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Abstract

This work describes the R package GET that implements global envelopes for a general
set of d-dimensional vectors T in various applications. A 100(1− α)% global envelope is a
band bounded by two vectors such that the probability that T falls outside this envelope
in any of the d points is equal to α. The term ŠglobalŠ means that this probability is
controlled simultaneously for all the d elements of the vectors. The global envelopes can
be employed for central regions of functional or multivariate data, for graphical Monte
Carlo and permutation tests where the test statistic is multivariate or functional, and
for global conĄdence and prediction bands. Intrinsic graphical interpretation property is
introduced for global envelopes. The global envelopes included in the GET package have
this property, which particularly helps to interpret test results, by providing a graphical
interpretation that shows the reasons of rejection of the tested hypothesis. Examples
of different uses of global envelopes and their implementation in the GET package are
presented, including global envelopes for single and several one- or two-dimensional func-
tions, Monte Carlo goodness-of-Ąt tests for simple and composite hypotheses, comparison
of distributions, functional analysis of variance, functional linear model, and conĄdence
bands in polynomial regression.

Keywords: functional linear model, central region, goodness-of-Ąt, graphical normality test,
Monte Carlo test, multiple testing, permutation test, R, spatial point pattern.

Preface

This vignette corresponds to Myllymäki and Mrkvička (2023, GET: Global envelopes in R.
arXiv:1911.06583 [stat.ME]) available at https://doi.org/10.48550/arXiv.1911.06583.
When citing the vignette and package please cite Myllymäki and Mrkvička (2023) and refer-
ences given by typing citation("GET") in R.

1. Introduction

Global envelopes are useful for formal testing of various hypotheses using functional or multi-
variate statistics when interpretation of the test results is of key interest, for determining cen-
tral regions of functional or multivariate data, and also for determining conĄdence or predic-
tion bands (e.g., Myllymäki, Mrkvička, Grabarnik, Seijo, and Hahn 2017; Mrkvička, Myllymä-
ki, and Hahn 2017; Narisetty and Nair 2016). Global envelopes have shown their usefulness
already in many areas, e.g., spatial statistics, functional data analysis and image analysis, with
applications to agriculture, architecture and art, astronomy and astrophysics, ecology, evolu-
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tion, economics, eye movement research, Ąsheries, forestry, geography, material science, and
medicine, health and neurosciences (e.g., Stoyan 2016; Murrell 2018; Häbel, Rajala, Marucci,
Boissier, Schladitz, Redenbach, and Särkkä 2017; Chaiban, Biscio, Thanapongtharm, Tildes-
ley, Xiao, Robinson, Vanwambeke, and Gilbert 2019; Pollington, Tildesley, Hollingsworth,
and Chapman 2020). To make these methods easily accessible, the R (R Core Team 2023)
package GET has been developed that is available from the Comprehensive R Archive Net-
work (CRAN) at https://cran.r-project.org/package=GET. A development version of
the package is available via the repository https://github.com/myllym/GET. The package
provides an implementation of global envelopes in various settings.

Because there are many other methods that can be used for the same purposes as global
envelopes, we Ąrst give a motivating example of functional analysis of covariance (ANCOV-
A) to demonstrate the main features and advantages of global envelope tests (Section 1.1).
Other possible usages are also discussed in more detail. The second part of this introductory
section describes the competing and complementary methods and software for these same
usages. Thereafter, in Section 2, we give an overview of global envelopes including the formal
deĄnition of their graphical interpretation, summary of the types of global envelopes and
their implementation in GET. In Section 3, the usage of global envelopes is shown for several
examples of applications illustrating main features of the GET package, namely 1) the com-
putation of central regions and functional boxplots for a set of functions or jointly for several
sets of functions (Section 3.1); 2) the Monte Carlo goodness-of-Ąt test for simple hypotheses
with application to spatial statistics (Section 3.2); 3) the Monte Carlo goodness-of-Ąt test for
composite hypotheses with application to graphical normality testing (Section 3.3); 4) the
graphical n-sample test of correspondence of distribution functions, n ≥ 2 (Section 3.4); 5)
the graphical functional one-way analysis of variance (ANOVA) (Section 3.5); 6) the func-
tional general linear model (GLM) for images (Section 3.6); and 7) the computation of the
conĄdence band in polynomial regression (Section 3.7). The Ąnal section, Section 4, is left
for discussion.

1.1. A motivating example and possible usages

Let us study the differences between population growth accumulated in different continents
over the period of 55 years. We assume that GDP (gross domestic product) can be the main
driver of population growth in different countries, therefore we add GDP into the model as
a nuisance factor. Figure 1 (left) shows population growth, deĄned here as the population
at the end of the year divided by the population at the beginning of the year, in years from
1960 to 2014 in Africa, Asia, Europe and North America, and Latin America, total in 112
countries with more than one million inhabitants in 1950 (Nagy, Gijbels, and Hlubinka 2017;
Dai, Mrkvička, Sun, and Genton 2020). Figure 1 (right) shows the GDP of every country in
the study discounted to the 1960 USD, according to USD inĆation. The data was obtained
from the World Bank. The missing values of the GDP of a country were extrapolated using
the closest known ratio of the GDP of the country and the median GDP in that year, and
interpolated using linear interpolation of the two closest ratios.

Since the global envelopes are a nonparametric tool, we can use as a test statistic any multi-
variate or functional test statistic without the worry of breaking assumptions of normality or
homogeneity of the distribution of the test statistic in different years. Also, since we can use
any test statistic, we can combine several functional test statistic into one (for more details

https://cran.r-project.org/package=GET
https://github.com/myllym/GET
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Figure 1: Population growth and GDP (in 1960 USD) curves for 1960Ű2014 for 112 countries
from the four continents.

about combining test statistics see Appendix B). Here, we combine four functional test statis-
tics, each representing a coefficient vector attached to a continent in our ANCOVA model,
i.e., our test statistic is

βCont = (βCont
1,1960, . . . , βCont

1,2014
︸ ︷︷ ︸

1: Africa

, βCont
2,1960, . . . , βCont

2,2014
︸ ︷︷ ︸

2: Asia

,

βCont
3,1960, . . . , βCont

3,2014
︸ ︷︷ ︸

3: Europe and North America

, βCont
4,1960, . . . , βCont

4,2014
︸ ︷︷ ︸

4: Latin America

), (1)

where βCont
1,i , . . . βCont

4,i are the parameters of the univariate ANCOVA model for year i, com-
puted with condition

∑4
j=1 βCont

j,i = 0. This model parametrization enables that the parameter
βCont

j,i is the difference between the j-th continentŠs growth rate and the overall mean.

This test statistic allows for a direct comparison of each continentŠs growth rate with the
worldŠs mean growth rate. Figure 2 shows the test statistic (Equation 1) computed for the
data together with 95% global envelope computed under the null model of no continent
effect but with nuisance effect of GDP. This output shows, Ąrst, the formal global p value,
which indicates that the effect of the continent is signiĄcant after applying an adjustment
for multiple comparisons for the 55 years, and four continents. Second, it shows the reasons
of rejections, i.e., which years have led to the signiĄcant test result. Due to the intrinsic
graphical interpretation (IGI, see DeĄnition 2.1) of the global envelope, we have a one-to-one
correspondence between the formal global test and its graphical interpretation, i.e., the data
statistic lies outside the envelope for some point (here years and continents) if and only if
the global test is signiĄcant. This allows for direct identiĄcation of the signiĄcant years.
Third, the output shows the direction and amount of deviation from the null hypothesis. For
example, the growth rate in Europe and North America is signiĄcantly lower than the worldŠs
average in all years, whereas AsiaŠs growth rate is slightly signiĄcantly higher than the worldŠs
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average only up to the year 1966. Fourth, due to the free choice of the test statistic, the test
output shows here the comparison individually for every continent (level of the categorical
predictor). The GET package also allows for the choice of comparison between all pairs of
continents in the style of the post hoc test. Note that usually, the two tests are applied - global
AN(C)OVA and multiple comparison post hoc test. Note also that we can calculate results
also for continuous GDP effect and interaction effect between the GDP and all continents (all
levels of the categorical effect) in the same way (see Mrkvička and Myllymäki 2023).

Continent.Europe and North America Continent.Latin America

Continent.Africa Continent.Asia

1960 1980 2000 1960 1980 2000
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Central function Data function

Graphical functional GLM: p < 0.001

Figure 2: Test for the main effect of the continent, given the GDP (in 1960 USD) as a nuisance
factor. The red color is used to highlight the (signiĄcant) years where the data coefficient
β̂Cont

j,i , i = 1960, . . . , 2014, j = 1, 2, 3, 4, goes outside the 95% global envelope computed under
the null model of no continent effect. Here j refers to the continent given in the titles.
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Technically, the global envelope of Figure 2 was computed from 5000 permutations under the
null model using the standard Freedman and Lane (1983) permutation procedure. The IGI
measure used was the area measure (see Appendix A for details).

The above example illustrates the global envelope test, a possible usage of global envelopes.
The usage of global envelopes is however more versatile. They can be used for producing

(i) a central region: a central region is constructed for a set of vectors or functions in
order to Ąnd central or outlying vectors or functions (e.g., outlier detection, functional
boxplot);

(ii) a global envelope test: a Monte Carlo goodness-of-Ąt test or a permution test where
the test statistic is multivariate or a function of any dimension (e.g., goodness-of-Ąt test
for point patterns, random sets, or for a family of distributions, functional ANOVA,
functional GLM, n-sample test of correspondence of distribution functions);

(iii) global conĄdence or prediction bands: a conĄdence or prediction band is produced
from a set of vectors or functions obtained by bootstrap or sampling from Bayesian
posterior distribution (e.g., conĄdence band in polynomial regression, Bayesian posterior
prediction).

In fact, the global envelope test uses the 95% central region (case (i) usage) computed under
the null hypothesis for determining the test results. The global conĄdence bands (case (iii)
usage) also uses the 95% central region computed under the full model. Thus in core of all
applications lies the central region. Central regions can be constructed based on any functional
ordering, but we concentrate only in those satisfying the IGI, the one-to-one correspondence
of a functional ordering and its graphical interpretation. In fact, when central region is not
satisfying IGI and we see a function which is not contained completely inside the central
region, we still do not know if such a function can be regarded as extremal. On the contrary,
when we use IGI ordering, we know that such a function is among the most, say 5%, extremal
functions.

In this article, we focus on global envelopes for testing the global hypothesis under the control
of family-wise error rate (FWER). This is to determine if at least one component of the
test statistic can be considered signiĄcant. Alternatively, one can be interested in the local
test, which aims to differentiate between the domain where the test should be rejected and
where it should not be rejected. For this purpose, the false discovery rate (FDR) control is
typically suitable, and we recently developed the FDR envelope (Mrkvička and Myllymäki
2023) which accomplishes this task with an envelope which has the IGI under the FDR control.
Examples of the FDR envelopes are provided in the vignette which can be accessed by typing
library("GET") and vignette("FDRenvelopes") in R.

1.2. Competing and complementary methods and software

Below are listed the other R packages (or code) that we know to provide functions for some
global envelopes or central regions. Further, as already mentioned, the problems (i)-(iii)
can be solved by other methods as well, not just by global envelopes. The relation of these
methods to the global envelope methods are also discussed below.

Global envelopes and central regions:
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• The R package fda (Ramsay, Graves, and Hooker 2022) provides the function fbplot()

for the computation of the central region and functional boxplot according to two dif-
ferent orderings than those described here, namely the band depth and modiĄed band
depth (MBD) (López-Pintado and Romo 2009; Sun, Genton, and Nychka 2012), but
these depths do not allow for IGI.

• The R package depthTools (López-Pintado and Torrente 2013; Torrente, López-Pintado,
and Romo 2013) similarly allows for central regions based on MBD (no IGI).

• The R package spatstat (Baddeley, Rubak, and Turner 2015) provides the function
envelope() for the simulation of envelopes based on a given summary function of
a spatial point pattern. By default, envelope() provides a pointwise envelope, but
the option global = TRUE allows one to compute the global envelope of Ripley (1981),
which corresponds to the ’unscaled’ envelope in GET (see Table 1). It has been shown
that this unscaled global envelope test has generally lower power than the other methods
of Table 1 (Myllymäki, Grabarnik, Seijo, and Stoyan 2015; Myllymäki et al. 2017).
The corresponding adjusted unscaled global envelope (Dao and Genton 2014; Baddeley,
Hardegen, Lawrence, Milne, Nair, and Rakshit 2017) for composite hypotheses is also
provided in spatstat (the function dg.envelope()).

• Aldor-Noiman, Brown, Buja, Rolke, and Stine (2013) presented a global envelope for
a Q-Q plot (and provided a link to an R script). The shape of the envelope is derived
theoretically, but the size of the envelope has to be computed from simulations. The
methods of the GET package can be used for this purpose as well, both for simple and
composite hypotheses, but the theoretical achievement of Aldor-Noiman et al. (2013)
for simple hypotheses has apparent advantages.

• The R package boot (Canty and Ripley 2017; Davison and Hinkley 1997) provides
the function envelope() for the computation of a global envelope from bootstrapped
functions. This envelope has the same shape as the global rank envelope (’rank’ in
Table 1), but the appropriate envelope (l of Equation 8) is chosen in boot experimentally
(Davison and Hinkley 1997). Since the differences in the nominal levels of the subsequent
(l-)envelopes from which the choice is made can be large, the predetermined level is
reached only approximately.

• The package dbmss (Marcon, Traissac, Puech, and Lang 2015) provides similar glob-
al envelopes as the boot package (Duranton and Overman 2005) but for the global
conĄdence envelopes of spatial summaries.

• There are other R packages with the ability to compute simultaneous conĄdence bands
for various models, e.g., excursions (Bolin and Lindgren 2015, 2017, 2018) for Gaus-
sian processes, AdaptFitOS (Wiesenfarth, Krivobokova, Klasen, and Sperlich 2012) for
semiparametric regression models and SCBmeanfd (Degras 2016) for nonparametric re-
gression models with functional data using a functional asymptotic normality result.
Instead, the global envelopes of the GET package (see Table 1) are constructed non-
parametrically from a set of vectors. Apparently, the package excursions allows also for
a non-parametric version with the same shape as the global rank envelope (’rank’ in
Table 1), similarly as boot.
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Multiple testing: The global envelope tests can be seen as a general solution to the multiple
testing problem in Monte Carlo tests (Mrkvička et al. 2017). There are several other meth-
ods and R packages to the multiple testing problem controlling FWER. The few packages
mentioned below have a link to the methods of GET:

• The R packages coin (Hothorn, Hornik, van de Wiel, and Zeileis 2008, 2006) and multtest

(Pollard, Dudoit, and van der Laan 2005) enable one to compute the p value adjusted
for multiple testing in a multiple permutation test based on the minimum p value
computed from all individual tests. The null distribution of the minimum p values or
the maximum of a test statistic is obtained from permutations. The minimum p value
method corresponds to the conservative rank test based on the p+ value (see global rank
envelope in Appendix A).

• General multiple test procedures are also provided by the package sgof (Conde and
de Una Alvarez 2016) for goodness-of-Ąt testing and by the package stats (R Core Team
2023) for adjusting the p values for multiple comparisons by Bonferroni type methods
(the function p.adjust()).

Functional GLM: The global envelope tests can also be used for functional GLM using a
permutation strategy to generate samples under the null hypothesis. There are several other
methods and software to the functional GLM problem:

• The PALM software (Winkler, Ridgway, Webster, Smith, and Nichols 2014) allows
for the computation of various functional GLM designs using permutation tests. The
multiple testing problem is solved by an unscaled envelope constructed for the test
statistic (e.g., F statistic).

• The R packages fda.usc (Febrero-Bande and Oviedo de la Fuente 2012) and fdANOVA

(Gorecki and Smaga 2017) allow for the computation of functional ANOVA designs
by several methods together with the computation of factorŠs signiĄcances. Similarly
the package fda (Ramsay et al. 2022) allows for computations in functional regression
designs. However, to the best of our knowledge, these do not provide the IGI of tests
of a factor signiĄcance.

2. Overview of global envelopes in GET

2.1. Global envelopes and intrinsic graphical interpretation (IGI)

Global envelopes are constructed for general multivariate statistics, so in the case when the
data are purely functional, they Ąrst have to be discretized. The discretization of the functions
can be arbitrary, as long as it is the same for each function. Therefore, let T1, T2, . . . , Ts be
d-dimensional vectors, Ti = (Ti1, Ti2, . . . , Tid) for i = 1, . . . , s. In the case (i) (see Section 1.1),
the vectors Ti are observed functions assumed to follow the same distribution and the aim is
to Ąnd the least extreme 100(1 − α)% of the s vectors to construct the central region, with
α ∈ (0, 1). In the case (ii), the vector T1 is an observed function and T2, . . . , Ts are vectors
simulated under the tested null hypothesis. The key idea of a global envelope test is the same
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as a general Monte Carlo or permutation test: the rank of the data vector T1 among all the
vectors T1, . . . , Ts determines the result and the p value of the test (Barnard 1963). And, in
the case (iii), Ti are generated under the given bootstrap or Bayesian scheme. As mentioned
already, in the core of all cases (i)-(iii) lies the central region and, for the purpose of ordering
the d-dimensional vectors Ti (or functions) from the most extreme to the least extreme and
Ąnding the central region, many different measures exist. The GET package focuses on such
measures for which it is possible to construct the global envelope with a practically interesting
graphical interpretation, which we call IGI.

In general, an envelope is considered to be a band bounded by two vectors. A 100(1 − α)%

global envelope is a set (T(α)
low, T

(α)
upp) of envelope vectors with T

(α)
low = (T (α)

low 1, . . . , T
(α)
low d) and

T
(α)
upp = (T (α)

upp 1, . . . , T
(α)
upp d) such that the probability that Ti falls outside this envelope in any

of the d points is equal to α, for α ∈ (0, 1), i.e.,

P (Tik /∈ [T (α)
low k, T

(α)
upp k] for any k ∈ ¶1, . . . , d♢) = α. (2)

In all cases (i)-(iii), global means that the envelope is given with the prescribed coverage
100(1 − α)% simultaneously for all the elements of the multivariate or functional statistic,
but the probability depends on the situation (i)-(iii). In case (i), the probability is taken
under the distribution of the vectors Ti. In case (ii), the probability is taken under the null
hypothesis H0, and, in case (iii), the probability is taken under the distribution of the random
vector Ti generated under the given bootstrap or Bayesian scheme. It should be noted that in
a pointwise (or local) envelope the probability to fall out of the envelope is controlled instead
individually for every element of the vector Ti.

We deĄne the IGI property for global envelopes as follows.

Definition 2.1 Assume that a general ordering ≺ of the vectors Ti, i = 1, . . . , s, is induced
by a univariate measure Mi. That is, Mi ≥ Mj iff Ti ≺ Tj, which means that Ti is less
extreme or as extreme as Tj. (The smaller the measure Mi, the more extreme the Ti is.)

The 100(1 − α)% global envelope [T(α)
low k, T

(α)
upp k] has intrinsic graphical interpretation (IGI)

with respect to the ordering ≺ if

1. M(α) ∈ R is the largest of the Mi such that the number of those i for which Mi < M(α)

is less or equal to αs;

2. Tik < T
(α)
low k or Tik > T

(α)
upp k for some k = 1, . . . , d iff Mi < M(α) for every i = 1, . . . , s;

3. T
(α)
low k ≤ Tij ≤ T

(α)
upp k for all k = 1, . . . , d iff Mi ≥ M(α) for every i = 1, . . . , s.

The points 2. and 3. are equivalent, but we specify them both in order to stress both graphical
properties of IGI. The IGI property means that the vector Ti is outside the 100(1−α)% global
envelope in any of its components if and only if the vector is considered to be extreme by the
measure M at the level α, and the vector Ti is completely inside the global envelope if and
only if the vector is not extreme at the level α. Thus, the global envelope with IGI provides
a solution to the tasks (i)-(iii) in a graphical manner.

In particular in case (ii), the data vector T1 is compared with a global envelope in order to
decide if the data vector is extreme (H0 is rejected) or not extreme (H0 is not rejected), and to
Ąnd reasons for the possible rejection of H0 through inspecting for which k = 1, . . . , d the data
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vector T1 is outside the global envelope. For this testing task, in addition to a global envelope,
a Monte Carlo p value is computed according to the measure Mi: p =

∑s
i=1 1(Mi ≤ M1)

/
s

(see, e.g., Myllymäki et al. 2017; Mrkvička et al. 2017; Mrkvička, Myllymäki, Jílek, and
Hahn 2020; Mrkvička, Myllymäki, Kuronen, and Narisetty 2022; Mrkvička, Roskovec, and
Rost 2021). In order to obtain an exact Monte Carlo test, i.e., a test that achieves the
prescribed FWER, the exchangeability of the test vectors Ti is required. All the examples in
Section 3 satisfy exchangeability, except the functional GLM where the permutation of the
residuals from the null model (Freedman and Lane 1983) is used. This permutation scheme
is commonly used in univariate permutation GLMs and widely accepted as the best available
solution (Anderson and Robinson 2001; Anderson and Ter Braak 2003; Winkler et al. 2014).

2.2. Types of global envelopes

The GET package implements seven global envelopes deĄned in earlier works as speciĄed
in Table 1, together with their short descriptions and speciĄcations in the GET functions.
DeĄnitions of these envelopes are given in Appendix A. The Ąrst four envelopes in Table 1
(’rank’, ’erl’, ’cont’, ’area’) are completely non-parametric envelopes and are called
global rank envelopes, because they are all based on pointwise ranks of the vectors Ti. The
extreme rank length, continuous and area envelopes are reĄnements to the rank envelope.
Note here that if a global FWER control is provided within other packages, it is only provided
for not reĄned ’rank’ envelope or ’unscaled’ envelope. (see details in Appendix A). The
’st’ and ’qdir’ envelopes parameterize the marginal distributions of Tik, i = 1, . . . , s by
one or two parameters, respectively, for all k = 1, . . . , d. Thus they can be regarded as
approximations of the Ąrst four envelopes.

In a typical application one needs to choose one of the measures with IGI (Table 1). In
general, the Ąrst Ąve types of Table 1 instead of the last two, ’st’ and ’unscaled’, can
be recommended based on previous studies (Myllymäki et al. 2015, 2017). Regarding the
choice between the Ąrst Ąve types, when one can afford a large number of simulations in cases
(ii)-(iii) of Section 1.1, one can well use type ’erl’ that is based only on the ranks, thus
also suiting particularly well for combined tests where the test statistic is a combination of
several functional test statistics (see Appendix B and examples in Sections 1.1 and 3.1). On
the other hand, any other choice is also Ąne, because the ’rank’, ’erl’, ’cont’ and ’area’

measures lead to an equivalent outcome for a large number of simulations or permutations.
However, the deĄnition of large depends on the situation. A simulation study presented in
Myllymäki and Mrkvička (2020) supplements this article, giving guidance on the required
number of simulations under different scenarios.

Another situation arises in case (i) with a low number of vectors or functions, or in cases (ii)-
(iii) where the simulations or permutations are too time consuming to have a large number
of them. Then the choice of the measure plays a role. Based on our experience supported
by the simulation study presented in Myllymäki and Mrkvička (2020), the ’erl’ and ’area’

measures are typically good choices for detecting integral type of extremeness where the
vector Ti is extreme in the set of vectors for a large range of its components. On the
other hand, the ’cont’ and ’qdir’ measures are most sensitive to the maximum type of
extremeness, i.e., the case where Ti is extreme only for a few of its components, but also
the ’area’ measure performs well. Thus, if no particular type of extremeness is expected a
priori, the ’area’ measure is often a good compromise, since it is sensitive to the amount
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Type Introduced in Description
’rank’ Myllymäki et al. (2017) Global rank envelope corresponding to the extreme

rank measure (with ties); unique ordering (or p val-
ue) provided additionally as speciĄed in the argument
ties, e.g., ’erl’ for extreme rank lengths

’erl’ Myllymäki et al.
(2017); Narisetty and
Nair (2016); Mrkvička
et al. (2020)

Global rank envelope corresponding to extreme rank
length (ERL) measure

’cont’ Hahn (2015); Mrkvička
et al. (2022)

Global rank envelope corresponding to the continuous
rank measure

’area’ Mrkvička et al. (2022) Global rank envelope corresponding to the area mea-
sure

’qdir’ Myllymäki et al. (2017,
2015)

Directional quantile envelope test corresponding to
the directional quantile maximum absolute deviation
(MAD) measure

’st’ Myllymäki et al. (2017,
2015)

Studentized envelope test corresponding to the stu-
dentized MAD measure

’unscaled’ Ripley (1981) Unscaled envelope test corresponding to the classical,
unscaled MAD measure. The envelope has a constant
width.

Table 1: Overview of different types of global envelopes in the GET package. The types
’erl’, ’cont’ and ’area’ reĄne the type ’rank’ by breaking the ties in the extreme ranks,
for details see Appendix A.

of outlyingness (similarly as ’erl’) and to the value of outlyingness (similarly as ’cont’

and ’qdir’). Illustration of the different measures can be found in Mrkvička et al. (2022,
Section 2.4).

To conclude, for testing, if just possible, we recommend to use a large number of simulations
and one of the Ąrst Ąve measures of Table 1. If large number of simulations is not possible,
then still BarnardŠs Monte Carlo test is valid. For testing and ordering functional data, use
then the measure which is sensitive to the type of extremeness that you regard as important.
If the type of extremeness is unknown, then the ’area’ measure can be preferred.

As it was mentioned earlier, other measures or depths without IGI can be used for the order-
ing the data. We believe that there exists no speciĄc depth/measure which would perform
universally the best and that for every depth/measure it is possible to construct a situation
for which the chosen depth/measure will be the most powerful. However, for an application at
hand, it is typically not possible to know the most powerful depth/measure; one has to make
the choice of the depth/measure in advance. Therefore, we believe that it is often practical
to choose the IGI measure, which brings an easier interpretation. In a particular study of the
power of goodness of Ąt tests in spatial statistics our IGI measures were much more powerful
than the modiĄed band depth and modiĄed half region depth (Myllymäki et al. 2017), but
no universal conclusions can be drawn from a single study.
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2.3. Implementation and key functions in GET

As described above, the construction of a global envelope is based on a measure M . The
calculation of different measures in the GET package is provided by the function forder()

(functional ordering). Most often, the user however calls either central_region() for con-
structing central regions with IGI or global_envelope_test() for performing global envelope
tests (equipped with p values as well). Both functions utilize forder() for the calculation of
the measures M . The most important arguments of these functions are

central_region(curve_sets, type = 'erl', coverage = 0.50, ...)

global_envelope_test(curve_sets, type = 'erl', alpha = 0.05, ...)

where the multivariate or functional data are provided in curve_sets, type speciĄes type
of the global envelope (see Table 1 and descriptions in Appendix A), and the coverage or
level of the global envelope is speciĄed by coverage or alpha (= 1−coverage), respectively.
Additionally, one can, for example, specify the one or two-sided alternative, i.e., whether
only small or large values of Ti or both should be considered extreme. These two functions
are the core functions for global envelopes in the package GET: given an appropriate set of
curves, or, in fact vectors, they can be used for producing global envelopes of Table 1 in all
tasks (i)-(iii) listed in Section 1.1.

Recently, the argument typeone was added to global_envelope_test(). This argument can
be used to specify the control for the global test, FWER or FDR, where the former (default)
leads to the tests of Table 1, as further speciĄed by the argument type, and the latter to the
FDR envelopes proposed in Mrkvička and Myllymäki (2023).

Different objects are supported for the data in curve_sets (see help Ąles of the functions and
examples below), but the basic form provided by the GET package is a Ścurve_setŠ object
that can be constructed by the function curve_set() simply providing the observed and/or
simulated curves, and optionally the (one- or two-dimensional) argument values where the
curves have been observed (see Section 3.2 for an example). The function curve_set() takes
care of checking the appropriateness of the data, and saving the data in the form that contains
the relevant information of the curves for global envelope methods, in particular for plotting
the results with graphical interpretation (see examples in Section 3).

In addition to constructing global envelopes from a set of curves, the central_region() and
global_envelope_test() functions provide combined central regions or combined global
envelope tests if the user provides a list consisting of (appropriate) sets of curves in the
argument curve_sets. Details of the combining methodology is given in Appendix B and
examples are given in Sections 1.1 and 3. The GET package also provides functions for speciĄc
tasks (see Table 2 and the examples in Section 3). These functions utilize central_region()

and global_envelope_test() for the global envelope construction. In addition, many of
these functions take care of preparing the simulations or permutations for the speciĄc testing
task. The print() and plot() methods are available for the objects obtained as the output
of the global envelope methods of GET. The plots present the results with IGI. They are
produced using the ggplot2 package (Wickham 2016).

3. Using GET
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Function name Description
curve_set() Create a Ścurve_setŠ out of data given in the right form
crop_curves() Crop curves
forder() Different measures for ordering the multivariate statistics

from the most extreme to least extreme one
central_region() Central regions or global envelopes or conĄdence bands with

IGI (see types in Table 1)
global_envelope_test() Global envelope tests
GET.composite() Adjusted global envelope tests for composite null hypotheses
fBoxplot() Functional boxplot based on a central region with IGI
graph.fanova() One-way ANOVA tests for functional data with graphical

interpretation (Mrkvička et al. 2020)
frank.fanova() One-way functional ANOVA tests based on the global en-

velopes applied to F values (Mrkvička et al. 2020)
graph.flm() Non-parametric graphical tests of signiĄcance in functional

general linear model (GLM) (Mrkvička et al. 2021)
frank.flm() Global envelope tests applied to F values in permutation

inference for the GLM (Mrkvička et al. 2022)
fclustering() Functional clustering based on a speciĄed measure (Dai,

Athanasiadis, and Mrkvička 2022)
GET.distrequal() Graphical n sample test of correspondence of distribution

functions
GET.distrindep() Permutation-based tests of independence to samples from

any bivariate distribution (Dvořák and Mrkvička 2022)
GET.spatialF() Testing global and local covariate effects in point process

models (Myllymäki, Kuronen, and Mrkvička 2020)

Table 2: Key and special purpose functions in the GET package. More complete list
of functions can be found from the main help page of the package available by typing
help(’GET-package’) in R.

3.1. Sets of functions, ordering, combining, and central regions

The R package fda contains Berkeley Growth Study data (Ramsay and Silverman 2005) of
the heights of 39 boys and 54 girls from ages 1 to 18 and the ages at which the data were
collected. To illustrate different features of GET, we investigated whether there are any
outliers in the girls regarding both their annual heights and changes within years. First two
Ścurve_setŠ objects were created containing the raw heights and the differences within the
years (see Figure 3):

R> library("fda")

R> years <- paste(1:18)

R> curves <- growth[['hgtf']][years,]

R> cset1 <- curve_set(r = as.numeric(years), obs = curves)

R> cset2 <- curve_set(r = as.numeric(years[-1]),

+ obs = curves[-1,] - curves[-nrow(curves),])

Ordering the functions from the most extreme to the least extreme by the ’area’ measure
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(see Table 1 and Appendix A), the 8th girl was observed to have the most extreme heights
and the 15th girl the most extreme changes (below the Ąrst ten most extreme girl indices are
printed):

R> A1 <- forder(cset1, measure = 'area'); order(A1)[1:10]

[1] 8 13 29 48 42 25 7 38 18 40

R> A2 <- forder(cset2, measure = 'area'); order(A2)[1:10]

[1] 15 7 3 8 25 52 19 16 24 5

Generally, ordering with respect to heights or height differences leads to two different orderings
of the girls. Combined ordering can be done by combining these two by the ERL measure as
described in Appendix B (two-step combining procedure). In R, the two sets of curves need
to be provided in a list to the function forder():

R> csets <- list(Height = cset1, Change = cset2)

R> A <- forder(csets, measure = 'area'); order(A)[1:10]

[1] 8 15 7 13 3 29 48 25 42 52

Figure 3 highlights the curves of the three most extreme girls. The plots of the two sets of
curves were produced using the GET and ggplot2 packages and combined by the patchwork

package (Pedersen 2020):

R> library("ggplot2")

R> library("patchwork")

R> cols <- c("#21908CFF", "#440154FF", "#5DC863FF")

R> p1 <- plot(cset1, idx = order(A)[1:3], col_idx = cols) +

+ labs(x = "Age (years)", y = "Height")

R> p2 <- plot(cset2, idx = order(A)[1:3], col_idx = cols) +

+ labs(x = "Age (years)", y = "Change")

R> p1 + p2 + plot_layout(guides = "collect")

The labels were above redeĄned for the default plots by the function labs() of the ggplot2

package. In general, parts of the default plots of GET can be edited in this manner using
ggplot2 functions such as labs() and ggtitle().

The combined central region can be constructed directly by passing the sets of curves to
the function central_region(), in a similar manner as for forder() above. By using the
functional boxplot (Sun and Genton 2011) with the same measure and central region, an
investigation can be made into whether the most extreme girls are outliers with respect to
height or its change. Figure 4 shows the 50% central region and the functional boxplot with
the inĆation factor 1.5 jointly for the heights and their changes obtained by:

R> res <- fBoxplot(csets, type = 'area', factor = 1.5)

R> plot(res) + labs(x = "Age (years)", y = "Value")
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Figure 3: The heights (left) and height differences (right) of the 54 girls of the growth data of
the R package fda at ages from 1 to 18. Three girls having the most extreme curves (combined
ordering by the area measure) are highlighted with the colors speciĄed in the legend.
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Figure 4: The functional boxplot (entire gray band) using the 50% central region (inner dark
gray band) and the expansion factor 1.5 jointly for the heights and changes of heights of the
54 girls (see Figure 3). The solid line is an observed data function (vector) that goes outside
the functional boxplot (the 15th girl in the data).

One can see that one of the girls (the 15th girl) is an outlier, because she has grown extraor-
dinarily much in her sixth year. However, the highest height curve of Figure 3 (left) is not
regarded as an outlier with the given speciĄcations.
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Note that the combined central region computed using any measure of Table 1 has IGI. On
the contrary, central regions computed with the use of band depths implemented in the fda

package do not satisfy IGI. Narisetty and Nair (2016) proposed central regions and functional
boxplots based on the ERL measure (see Table 1) and compared them to those based on
band depths, claiming more reasonable behavior. Note also that IGI is not a property of the
functional boxplot.

3.2. Monte Carlo goodness-of-Ąt testing for simple hypotheses: The example
of testing complete spatial randomness

Figure 5 shows the locations of 67 large trees (with height > 25 m) in an area of size 75 m ×
75 m from an uneven aged multi-species broadleaf nonmanaged forest in Kaluzhskie Zaseki,
Russia (Grabarnik and Chiu 2002; van Lieshout 2010). The x- and y-coordinates of the
locations are available in the data adult_trees in the GET package.
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Figure 5: Locations of 67 trees with height > 25 m observed in an area of 75 m × 75 m.

The test of complete spatial randomness (CSR) is a typical Ąrst step in analyzing a spatial
point pattern such as the tree pattern of Figure 5. CSR along with other hypotheses for
spatial point patterns are commonly tested using an estimator of a summary function that is
a function of distance r, e.g., RipleyŠs K function or its transformation L(r) =

√

K(r)/π − r
for r ≥ 0 (Ripley 1977; Besag 1977). In this context, one typically resorts to the Monte Carlo
simulation (see, e.g., Illian, Penttinen, Stoyan, and Stoyan 2008; Diggle 2013; Myllymäki et al.
2017). First, this example is used to show the general steps to prepare a global envelope test
for testing a simple hypothesis. Second, it is shown how the same example of testing a simple
hypothesis for a spatial point pattern can be performed by utilizing the R package spatstat.

The testing of a simple hypothesis does not require the estimation of any model parameters,
and the one-stage test illustrated below can be used. In the case of a composite null hypothesis,
the level of the test needs to be adjusted, see Section 3.3 and Appendix C.
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General setup for testing simple hypotheses

The Ąrst step of a Monte Carlo test is to generate nsim simulations under the null hypothesis
and to calculate the chosen test function (vector) for the data and simulations. Here the
functions runifpoint() and Lest() of spatstat are used to generate a simulation from the
binomial process (CSR with the number of points Ąxed to the observed number of points in
the pattern X) and to estimate the centred L-function for a pattern, respectively:

R> library("spatstat.explore")

R> data("adult_trees")

R> X <- as.ppp(adult_trees, W = square(75))

R> nsim <- 999

R> obs.L <- Lest(X, correction = "translate")

R> r <- obs.L[['r']]

R> obs <- obs.L[['trans']] - r

R> sim <- matrix(nrow = length(r), ncol = nsim)

R> for(i in 1:nsim) {

+ sim.X <- runifpoint(ex = X)

+ sim[, i] <- Lest(sim.X, correction = "translate", r = r)[['trans']] - r

+ }

Thereafter, the function curve_set() can be used to construct a Ścurve_setŠ object from
the argument values where the test vectors were evaluated (r), the observed vector (obs) and
the simulated vectors (sim):

R> cset <- curve_set(r = r, obs = obs, sim = sim)

In some cases, missing or inĄnite values can occur for the computed statistic at some chosen
r (e.g., for too large r with another spatial summary function J). These problematic, unin-
teresting r-values can be easily omitted from cset using the function crop_curves(). The
Ąnal step is to make the global envelope test on the given set of vectors:

R> res <- global_envelope_test(cset, type = 'erl')

R> plot(res) + ylab(expression(italic(hat(L)(r)-r)))

In this manner, the global envelope test can be constructed for any simple hypothesis and
any test vector, as long as one can generate the required simulations and calculate the test
vectors.

The test output is shown in Figure 6 (left), which shows no evidence against CSR (see more
detailed description in Myllymäki et al. 2017, Section S4).

Testing simple hypotheses for a point pattern utilizing the R package spatstat

For point process testing, the GET package and global_envelope_test() support the use
of the R package spatstat (Baddeley et al. 2015) for the simulations and calculations of the
summary functions by the function envelope(). Namely, the object returned by envelope()

can simply be given to the function global_envelope_test() in the argument curve_sets.
Importantly, the functions must be saved setting savefuns = TRUE in the envelope() call:
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Figure 6: The global envelope test for the CSR of the tree pattern of Figure 5 using the
centred L-function. The gray band represents the 95% global envelope (’erl’).

R> env <- envelope(X, nsim = 999, fun = "Lest", correction = "translate",

+ transform = expression(.-r), simulate = expression(runifpoint(ex = X)),

+ savefuns = TRUE, verbose = FALSE)

R> res <- global_envelope_test(env, type = 'erl')

Above the arguments fun, correction and transform deĄne the summary function to be
calculated (the latter two parameters are passed to the function Lest()) and simulate spec-
iĄes how the patterns are simulated under the null hypothesis (here CSR). The result can be
plotted similarly as above.

Further examples of use of the GET package for point pattern analysis are given in an accom-
panying vignette available in R by typing library("GET") and vignette("pointpatterns").

3.3. Monte Carlo goodness-of-Ąt testing for composite hypotheses: The
example of graphical normality test

Aldor-Noiman et al. (2013) provided a graphical test for normality for simple hypotheses
(i.e., known parameters of sample distribution) based on a qq-plot envelope, whose shape
was derived from theoretical properties of quantiles of the uniform distribution. They also
provided a version of this algorithm for composite hypotheses (i.e., unknown parameters
of sample distribution). However, according to our unpublished study, this test does not
achieve the required signiĄcance level. Therefore, the example of the exact adjustment for
the composite hypothesis is provided here, based on the two-stage procedure of Baddeley
et al. (2017) (see Appendix C). For simplicity, in this example, this adjustment is applied
directly to the empirical distribution functions. Apparently, the adjustment could also be
applied to the qq-plot envelopes of Aldor-Noiman et al. (2013).

The normality test is illustrated for nitrogen oxides (NOx) emission levels available in the data
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poblenou from the R package fda.usc (Febrero-Bande and Oviedo de la Fuente 2012). The
data contains NOx emission levels (µg/m3) measured every hour by a control station close
to an industrial area in Poblenou in Barcelona (Spain) for 115 days from 23 February to 26
June, 2005. NOx is a pollutant which is caused by combustion processes in sources that burn
fuels, e.g., motor vehicles, electric utilities, and industries (Febrero, Galeano, and González-
Manteiga 2008). In Section 3.5, the whole functional trajectories of 24 h observations are
studied, but for illustration purposes, here the attention is restricted to the NOx levels at 10
am.

A general solution to make the adjusted test is to prepare all the required simulations and
provide them to the function GET.composite() in arguments X and X.ls. Let dat be a vector
containing the data values and n is the number of observations speciĄed as follows:

R> library("fda.usc")

R> data("poblenou")

R> dat <- poblenou[['nox']][['data']][,'H10']

R> n <- length(dat)

Then, Ąrst, the parameters of the normal distribution are estimated (1. step of the algorithm
of Appendix C)

R> mu <- mean(dat)

R> sigma <- sd(dat)

and, using the function ecdf() of the R package stats (R Core Team 2023), the empirical
cumulative distribution functions are calculated for the data and for nsimsub replicates of n
simulations from the Ątted normal distribution (2. step):

R> nsim <- nsimsub <- 199 # The number of simulations

R> r <- seq(min(dat), max(dat), length = 100)

R> obs <- stats::ecdf(dat)(r)

R> sim <- replicate(nsimsub, {

+ x <- rnorm(n, mean = mu, sd = sigma)

+ stats::ecdf(x)(r)

+ })

R> cset <- curve_set(r = r, obs = obs, sim = sim)

Here the last command creates a Ścurve_setŠ object of the observed and simulated empirical
cumulative distribution functions. Thereafter, another nsim replicates of the n simulations
from the Ątted model are simulated, and the same calculations as above for the data are done
for each of these simulations (steps 3.-4. of the algorithm of Appendix C):

R> cset.ls <- list()

R> for(rep in 1:nsim) {

+ x <- rnorm(n, mean = mu, sd = sigma)

+ mu2 <- mean(x)

+ sigma2 <- sd(x)

+ obs2 <- stats::ecdf(x)(r)

+ sim2 <- replicate(nsimsub, {
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+ x2 <- rnorm(n, mean = mu2, sd = sigma2)

+ stats::ecdf(x2)(r)

+ })

+ cset.ls[[rep]] <- curve_set(r = r, obs = obs2,

+ sim = sim2)

+ }

Thus, the list cset.ls contains all the simulations from the second stage of the algorithm.
As a Ąnal step, GET.composite() can be used to prepare the adjusted test:

R> res <- GET.composite(X = cset, X.ls = cset.ls, type = 'erl')

R> plot(res) + labs(x = "NOx", y = "Ecdf")

Figure 7 (left) shows the test result for the NOx levels at 10 am. One can see that the
normality does not hold according to the test: the estimated distribution function is skewed
to the right with respect to the normal envelope. Therefore, we further applied the same
normality test to the logarithm of the NOx values as well, and then the normality hypothesis
was not rejected (Figure 7, right).

0.00

0.25

0.50

0.75

1.00

0 100 200 300

NOx

E
c
d

f

Adjusted global test: p = 0.005

0.00

0.25

0.50

0.75

1.00

2 3 4 5

log(NOx)

E
c
d

f

Adjusted global test: p = 0.07

Central function Data function

Figure 7: Graphical normality test for the NOx (left) and logarithm of the NOx (right) levels
at 10 am. The gray band represents the 95% global envelope (’erl’). Red dots are attached
to the data function outside the envelope.

3.4. Graphical n-sample test of correspondence of distribution functions

The graphical n-sample test of correspondence of distribution functions serves as a simple
example of permutation tests. Figure 8 shows the empirical cumulative distribution functions
(ECDFs) obtained by the function ecdf() of the R package stats (R Core Team 2023) for
the heights of the 54 girls and 39 boys of the growth data (see above, and Ramsay and
Silverman 2005) at ages 10 (left) and 14 (right). A global envelope test can be performed to
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investigate whether the two (or more generally n) distribution functions differ from each other
signiĄcantly and how they differ. This test is a generalization of the two-sample Kolmogorov-
Smirnov test with a graphical interpretation. The generalization is provided in two ways, in
the number of samples and in the variable width of the envelopes. Namely, the Kolmogorov-
Smirnov test provides an envelope of constant width which suffers in determining differences
in extreme quantiles. Here it is assumed that the heights in the sample i are an i.i.d. sample
from the distribution Fi(r), i = 1, . . . , n, and the hypothesis F1(r) = . . . = Fn(r) is to be
tested. The simulations under the null hypothesis that the distributions are the same can be
obtained by permuting the individuals of the groups. The GET package provides the wrapper
function GET.distrequal() that can be used to compare n distribution functions graphically,
n = 2, 3, . . .. The (default) test vector is

T = (F̂1(r), . . . , F̂n(r)),

where F̂i(r) = (F̂i(r1), . . . , F̂i(rd)) is the ECDF of the ith sample evaluated at argument
values r = (r1, . . . , rd). To test the equality of distributions, one simply needs to provide the
samples as a list (code for age 10 shown here) for GET.distrequal() and plot the object
returned by GET.distrequal() (Figure 9, left):

R> fm10.l <- list('Girls, 10 yr.' = growth$hgtf["10",],

+ 'Boys, 10 yr.' = growth$hgtm["10",])

R> res10 <- GET.distrequal(fm10.l, nsim = 1999)

R> myxlab <- substitute(paste(italic(i), " (", j, ")", sep = ""),

+ list(i = "x", j = "Height in cm"))

R> plot(res10) + xlab(myxlab)

The height distributions at age 10 do not differ from each other signiĄcantly, but at age 14
the boys are taller, particularly with a difference that the proportion of girls reaching a height
of around 175 cm is much lower (Figure 9, right).

3.5. Graphical functional one-way ANOVA

The use of the function graph.fanova() of the GET package for the graphical functional
one-way ANOVA is illustrated using the data set poblenou of the R package fda.usc (Febrero-
Bande and Oviedo de la Fuente 2012, see also Section 3.3 above). The trajectories of the 24 h
observations of the NOx levels for Monday-Thursday (MonThu), Friday (Fri) and non-working
days (Free) including weekend and festive days (Figure 10) are compared. For the purposes
of this example, a factor vector Type was prepared containing the type of the day for each of
the 115 days having levels "MonThu", "Fri" and "Free":

R> library("fda.usc")

R> data("poblenou")

R> fest <- poblenou$df$day.festive; week <- as.integer(poblenou$df$day.week)

R> Type <- vector(length = length(fest))

R> Type[fest == 1 | week >= 6] <- "Free"

R> Type[fest == 0 & week %in% 1:4] <- "MonThu"

R> Type[fest == 0 & week == 5] <- "Fri"

R> Type <- factor(Type, levels = c("MonThu", "Fri", "Free"))
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Figure 8: The empirical cumulative distribution functions of the heights of the 54 girls and
39 boys of the growth data of the R package fda at ages 10 (left) and 14 (right).
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Figure 9: Global envelope tests for comparison of the empirical cumulative distribution func-
tions of the heights of the girls and boys (see Figure 8). Red color indicates the heights where
the observed distribution functions go outside the 95% global envelope (’erl’; gray bands).
Left: Age 10; Right: Age 14.

Assuming that the NOx levels Tij(r) at times r ∈ R = [0, 24] are i.i.d. samples from stochastic
processes SP (µj , γj) with mean functions µj(r), r ∈ R, and covariance functions γj(s, t),
s, t ∈ R, for j = 1, . . . , J (here J = 3), the groups of NOx levels can be compared by means
of the graphical functional ANOVA (Mrkvička et al. 2020). The hypothesis

H0 : µ1(r) = . . . = µJ(r), r ∈ R,
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Figure 10: The NOx levels for Monday-Thursday (Mon-Thu), Friday (Fri) and non-working
days (Free) including weekend and festive days in Poblenou for 115 days from 23 February to
26 June, 2005. The color of the daily curves is according to the maximum NOx level (µg/m3)
of the day.

can be tested by the test statistic

T = (T 1, T 2, . . . , T J), (3)

where T j = (T j(r1), . . . , T j(rd)) is the mean of functions in the jth group at the discrete num-
ber of arguments r1, . . . , rd (here each hour of the day). The hypothesis can be equivalently
expressed as

H ′

0 : µj′(r) − µj(r) = 0, r ∈ R, j′ = 1, . . . , J − 1, j = j′, . . . , J

and an alternative test statistic is

T′ = (T 1 − T 2, T 1 − T 3, . . . , T J−1 − T J), (4)

where we used the notation T j − T j′ = (T j(r1) − T j′(r1), . . . , T j(rd) − T j′(rd)) The lat-
ter test statistic (Equation 4) can be obtained by setting contrasts = TRUE in the call of
graph.fanova().

Because the ANOVA design assumes equal covariance functions, we Ąrst tested for the ho-
moscedasticity using the test proposed by Mrkvička et al. (2020, Section 2.3) and implemented
in GET. We created the Ścurve_setŠ object

R> cset <- curve_set(obs = t(poblenou[['nox']][['data']]), r = 0:23)

and we used the function graph.fanova() with the option test.equality = "var" to test
the equality of variances (Figure 11):

R> res.v <- graph.fanova(nsim = 2999, curve_set = cset, groups = Type,

+ test.equality = "var")
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R> myxlab <- substitute(paste(italic(i), " (", j, ")", sep = ""),

+ list(i = "r", j = "Hour of day"))

R> plot(res.v) + xlab(myxlab)
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Graphical functional ANOVA: p = 0.001

Figure 11: The test for the equality of variances of the NOx levels observed each hour (r)
of the day. The 95% global envelope (’erl’; gray band) representing the null hypothesis of
equal variances and the observed test statistic, the mean of functions Zij(r) = ♣Tij(r)−T j(r)♣
in each group (solid line with red dots when outside the envelope).

Here the test suggests heteroscedasticity and also Febrero et al. (2008) assumed heteroscedas-
ticity of working and non-working days. Therefore, we applied correction for unequal vari-
ances to the three groups by rescaling the functions Tij(r) of J groups containing n1, . . . , nJ

functions observed on the Ąnite interval R = [0, 24] by the transformation

Yij(r) =
Tij(r) − T j(r)
√

Var(Tj(r))
·
√

Var(T (r)) + T j(r), j = 1, . . . , J, i = 1, . . . , nj , (5)

where the group sample mean T j(r) and overall sample variance Var(T (r)) are involved to
keep the mean and variability of the functions at the original scale. The group sample variance
Var(Tj(r)) corrects the unequal variances. This scaling is applied to the set of curves given
to the function graph.fanova() if the user speciĄes variances = "unequal" (the default is
no correction, variances = "equal"). When using the rescaled functions, the test vectors
(Equations 3 and 4) are asymptotically exchangeable under the null hypothesis of equal
means only under the assumption of normality of stochastic processes SP (µj , γj) (Mrkvička
et al. 2020). Therefore, the log transformation was applied to the NOx values prior to the
transformation (Equation 5):

R> lcset <- curve_set(obs = t(log(poblenou[['nox']][['data']])), r = 0:23)

To sample from the null hypotheses, the simple permutation of raw functions among the
groups is performed. The permutations and the global envelope test can be done by the
graph.fanova() function (Figure 12):
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R> res.c <- graph.fanova(nsim = 2999, curve_set = lcset, groups = Type,

+ variances = "unequal", contrasts = TRUE)

R> plot(res.c) + xlab(myxlab)
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Graphical functional ANOVA: p < 0.001

Figure 12: The output of the graphical functional ANOVA to test the difference between the
type of the day on the log NOx levels observed each hour (r) of the day. The 95% global
envelope (’erl’; gray band) accompanied with the observed differences between the group
means (solid line with red dots when outside the envelope).

Thus, the test rejects the null hypothesis H ′

0 that the differences between the groups would
be zero and shows that on Monday-Thursday and Friday the (log) NOx levels are signiĄcantly
higher than on free days basically during the whole day with peaks around 8 am and 4 pm.
The difference between Monday-Thursday and Friday was not signiĄcant.

The graphical functional ANOVA allows one to detect either a) which groups deviate from
the mean (default) or b) which speciĄc groups are different (option contrasts = TRUE). The
example above was for the latter. Note that this test directly has the nature of a post hoc
test. Furthermore, both versions of the test allow one to identify which r values lead to the
potential rejection of the null hypothesis.

When a graphical interpretation for group speciĄc differences is not of interest but the area
of rejection is, instead of graph.fanova() it is possible to apply the one-way functional
ANOVA based on the r-wise F statistics, r ∈ R. This test is implemented in the function
frank.fanova(). For the log NOx data, the test result was that there are differences between
the groups for the hours from 5 am to 6 pm (Ągure omitted).

3.6. Functional GLM and two-dimensional plots

Similar type of methods as in the functional one-way ANOVA above can be used in a more
general setup of functional general linear models (GLMs). The global envelopes for functional
GLMs are illustrated here by an example of a small subset of the autism brain imaging data
collected by resting state functional magnetic resonance imaging (R-fMRI) (Di Martino, Yan,
Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, and et al. 2014).
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The preprocessed fMRI data contains measurements from 514 individuals with the autism
spectrum disorder (ASD) and 557 typical controls (TC), where subjects with low quality
on imaging data or having a large proportion of the missing values were removed. The
imaging measurement for local brain activity at resting state was fractional amplitude of low
frequency Ćuctuations (Zou, Zhu, Yang, Zuo, Long, Cao, Wang, and Zang 2008). The data
considered here and available as the data object abide_9002_23 in the GET package contains
data from one of the 116 different anatomical regions in the brain partitioning being based
on the anotomical automatic labeling system of Tzourio-Mazoyer, Landeau, Papathanassiou,
Crivello, Etard, Delcroix, Mazoyer, and Joliot (2002). The studied region is the right Crus
Cerebellum 1 region of the brain at one slice (23) accompanied with three subject-speciĄc
factors, i.e., group (autism and control), sex and age. Figure 13 obtained by

R> data("abide_9002_23")

R> plot(abide_9002_23[['curve_set']], idx = c(1, 27))

shows the data for two subjects, illustrating the small region used as the example. In the
examples below, the effect of the group on the images is studied in the presence of nuisance
factors sex and age.

1 27
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Figure 13: The example brain image data in the right Crus Cerebellum 1 region at a slice
for one subject from the autism group (subject number 1) and one from the control group
(subject number 27).

Graphical functional GLM

The functional GLM is the general linear model

Y(r) = X(r)β(r) + Z(r)γ(r) + ϵ(r) (6)

where the argument r ∈ ¶1, . . . , d♢ determines the component of the vector or the spatial
point or pixel of an image. For every argument r, a one-dimensional GLM is considered with
X(r) being a n × k matrix of regressors of interest (here group), Z(r) being a n × l matrix
of nuisance regressors (here sex and age), Y(r) being a n × 1 vector of observed data, and
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ϵ(r) being a n × 1 vector of random errors with a mean of zero and a Ąnite variance σ2(r) for
every r ∈ I. Further, β(r) and γ(r) are the regression coefficient vectors of dimensions k × 1
and l × 1, respectively, and the null hypothesis to be tested is

H0 : βi(r) = 0, ∀ r = 1, . . . , d, ∀ i = 1, . . . , k,

where βi(r) are the elements of the β(r). For a continuous factor of interest k = 1 and β(r)
serves as the test statistic. For a discrete factor of interest, in the default setup, k is equal to
the number of groups of the discrete factor, adding the additional condition that

∑

i βi(r) = 0
for all r ∈ ¶1, . . . d♢. Similarly, for interaction of a continuous and a discrete factor, k is also
equal to the number of groups of the categorical factor, adding the same additional condition.
For the interaction of two discrete factors, k is equal to the product of the numbers of groups
of the discrete factors, adding the same additional condition. If the argument contrasts of
the function graph.flm() is set to FALSE, the test statistic for a discrete factor consist of
βi(r) for all r = 1, . . . , d and i = 1, . . . , k. This test allows to detect which groups deviate
from the zero (mean). An alternative test statistic is obtained by setting contrasts = TRUE:
then the test statistic is formed by all the pairwise differences between the group effects,
βi(r) − βj(r) for all r and i ̸= j, 1 ≤ i < j ≤ k. This test speciĄes which speciĄc groups are
different in the post hoc nature. Note that this also holds for interaction terms. Furthermore,
all the options allow one to identify which of the components of the vector, r ∈ ¶1, . . . , d♢,
lead to the potential rejection of the null hypothesis. Permutations under the null hypothesis
are obtained using the Freedman-Lane procedure (Freedman and Lane 1983; Mrkvička et al.
2022; Mrkvička et al. 2021).

Often factors are given for the whole function, i.e., they do not depend on argument r, and
so the matrices X(r) and Z(r) are identical for every r. These kind of constant factors (such
as sex and age in the considered example) can be provided in the argument factors of the
graph.flm() function. However, this simpliĄcation is not necessary and factors varying in
space can be provided in the argument curve_sets, along with the data curves in a named
list.

The functional GLM is performed by the function graph.flm():

R> res <- graph.flm(nsim = 999, formula.full = Y ~ Group + Sex + Age,

+ formula.reduced = Y ~ Sex + Age,

+ curve_sets = list(Y = abide_9002_23[['curve_set']]),

+ factors = abide_9002_23[['factors']], contrasts = TRUE,

+ GET.args = list(type = 'area'))

Here the arguments formula.full and formula.reduced specify the full GLM and the GLM
where the interesting factor has been dropped out, and the number of simulations is given in
nsim. Further arguments to global_envelope_test() can be passed in GET.args, e.g., the
type of the global envelope.

The r component of the abide_9002_23[[’curve_set’]] object is a data frame with columns
x, y, width and height, where the width and height give the width and height of the pixels
placed at x and y. When such two-dimensional argument values are provided in a curve_set

object, the resulting default envelope plots produced by

R> plot(res) + scale_radius(range = 1.5 * c(1, 6))
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are two-dimensional as well (Figure 14). Above scale_radius() function of ggplot2 is used
to enlarge the circles which show the size of deviation of the observed function from the bound
(here lower) of the envelope divided by the width of the envelope. Here only two groups were
compared, and the plot shows that the brain measurements were lower in the autism group
than in the control group in a part of the small example region (blue circles in Figure 14).

When the basic assumption of the homoscedasticity in the linear model (6) for every argument
r is violated, it is important to handle it. One possibility is to apply transformations to the
functions a priori as suggested by Mrkvička et al. (2020) and Mrkvička et al. (2021) (see
Equation 5). Alternatively weighted least squares might be used for estimation of regression
coefficients.
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Graphical functional GLM: p = 0.024

Figure 14: Graphical functional GLM for testing the effect of the group (autism, control) in
the brain image example: the observed difference (autism-control) and the locations (blue
circles) where the observed coefficient goes below the 95% global envelope (area). The size
of the circles are proportional to the size of the deviation of the observed function from the
lower bound of the envelope divided by the width of the envelope.
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Functional GLM based on F statistics

In the F rank functional GLM, the same linear model (Equation 6) is Ątted at each r ∈
¶1, . . . , d♢ and permutations under the null hypothesis are obtained similarly by the Freedman-
Lane procedure as in the graphical functional GLM (Freedman and Lane 1983; Mrkvička et al.
2022). However, the test statistic is the classical F statistic (see, e.g., Winkler et al. 2014)
which is calculated for the hypothesis that the data follows the simpler reduced model of the
two proposed linear models that are nested within each other (given in formula.full and
formula.reduced). The use of the function frank.flm() is similar to that of graph.flm():

R> res.F <- frank.flm(nsim = 999, formula.full = Y ~ Group + Age + Sex,

+ formula.reduced = Y ~ Age + Sex,

+ curve_sets = list(Y = abide_9002_23[['curve_set']]),

+ factors = abide_9002_23[['factors']], GET.args = list(type = 'area'))

R> plot(res.F, what = c("obs", "hi", "hi.sign"), sign.type = "contour")

For illustration of different options, we plot here the observed function (what = "obs"),
the upper envelope (what = "hi") and the observed function with the signiĄcant region
(what = "hi.sign"). The signiĄcant region is here shown by contour lines, as chosen in the
argument sign.type. Contours do not indicate the size of deviation from the bounds of the
global envelope, but contours or colored regions (sign.type = "col") can be preferable if
the observed function exceeds the envelope on large parts of the domain.

Figure 15 shows that the F rank GLM found signiĄcant differences between the groups ap-
proximately at the same pixels r ∈ ¶1, . . . , d♢ of the brain image as the graphical functional
GLM above. In general, for a factor with more than two groups, the F rank GLM is however
not able to tell between which speciĄc groups of the factor the differences occur (or which of
the groups deviate from the mean). In the case of heteroscedasticy, the weighted least squares
test statistics can be used instead (Christensen 2002).

3.7. ConĄdence band in polynomial regression

The bootstrap procedure described in Narisetty and Nair (2016) can be used to compute global
conĄdence bands for the Ątted curve in the linear or polynomial regression. In this example,
regression data was simulated according to the cubic model f(x) = 0.8x − 1.8x2 + 1.05x3

for x ∈ [0, 1] with i.i.d. random noise (dots in Figure 16). Then the data was Ątted with
cubic regression (black solid line in Figure 16) and by permuting the residuals 2000 bootstrap
samples were obtained and functions Ątted (see more details about the bootstrap procedure in
Narisetty and Nair 2016). Finally a Ścurve_setŠ object was constructed of these bootstrapped
functions and the central_region() function was applied to this set to obtain the 95%, 80%
and 50% global conĄdence bands. The multiple global bands were obtained by setting the
argument coverage = c(0.95, 0.80, 0.50).

The result of the procedure is shown in Figure 16. The code can be found in the help Ąle of
the function central_region() in R.

A theoretical 95% conĄdence band can be considered under the given bootstrap scheme.
Based on a simulation experiment where the theoretical conĄdence band was computed from
200000 bootstrapped functions, we observed that the 95% conĄdence region computed as
a convex hull from s functions converged to the theoretical one from inside for increasing
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Figure 15: F rank functional GLM for testing the effect of the group (autism, control) in the
brain image example: the observed F statistic, the upper bound of the one-sided 95% global
envelope (area), and the signiĄcant region (red contour lines) where the observed F statistic
exceeds the envelope.
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Figure 16: The global 95%, 80% and 50% conĄdence bands (’erl’) for the cubic regression
(nested gray bands; widest is 95%), the true function (solid line) from which the data points
(dots) were simulated and the median computed from the simulations (dashed line).

s. The 95% conĄdence band computed as the extreme rank envelope from s functions (see
Equation 8) converged to the theoretical one from outside instead. Both these envelopes are
Ąnite approximations of the theoretical envelope. On the other hand, in the sense of BarnardŠs
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Monte Carlo test (Barnard 1963), the global envelope test (convex hull) is exact for the given
set of simulated functions. In the same sense, the conĄdence band reaches the given global
level exactly under the given set of functions.

4. Summary and discussion

We presented the GET package which was designed for global envelopes that are constructed
for a general vector and have IGI (DeĄnition 2.1). The great advantage of these methods is
their graphical output given by the 100(1 − α)% (e.g., 95%) central region, which helps one
to interpret the results in the various applications. The package implements different types
of global envelopes (see Table 1) and their usage in general and for several speciĄc problems.
Because the global envelopes can be used for so many different purposes speciĄed in cases
(i)-(iii) in Section 1, there are several other software, particularly other R packages, that deal
with methods that can be used for the same purposes as the methods in GET. However, to
the best of our knowledge, GET is the Ąrst package specializing to the global envelopes with
IGI. Further, it provides testing results both under the FWER control and the FDR control.

Besides the graphical interpretation, another advantage of the proposed global rank envelopes
is their non-parametric (rank-based) nature, which ensures that the functional or multivariate
data coming into the analysis can be inhomogeneous across the domain of their arguments
and this phenomenon does not inĆuence the result of the analysis. For example, before the
methods discussed in this paper appeared, formal goodness-of-Ąt testing in spatial statistic
was commonly based on the unscaled MAD test (Ripley 1981) or its non-graphical integrated
counterpart (Diggle 1979). However, the result of these tests is inĆuenced by unequal vari-
ability of the test function across its domain leading in general to loss of power (Myllymäki
et al. 2015, 2017). A similar situation appears in the permutation GLM tests which, in the
functional data analysis or neuroimage analysis (see, e.g., Winkler et al. 2014), are commonly
based on the F statistic that standardizes the Ąrst and second moments of the data but not the
high quantiles. Thus, when the data are inhomogeneous across the domain and non-normal,
the commonly used F max test (which is similar to the unscaled MAD test) is inĆuenced by
the inhomogeneous quantiles. The rank-based tests discussed here can then lead to higher
power (for details see Mrkvička et al. 2022). Similarly, the rank based methods can adjust the
shape of the central region to inhomogeneous distribution of the studied functions. Therefore,
the global rank envelopes are a valuable tool in all these situations.

A further advantage of the rank tests is that it allows one to give equal weights to the
components fed in. Thus, the method is particularly well suited also for multiple testing with
several univariate or functional test statistics (Mrkvička et al. 2017), for constructing central
regions jointly for various transformations of the functions (for details see Dai et al. 2020), and
for combining various dimensions of multidimensional functions or various functional elements
of multivariate functions. Further, it can be used for functional cluster analysis so that various
transformations of the functions have the same impact on the clustering algorithm (Dai et al.
2022).

Finally, the good properties of the methods presented here are retained also in the case of
testing a composite hypothesis: the two-stage Monte Carlo test is applicable to these graphical
methods (Appendix C).

We are committed to developing the GET package further. For example, new types of global
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envelopes can be added, if such are invented, and support for speciĄc applications or different
type of data will be extended.
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A. DeĄnitions of global envelopes

Here, we provide deĄnitions of the different global envelopes and the corresponding measures,
as outlined in Table 1. When working with functions, it is assumed that they have already
been discretized as required in practice. Thus, we consider general vectors Ti = (Ti1, . . . , Tid),
i = 1, . . . , s, for which a global envelope is to be constructed.

The measures satisfy the IGI property with probability 1 if there are no pointwise ties,
meaning that there are no ties in T1k, . . . , Tsk for every k = 1, . . . , d. This holds if Ti are
realizations of an absolutely continuous random vector. If pointwise ties do occur, the IGI
property may be violated in elements of the vector where ties are present. For the measures
based on pointwise ranks (Sections A.1-A.4), we use the pointwise mid-rank for tied values
to weigh down the inĆuence of elements (k) where many Tik, i = 1, . . . , s, coincide.

A.1. Global rank envelope

The extreme rank Ri of the vector Ti is deĄned as the minimum of its pointwise ranks, namely

Ri = min
k=1,...,d

Rik, (7)

where the pointwise rank Rik is the rank of the element Tik among the corresponding elements
T1k, T2k, . . . , Tsk of the s vectors such that the lowest ranks correspond to the most extreme
values of the statistics. How the pointwise ranks are determined depends on whether a one-
sided or a two-sided global envelope (test) is to be constructed: Let r1k, r2k, . . . , rsk be the
raw ranks of T1k, T2k, . . . , Tsk, such that the smallest Tik has rank 1. In the case of ties among
T1k, T2k, . . . , Tsk, the raw ranks are averaged. The pointwise ranks are then calculated as

Rik =







rik, for the one-sided case ŠlessŠ,

s + 1 − rik, for the one-sided case ŠgreaterŠ,

min(rik, s + 1 − rik), for the two-sided case.

The cases ŠlessŠ and ŠgreaterŠ are most often relevant in a hypothesis testing case (ii) (see
Section 1). The case ŠlessŠ corresponds to the alternative that the values of interesting vector
(T1) are smaller than under the null hypothesis. The case ŠgreaterŠ corresponds to the alter-
native that the values are larger than under the null hypothesis. The extreme rank measure
Ri induces an ordering of Ti, i = 1, . . . , s, which can be used to detect the extremeness of
the vectors among each other. Given that T1 is the observed vector in the Monte Carlo or
permutation test, the (conservative) p value of the test is equal to p+ =

∑s
i=1 1(Ri ≤ R1)

/
s.

Since the extreme ranks can have many ties, the test is also equipped with the liberal p value,
p− =

∑s
i=1 1(Ri < R1)

/
s. Then, when α falls inside the p interval (p−, p+], the decision of

the test is not deĄned.

The 100(1 − α)% global rank envelope induced by this measure is deĄned through

T
local,l
low k = minl

i=1,...,s
Tik and T

local,l
upp k = maxl

i=1,...,s
Tik for k = 1, . . . , d, (8)
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by taking l = R(α), according to the point 1. of IGI (see DeĄnition 2.1), i.e., setting T
(α)
low k =

T
local,R(α)

low k and T
(α)
upp k = T

local,R(α)

upp k . Here minl and maxl denote the l-th smallest and largest
values, respectively, and l = 1, 2, . . . , ⌊s/2⌋. If Ti is strictly outside the envelope for some

k = 1, . . . , d, then also Ri < R(α), and if T
(α)
low k < Tik < T

(α)
upp k for all k = 1, . . . , d, then

Ri > R(α). However, if Ti coincides either with T
(α)
low k or T

(α)
upp k for some k = 1, . . . , d, then

Ri = R(α), and α ∈ (p−, p+] in the testing case.

Because the extreme rank can achieve many ties (see, e.g., Mrkvička et al. 2022), it is necessary
to use a relatively large s for the global rank envelope. The following three reĄnements of the
extreme rank solve the ties problem and enable the use of a smaller s.

A.2. Global extreme rank length (ERL) envelope

The extreme rank length (ERL) measure (Myllymäki et al. 2017; Narisetty and Nair 2016)
reĄnes the extreme rank measure by breaking the ties in the extreme ranks Ri by taking into
account also the number of Rik which are equal to Ri. Further, the numbers of ranks equal
to Ri + 1, Ri + 2, ... are used to break any remaining ties.

Formally, the ERL measure of Ti is deĄned based on the vector of the pointwise ordered
ranks Ri = (Ri[1], Ri[2], . . . , Ri[d]), where the ranks are arranged from smallest to largest, i.e.,
Ri[k] ≤ Ri[k′] whenever k ≤ k′. While the extreme rank (Equation 7) corresponds to Ri = Ri[1],
the ERL measure takes all these ranks into account by the reverse lexical ordering. The ERL
measure of Ti is

Ei =
1
s

s∑

i′=1

1(Ri′ ≺ Ri) (9)

where

Ri′ ≺ Ri ⇐⇒ ∃n ≤ d : Ri′[k] = Ri[k]∀k < n, Ri′[n] < Ri[n].

The division by s leads to normalized ranks that obtain values between 0 and 1. Consequently,
the ERL measure corresponds to the extremal depth of Narisetty and Nair (2016).

The probability of having a tie in the ERL measure is rather small, thus practically the ERL
solves the ties problem. The Ąnal p value of a Monte Carlo test is perl =

∑s
i=1 1(Ei ≤ E1)

/
s.

Let E(α) be deĄned according to the point 1. of IGI and Iα = ¶i ∈ 1, . . . , s : Ei ≥ E(α)♢ be the
index set of vectors less or as extreme as E(α). Then the 100(1 − α)% global ERL envelope
induced by Ei is

T
(α)
low k = min

i∈Iα

Tik and T
(α)
upp k = max

i∈Iα

Tik for k = 1, . . . , d, (10)

see Narisetty and Nair (2016) and Mrkvička et al. (2020).

A.3. Global continuous rank envelope

The ties can alternatively be broken by the continuous rank measure (Hahn 2015; Mrkvička
et al. 2022) which reĄnes the extreme rank measure by considering instead of the (discrete)
pointwise ranks Rik continuous pointwise ranks Cik deĄned by the ratios of Tik to the closest
other Tjk, j = 1, . . . , s, j ̸= i.
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Formally, the continuous rank measure is

Ci =
1
s

min
k=1,...,d

Cik,

where s scales the values to interval from 0 to 1. The deĄnition of pointwise continuous
ranks Cik depends again on whether a one-sided or two-sided global envelope (test) is to be
constructed:

Cik =







cik, for the one-sided case ŠlessŠ

s − cik, for the one-sided case ŠgreaterŠ

min(cik, s − cik), for the two-sided case.

where cik is the raw continuous rank of Tik among T1k, . . . , Tsk according to DeĄnition A.1
and the three cases are similar to those of Rik above.

Definition A.1 Let y[1] ≤ y[2] ≤ . . . ≤ y[s] denote the ordered set of values yi, i = 1, 2, . . . , s.
DeĄne the raw continuous rank such that the smallest yi has smallest rank following Mrkvička
et al. (2022):

c[j] = j − 1 +
y[j] − y[j−1]

y[j+1] − y[j−1]

for j = 2, 3, . . . , s − 1 and

c[1] = exp



−
y[2] − y[1]

y[s] − y[2]



, c[s] = s − exp



−
y[s] − y[s−1]

y[s−1] − y[1]



.

If there are ties, y[i−1] < y[i] = . . . = y[j] < y[j+1], then the raw continuous rank is deĄned as

c[k] = i+j
2 − 1

2 for k = i, i + 1, . . . , j.

The p value of the univariate Monte Carlo test is pcont =
∑s

i=1 1(Ci ≤ C1)
/
s. The 100(1−α)%

global continuous rank envelope induced by Ci is constructed in the same way as global ERL
envelope, i.e., as a hull of Ti for which Ci ≥ C(α), where C(α) is deĄned according to the point
1. of IGI. This is achieved by having Iα = ¶i ∈ 1, . . . , s : Ci ≥ C(α)♢ in Equation 10.

A.4. Global area rank envelope

Another reĄnement of rank envelope is the area rank measure (Mrkvička et al. 2022),

Ai =
1
s



Ri −
1
d

d∑

k=1

(Ri − Cik)1(Cik < Ri)



.

The area measure breaks the ties in the extreme ranks by the sum (area) of the differences
between the extreme rank Ri and the pointwise continuous rank Cik from those k = 1, . . . , d
where the continuous rank is smaller than the extreme rank. The univariate Monte Carlo
test is performed based on Ai with parea =

∑s
i=1 1(Ai ≤ A1)

/
s. The 100(1 − α)% global area

rank envelope induced by Ai is constructed similarly as the global ERL and continuous rank
envelopes, with Iα = ¶i ∈ 1, . . . , s : Ai ≥ A(α)♢ in Equation 10.
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A.5. Global directional quantile, studentized and unscaled envelope

The above four global envelopes are based on the whole distributions of T1k, . . . , Tsk, k =
1, . . . , d. It is also possible to approximate the distribution by a few sample characteristics.
The sample characteristics are in the package GET estimated from Tik, i = 1, . . . , s, for each
k.

The global directional quantile envelope uses the expectation T0k, β% upper quantile T ·k

and β% lower quantile T ·k to approximate the distributions. Setting β = 2.5 was used in
Myllymäki et al. (2017); setting β = 25 can also be useful especially for deĄning the 50%
central region from a low number of functions. Note that β has to be greater than 100/s
in order to be able to estimate the β and 1 − β quantiles. The directional quantile measure
(Myllymäki et al. 2015, 2017) Di is deĄned as

Di = max
k



1(Tik ≥ T0k)
Tik − T0k

♣T ·k − T0k♣
+ 1(Tik < T0k)

T0k − Tik

♣T ·k − T0k♣



, (11)

From historical reasons, Di is deĄned to be bigger for more extreme vectors. The same holds
for the following two measures. The univariate Monte Carlo test is performed based on Di

with pqdir =
∑s

i=1 1(Di ≥ D1)
/
s, and the 100(1 − α)% global directional quantile envelope

induced by Di is deĄned by

T
(α)
low k = T0k − D(α)♣T ·k − T0k♣ and T

(α)
upp k = T0k + D(α)♣T ·k − T0k♣ for k = 1, . . . , d, (12)

where D(α) is taken according to the point 1. of IGI.

The global studentized envelope approximates the distribution instead by the expectation T0k

and the standard deviation sd(T·k). The studentized measure (Myllymäki et al. 2015, 2017)
is

Si = max
k

∣
∣
∣
Tik − T0k

sd(T·k)

∣
∣
∣, (13)

and the univariate Monte Carlo test is performed based on si with pst =
∑s

i=1 1(Si ≥ S1)
/
s.

The 100(1 − α)% global studentized envelope induced by Si is deĄned by

T
(α)
low k = T0k − S(α)sd(T·k) and T

(α)
upp k = T0k + S(α)sd(T·k) for k = 1, . . . , d, (14)

where S(α) is taken according to the point 1. of IGI.

The global unscaled envelope considered for the sake of completeness has its origin in the
classical Kolmogorov-Smirnov statistic. The unscaled measure Ui can be deĄned as Ui =
maxk ♣Tik − T0k♣, the univariate Monte Carlo test performed based on Ui has the p value
punsc =

∑s
i=1 1(Ui ≥ U1)

/
s, and the 100(1 − α)% global unscaled envelope induced by ui is

given by
T

(α)
low k = T0k − U(α) and T

(α)
upp k = T0k + U(α) for k = 1, . . . , d, (15)

where U(α) is taken according to the point 1. of IGI. A problem of this envelope is that its
width is the same along the whole domain, thus it cannot account for the changes in the
variability of the distributions Ti across different values of k (Myllymäki et al. 2015, 2017).

B. Combined global envelopes



40 GET: Global Envelopes in R

Assume that there are G vectors T
j
i = (T j

i1, . . . , T j
idj

), j = 1, . . . , G, i = 1, . . . , s, dj ≥ 1, and
the construction of a global envelope is wanted jointly for all of them. A combined global
envelope test can be made in two different ways.

In the two-step combining procedure, Ąrst, a measure is chosen for each j = 1, . . . , G and
computed for the vectors T

j
i , i = 1, . . . , s and j = 1, . . . , G. Let the resulting measures be

mj
i . As the second step, the one-sided extreme rank length is applied to the new vector

T′

i = (m1
i , m2

i , . . . , mG
i ) of the measures. As a result, a joint sorting of vectors T1

i , . . . TG
i , i =

1, . . . , s, is obtained and a joint extreme rank length measure Ei is attached to every i =
1, . . . , s. The p value of the combined Monte Carlo test is perl =

∑s
i=1 1(Ei ≤ E1)

/
s, and

the common 100(1 − α)% global envelope is constructed similarly as the 100(1 − α)% global
extreme rank length envelope (Equation 10): Let E(α) be deĄned according to the point 1. of
IGI and Iα = ¶i ∈ 1, . . . , s : Ei ≥ E(α)♢ be the index set of vectors less or as extreme as E(α).
Then the common 100(1 − α)% global envelope is

T
(α),j
low k = min

i∈Iα

T j
ik and T

(α),j
upp k = max

i∈Iα

T j
ik for k = 1, . . . , dj , j = 1, . . . , G. (16)

The extreme rank length measure is chosen in the second step because it gives the same weight
to every component (even when dj , j = 1, . . . , G, are different or even if different measures
are used in the Ąrst step), it is based on ranks only and it achieves almost no ties.

In cases where d1 = . . . = dG (= d), it is also possible to use a simple one-step combining
procedure. Then the global envelope (any of those in Table 1) is constructed for the long
vectors

Ti = (T 1
i1, . . . , T 1

id, T 2
i1, . . . , T 2

id, . . . . . . , T G
i1 , . . . , T G

id ), i = 1, . . . , s.

The one-step combining can be used for example when multivariate functional data (Ti1, . . . , Tid),
i = 1, . . . , s, where Tik = (T 1

ik, . . . , T J
ik) are multivariate vectors of J elements, are investigated.

Then it is possible to separate the dimensions into a set of J marginal vectors applying the
one-step combining procedure, i.e., to take Ti = (T 1

i1, . . . , T 1
id, . . . , T J

i1, . . . , T J
id). Further, it is

also possible to add other vectors expressing the correlation between the elements of the vec-
tors, e.g., if we have a two-dimensional functional data, the vector (T 1

i1T 2
i1−T 1

01T 2
01, . . . , T 1

idT 2
id−

T 1
0dT 2

0d) can be added into Ti behind the marginal vectors. Here T j
0k denotes the expectation

of T j
ik, i = 1, . . . , s.

The graphical functional ANOVA and GLM (see the functions in Table 2) use the one-step
combining procedure to merge the mean or contrast vectors under inspection, because in
this case all the vectors have the same structure (see Sections 3.5 and 3.6 and Mrkvička
et al. 2020; Mrkvička et al. 2021). On the other hand, for generality, the default combining
procedure of global envelope construction functions in GET is the two-step procedure, which
is presented for the Ąrst time here as an improvement of the combined tests of Mrkvička
et al. (2017) (see an example in Section 3.1). The combined envelopes are implemented in
the central_region() and global_envelope_test() functions as mentioned above, and the
one- or two-step procedure can be speciĄed in the argument nstep (either 1 or 2).

C. Adjusted global envelopes for composite null hypotheses

The Monte Carlo tests for which the global envelopes are constructed are exact only in the
case when the null hypothesis is simple, i.e., when no parameters have to be estimated. This
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is the case in permutation tests of task (iii), but in task (ii) the null hypothesis can often be
composite, i.e., some parameters of the null model have to be estimated. In such a composite
case, the classical Monte Carlo test can be liberal or conservative. This problem can be
solved by a two-stage procedure, where in the Ąrst stage the level of the test is estimated.
Such a procedure was Ąrst introduced by Dao and Genton (2014) for Monte Carlo tests.
Myllymäki et al. (2017) extended this adjusted method for global envelopes. Baddeley et al.
(2017) improved the procedure further in order to obtain an exact signiĄcance level. Here
the procedure of Baddeley et al. (2017) is summarized and extended for global envelopes as
implemented in GET.

Let M denote the chosen measure and α the chosen signiĄcance level. Let T1 be the test
vector computed from the data.

1. Estimate the parameters θ1 of the null model.

2. Simulate s2 −1 replicates of the data from the null model with the estimated parameters
θ̂1, and compute the test vectors T1

1 = T1, T1
2, . . . , T1

s2
(create a Ścurve_setŠ object of

vectors, C1).

3. Simulate another s − 1 replicates of the data from the null model with the parameters
θ̂1 and estimate the parameters of the null model from each of them (θ̂i, i = 2, . . . , s),

4. For every i = 2, . . . , s, simulate s2 −1 replicates from the null model with parameters θ̂i,
and compute the test vectors Ti

1, Ti
2, . . . , Ti

s2
(create a Ścurve_setŠ object of vectors,

Ci).

5. For each set of curves Ci, i = 1, 2, . . . , s, compute the Monte Carlo p value pi =
∑s2

j=1 1(M i
j ≤ M i

1)
/
s2, where M i

1, . . . , M i
s2

are the chosen measure computed for Ti
1, . . . , Ti

s2
.

6. The adjusted MC p value is padj =
∑s

j=1 1(pi ≤ p1)
/
s.

7. Let pα denote the lower α quantile of the sample p1, . . . , ps. Construct the chosen
100(1 − pα)% global envelope from T1

1, . . . , T1
s2

.

This adjusted test is implemented in the GET.composite() function of the GET package.
Examples can be found in the help page of the function in R and in Section 3.3.
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