In this vignette, we will show how to upgrade the Lotka-predator-prey model from GillespieSSA to GillespieSSA2. First, have a look at the GillespieSSA vignette:
vignette("lotka_predator_prey", package = "GillespieSSA")
The model consists of the following objects:
library(GillespieSSA)
<- c(c1 = 10, c2 = .01, c3 = 10)
parms <- 2 # Final time
tf <- "Lotka predator-prey model" # Name
simName <- c(Y1=1000, Y2=1000)
x0 <- matrix(c(+1, -1, 0, 0, 1, -1), nrow = 2, byrow = TRUE)
nu <- c("c1*Y1", "c2*Y1*Y2","c3*Y2")
a <- GillespieSSA::ssa(
out x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.d(),
simName = simName,
censusInterval = .001,
verbose = FALSE,
consoleInterval = 1
) ssa.plot(out, show.title = TRUE, show.legend = FALSE)
In order to port these objects, it is preferable to use the updated notation from the respective GillespieSSA2 vignette:
vignette("lotka_predator_prey", package = "GillespieSSA2")
library(GillespieSSA2)
<- "Lotka Predator-Prey model"
sim_name <- c(c1 = 10, c2 = .01, c3 = 10)
params <- 2
final_time <- c(Y1 = 1000, Y2 = 1000)
initial_state <- list(
reactions reaction("c1 * Y1", c(Y1 = +1)),
reaction("c2 * Y1 * Y2", c(Y1 = -1, Y2 = +1)),
reaction("c3 * Y2", c(Y2 = -1))
)<- GillespieSSA2::ssa(
out initial_state = initial_state,
reactions = reactions,
params = params,
final_time = final_time,
method = ssa_exact(),
census_interval = .001,
verbose = FALSE,
sim_name = sim_name
) plot_ssa(out)
However, if you want to use the GillespieSSA1 objects directly, you can also transform these programmatically. The interface of GillespieSSA2 is very similar, it only requires you to use different parameter names, and combine the state-change matrix nu
and the propensity functions a
into one list of reactions.
<-
out ::ssa(
GillespieSSA2initial_state = x0,
reactions = port_reactions(x0 = x0, a = a, nu = nu),
params = parms,
method = ssa_exact(),
final_time = tf,
census_interval = .001,
verbose = FALSE,
sim_name = simName
)print(out$stats)
## method sim_name sim_time_exceeded all_zero_state
## 1 exact Lotka predator-prey model TRUE FALSE
## negative_state all_zero_propensity negative_propensity walltime_exceeded
## 1 FALSE FALSE FALSE FALSE
## walltime_elapsed num_steps dtime_mean dtime_sd firings_mean firings_sd
## 1 0.1053002 61805 3.23602e-05 1.378919e-08 1 0
plot_ssa(out)