools_4.3.3 lmtest_0.9-40 httpuv_1.6.15
#> [58] future.apply_1.11.3 goftest_1.2-3 glue_1.8.0
#> [61] nlme_3.1-165 promises_1.3.2 grid_4.3.3
#> [64] Rtsne_0.17 cluster_2.1.8 reshape2_1.4.4
#> [67] generics_0.1.3 gtable_0.3.6 spatstat.data_3.1-4
#> [70] tidyr_1.3.1 data.table_1.17.2 BiocGenerics_0.48.1
#> [73] spatstat.geom_3.3-4 RcppAnnoy_0.0.22 ggrepel_0.9.6
#> [76] RANN_2.6.2 foreach_1.5.2 pillar_1.10.1
#> [79] stringr_1.5.1 spam_2.11-1 RcppHNSW_0.6.0
#> [82] later_1.4.1 circlize_0.4.16 splines_4.3.3
#> [85] lattice_0.22-6 survival_3.8-3 deldir_2.0-4
#> [88] tidyselect_1.2.1 ComplexHeatmap_2.16.0 miniUI_0.1.1.1
#> [91] pbapply_1.7-2 knitr_1.49 gridExtra_2.3
#> [94] IRanges_2.36.0 scattermore_1.2 stats4_4.3.3
#> [97] xfun_0.50 matrixStats_1.5.0 stringi_1.8.4
#> [100] lazyeval_0.2.2 yaml_2.3.10 evaluate_1.0.3
#> [103] codetools_0.2-20 tibble_3.2.1 cli_3.6.3
#> [106] uwot_0.2.2 xtable_1.8-4 reticulate_1.40.0
#> [109] munsell_0.5.1 jquerylib_0.1.4 Rcpp_1.0.14
#> [112] globals_0.16.3 spatstat.random_3.3-2 png_0.1-8
#> [115] spatstat.univar_3.1-1 parallel_4.3.3 ggplot2_3.5.1
#> [118] dotCall64_1.2 listenv_0.9.1 scales_1.3.0
#> [121] ggridges_0.5.6 leiden_0.4.3.1 purrr_1.0.2
#> [124] crayon_1.5.3 GetoptLong_1.0.5 rlang_1.1.5
#> [127] cowplot_1.1.3