ExtremalDep
:
Extremal Dependence ModelsA set of procedures for parametric and non-parametric modelling of the dependence structure of multivariate extreme-values is provided. The statistical inference is performed with non-parametric estimators, likelihood-based estimators and Bayesian techniques. It adapts the methodologies of Beranger and Padoan (2015) doi:10.48550/arXiv.1508.05561, Marcon et al. (2016) doi:10.1214/16-EJS1162, Marcon et al. (2017) doi:10.1002/sta4.145, Marcon et al. (2017) doi:10.1016/j.jspi.2016.10.004 and Beranger et al. (2021) doi:10.1007/s10687-019-00364-0. This package also allows for the modelling of spatial extremes using flexible max-stable processes. It provides simulation algorithms and fitting procedures relying on the Stephenson-Tawn likelihood as per Beranger at al. (2021) doi:10.1007/s10687-020-00376-1.
dExtDep()
for in the Asymetric Logistic
model;Calloc()
and Free()
calls in
the .C files by the R_* prefixed counterparts since STRICT_R_HEADERS=1
becomes the default with R 4.5.0;PAMfmado()
function written by
Philippe Naveau.plot_ExtDep.np()
when type = "Qsets"
;closeAllConnections()
by
stopCluster()
in fExtDepSpat()
.dExtDep()
function when
model="HR"
and "ET"
;lambda.hr()
function that can be used to define the
parameters of the trivariate Husler-Reiss model. Given two parameters, a
range for the third parameter is provided to ensure positive definite
matrices in the exponent function;t(A) %*% B
is replaced by crossprod(A,B)
(and vice versa);solve(A)
is replaced by
chol2inv(chol(A))
;t(x) %*% solve(A) %*% x
is replaced by
sum(forwardsolve(t(chol(A)),x))
;fExtDep()
, fExtDep.np()
and fExtDepSpat()
to be of class ExtDep_Freq
,
ExtDep_Bayes
, ExtDep_npFreq
,
ExtDep_npBayes
, ExtDep_npEmp
and
ExtDep_Spat
;plot()
and
summary()
functions replacing the previous
plot.ExtDep()
, etc;est()
, StdErr()
,
logLik()
, bic()
, tic()
to extract
outputs from objects of class ExtDep_Freq
,
ExtDep_Bayes
and ExtDep_Spat
.