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10 anovaPE

ACE.13.TCE.df Trichloroethylene Concentrations Before and After Remedation

Description

Trichloroethylene (TCE) concentrations (mg/L) at 10 groundwater monitoring wells before and
after remediation.

Usage

data(ACE.13.TCE.df)

Format

A data frame with 20 observations on the following 3 variables.

TCE.mg.per.L TCE concentrations
Well a factor indicating the well number

Period a factor indicating the period (before vs. after remediation)

Source

USACE. (2013). Environmental Quality - Environmental Statistics. Engineer Manual EM 200-1-16,
31 May 2013. Department of the Army, U.S. Army Corps of Engineers, Washington, D.C. 20314-
1000, p. M-10. https://www.publications.usace.army.mil/Portals/76/Publications/
EngineerManuals/EM_200-1-16.pdf.

anovaPE Compute Lack-of-Fit and Pure Error Anova Table for a Linear Model

Description

Compute a lack-of-fit and pure error anova table for either a linear model with one predictor variable
or else a linear model for which all predictor variables in the model are functions of a single variable
(for example, x, x*2, etc.). There must be replicate observations for at least one value of the
predictor variable(s).

Usage

anovaPE (object)


https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_200-1-16.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_200-1-16.pdf
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Arguments

object an object of class "1m"”. The object must have only one predictor variable in
the formula, or else all predictor variables in the model must be functions of a
single variable (for example, x, x*2, etc.). Also, the predictor variable(s) must
have replicate observations for at least one value of the predictor variable(s).

Finally, the total number of observations must be such that the degrees of freedom associated with
the residual sums of squares is greater than the number of observations minus the number of unique
observations.

Details

Produces an anova table with the the sums of squares partitioned by “Lack of Fit” and “Pure Er-
ror”. See Draper and Smith (1998, pp.47-53) for details. This function is called by the function
calibrate.

Value

An object of class "anova" inheriting from class "data.frame".

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Draper, N., and H. Smith. (1998). Applied Regression Analysis. Third Edition. John Wiley and
Sons, New York, pp.47-53.

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

See Also

anova.lm, Im, calibrate.

Examples

# The data frame EPA.97.cadmium.111.df contains calibration data for

# cadmium at mass 111 (ng/L) that appeared in Gibbons et al. (1997b)

# and were provided to them by the U.S. EPA.

#

# First, display a plot of these data along with the fitted calibration line
# and 99% non-simultaneous prediction limits. See

# Millard and Neerchal (2001, pp.566-569) for more details on this

# example.

EPA.97.cadmium.111.df
#  Cadmium Spike
#1 0.88 0
#2 1.57 Q
#3 0.70 [}
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#...

#33 99.20 100

#34  93.71 100

#35 100.43 100

Cadmium <- EPA.97.cadmium.111.df$Cadmium
Spike <- EPA.97.cadmium.111.df$Spike

calibrate.list <- calibrate(Cadmium ~ Spike,
data = EPA.97.cadmium.111.df)

newdata <- data.frame(Spike = seq(min(Spike), max(Spike), length.out = 100))
pred.list <- predict(calibrate.list, newdata = newdata, se.fit = TRUE)
pointwise.list <- pointwise(pred.list, coverage = 0.99, individual = TRUE)
plot(Spike, Cadmium, ylim = c(min(pointwise.list$lower),

max (pointwise.list$upper)), xlab = "True Concentration (ng/L)",

ylab = "Observed Concentration (ng/L)")
abline(calibrate.list, 1lwd = 2)
lines(newdata$Spike, pointwise.list$lower, lty = 8, lwd = 2)
lines(newdata$Spike, pointwise.list$upper, lty = 8, 1lwd = 2)

title(paste(”Calibration Line and 99% Prediction Limits”,
"for US EPA Cadmium 111 Data”, sep="\n"))

rm(Cadmium, Spike, newdata, calibrate.list, pred.list,
pointwise.list)

# Now fit the linear model and produce the anova table to check for
# lack of fit. There is no evidence for lack of fit (p = 0.41).

fit <- Im(Cadmium ~ Spike, data = EPA.97.cadmium.111.df)

anova(fit)

#Analysis of Variance Table

#

#Response: Cadmium

# Df Sum Sg Mean Sq F value Pr(>F)

#Spike 1 43220 43220 9356.9 < 2.2e-16 **x*

#Residuals 33 152 5

#___

#Signif. codes: @ 'x*x' 0.001 '*x' .01 'x' ©.05 '.' 0.1 ' ' 1

#Analysis of Variance Table
#

anovaPE
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#Response: Cadmium
#
#Terms added sequentially (first to last)
# Df Sum of Sq Mean Sq F Value Pr(F)
# Spike 1 43220.27 43220.27 9356.879 ]
#Residuals 33 152.43 4.62
anovaPE(fit)
# Df Sum Sq Mean Sq F value Pr(>F)
#Spike 1 43220 43220 9341.559 <2e-16 ***
#lLack of Fit 3 14 5 0.982 0.4144
#Pure Error 30 139 5
#___
#Signif. codes: @ 'x*x' 0.001 'xx' 9.01 'x' ©.05 '.' @.1 ' ' 1
rm(fit)

aovN Compute Sample Size Necessary to Achieve Specified Power for One-
Way Fixed-Effects Analysis of Variance
Description

Compute the sample sizes necessary to achieve a specified power for a one-way fixed-effects anal-
ysis of variance test, given the population means, population standard deviation, and significance
level.

Usage

aovN(mu.vec, sigma = 1, alpha = 0.05, power = 0.95,
round.up = TRUE, n.max = 5000, tol = 1e-07, maxiter = 1000)

Arguments

mu.vec required numeric vector of population means. The length of mu.vec must be at
least 2. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not
allowed.

sigma optional numeric scalar specifying the population standard deviation (o) for
each group. The default value is sigma=1.

alpha optional numeric scalar between 0 and 1 indicating the Type I error level asso-
ciated with the hypothesis test. The default value is alpha=0. @5.

power optional numeric scalar between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.

round.up optional logical scalar indicating whether to round up the value of the computed

sample size to the next smallest integer. The default value is round. up=TRUE.
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n.max positive integer greater then 1 indicating the maximum sample size per group.
The default value is n.max=5000.

tol optional numeric scalar indicating the tolerance to use in the uniroot search
algorithm. The default value is tol=Te-7.

maxiter optional positive integer indicating the maximum number of iterations to use in
the uniroot search algorithm. The default value is maxiter=1000.

Details

The F-statistic to test the equality of k population means assuming each population has a normal
distribution with the same standard deviation o is presented in most basic statistics texts, including
Zar (2010, Chapter 10), Berthouex and Brown (2002, Chapter 24), and Helsel and Hirsh (1992,
pp-164-169). The formula for the power of this test is given in Scheffe (1959, pp.38-39,62-65). The
power of the one-way fixed-effects ANOVA depends on the sample sizes for each of the k groups,
the value of the population means for each of the k groups, the population standard deviation o, and
the significance level .. See the help file for aovPower.

The function aovN assumes equal sample sizes for each of the k groups and uses a search algorithm
to determine the sample size n required to attain a specified power, given the values of the population
means and the significance level.

Value

numeric scalar indicating the required sample size for each group. (The number of groups is equal
to the length of the argument mu. vec.)

Note

The normal and lognormal distribution are probably the two most frequently used distributions
to model environmental data. Sometimes it is necessary to compare several means to determine
whether any are significantly different from each other (e.g., USEPA, 2009, p.6-38). In this case,
assuming normally distributed data, you perform a one-way parametric analysis of variance.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, Type I error level, power, and differences in means if one
of the objectives of the sampling program is to determine whether a particular mean differs from
a group of means. The functions aovPower, aovN, and plotAovDesign can be used to investigate
these relationships for the case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.
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Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York, Chapters 27, 29, 30.

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

Scheffe, H. (1959). The Analysis of Variance. John Wiley and Sons, New York, 477pp.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.6-38.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapter 10.
See Also

aovPower, plotAovDesign, Normal, aov.

Examples

# Look at how the required sample size for a one-way ANOVA
# increases with increasing power:

aovN(mu.vec = c(10, 12, 15), sigma = 5, power = 0.8)
#[1]1 21

aovN(mu.vec = c(10, 12, 15), sigma
#[1]1 27

5, power = 0.9)

aovN(mu.vec = c(10, 12, 15), sigma = 5, power = 0.95)
#[1] 33

# Look at how the required sample size for a one-way ANOVA,
# given a fixed power, decreases with increasing variability
# in the population means:

aovN(mu.vec
#[1] 581

c(1o, 10, 11), sigma=5)

aovN(mu.vec
#[1]1 25

c(1e, 10, 15), sigma = 5)

aovN(mu.vec = c(10, 13, 15), sigma = 5)
#[1] 33

aovN(mu.vec
#[1]1 10

c(10, 15, 20), sigma = 5)
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# Look at how the required sample size for a one-way ANOVA,
# given a fixed power, decreases with increasing values of
# Type I error:

aovN(mu.vec = c(10, 12, 14), sigma = 5, alpha = 0.001)
#[1] 89

c(19, 12, 14), sigma = 5, alpha = 0.01)

aovN(mu.vec
#[1] 67

aovN(mu.vec
#[1] 50

c(19, 12, 14), sigma = 5, alpha = 0.05)

aovN(mu.vec = c(10, 12, 14), sigma = 5, alpha = 0.1)
#[1] 42

aovPower Compute the Power of a One-Way Fixed-Effects Analysis of Variance

Description
Compute the power of a one-way fixed-effects analysis of variance, given the sample sizes, popula-
tion means, population standard deviation, and significance level.

Usage

aovPower(n.vec, mu.vec = rep(@, length(n.vec)), sigma = 1, alpha = 0.05)

Arguments
n.vec numeric vector of sample sizes for each group. The i*" element of n.vec de-
notes the sample size for group 7. The length of n. vec must be at least 2, and all
elements of n.vec must be greater than or equal to 2. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.
mu.vec numeric vector of population means. The length of mu.vec must be the same
as the length of n.vec. The default value is a vector of zeros. Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are not allowed.
sigma numeric scalar specifying the population standard deviation (o) for each group.
The default value is sigma=1.
alpha numeric scalar between 0 and 1 indicating the Type I error level associated with
the hypothesis test. The default value is alpha=0.@5.
Details

Consider k£ normally distributed populations with common standard deviation o. Let p; denote
the mean of the ¢’th group (: = 1,2,...,k), and let x; = z;1, %52, ..., Tin, denote a vector of n;
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observations from the 7’th group. The statistical method of analysis of variance (ANOVA) tests the
null hypothesis:

H03/~L1:/~L2:"':,Uk (]_)

against the alternative hypothesis that at least one of the means is different from the rest by using
the F-statistic given by:

po_Cim@ —a k-
[ 5 (g — 7))/ (N — k)

where

L
Ti. = dowy o (3)
1 j::l

R MRS 3 MIRNT
i=1

i=1 j=1

k
N = Zni (5)

Under the null hypothesis (1), the F-statistic in (2) follows an F-distribution with K — 1 and N — k
degrees of freedom. Analysis of variance rejects the null hypothesis (1) at significance level o when

F>F, N (l-a) (6)

where F,,, ,,(p) denotes the p’th quantile of the F-distribution with 74 and v, degrees of freedom
(Zar, 2010, Chapter 10; Berthouex and Brown, 2002, Chapter 24; Helsel and Hirsh, 1992, pp.
164-169).

The power of this test, denoted by 1 — 3, where 3 denotes the probability of a Type II error, is given
by:
1-B=PriFran-ka>Frani(l-a) (7)
where i
s — 17 )2
A = Zi:l nl(:u’l M) (8)

o2

k
_ 1
M. _Eizzllul (9>

and F,, ,, A denotes a non-central F random variable with v; and v, degrees of freedom and non-
centrality parameter A. Equation (7) can be re-written as:

176:17H[Fk,1,N,k(170[),]€71,N7]€,A} (10)

where H(x,v1, 2, A) denotes the cumulative distribution function of this random variable evalu-
ated at = (Scheffe, 1959, pp.38-39, 62-65).

The power of the one-way fixed-effects ANOVA depends on the sample sizes for each of the k
groups, the value of the population means for each of the & groups, the population standard deviation
o, and the significance level .
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Value

a numeric scalar indicating the power of the one-way fixed-effects ANOVA for the given sample
sizes, population means, population standard deviation, and significance level.

Note

The normal and lognormal distribution are probably the two most frequently used distributions
to model environmental data. Sometimes it is necessary to compare several means to determine
whether any are significantly different from each other (e.g., USEPA, 2009, p.6-38). In this case,
assuming normally distributed data, you perform a one-way parametric analysis of variance.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, Type I error level, power, and differences in means if one
of the objectives of the sampling program is to determine whether a particular mean differs from
a group of means. The functions aovPower, aovN, and plotAovDesign can be used to investigate
these relationships for the case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York, Chapters 27, 29, 30.

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

Scheffe, H. (1959). The Analysis of Variance. John Wiley and Sons, New York, 477pp.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.6-38.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapter 10.
See Also

aoVvN, plotAovDesign, Normal, aov.

Examples

# Look at how the power of a one-way ANOVA increases
# with increasing sample size:
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aovPower(n.vec = rep(5, 3), mu.vec = c(10, 15, 20), sigma = 5)
#[1] 0.7015083

aovPower(n.vec = rep(10, 3), mu.vec = c(10, 15, 20), sigma = 5)
#[1] 0.9732551

# Look at how the power of a one-way ANOVA increases
# with increasing variability in the population means:

aovPower(n.vec = rep(5,3), mu.vec = c(10, 10, 11), sigma=5)
#[1] 0.05795739

aovPower(n.vec = rep(5, 3), mu.vec = c(10, 10, 15), sigma = 5)
#[1] 0.2831863
aovPower(n.vec = rep(5, 3), mu.vec = c(10, 13, 15), sigma = 5)

#[1] 0.2236093

aovPower(n.vec = rep(5, 3), mu.vec = c(10, 15, 20), sigma = 5)
#[1] 0.7015083

# Look at how the power of a one-way ANOVA increases
# with increasing values of Type I error:

aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),
sigma = 5, alpha = 0.001)

#[1] 0.02655785

aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),

sigma = 5, alpha = 0.01)
#[1] 0.1223527

aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),
sigma = 5, alpha = 0.05)
#[1] 0.3085313

aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),
sigma = 5, alpha = 0.1)
#[1] 0.4373292

The example on pages 5-11 to 5-14 of USEPA (1989b) shows
log-transformed concentrations of lead (mg/L) at two
background wells and four compliance wells, where observations
were taken once per month over four months (the data are
stored in EPA.89b.loglead.df.) Assume the true mean levels

at each well are 3.9, 3.9, 4.5, 4.5, 4.5, and 5, respectively.
Compute the power of a one-way ANOVA to test for mean

H oH H ¥ H HH
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# differences between wells. Use alpha=0.05, and assume the
# true standard deviation is equal to the one estimated from
# the data in this example.

# First look at the data
names (EPA.89b.loglead.df)
#[1] "LoglLead”  "Month" "Well” "Well.type"

dev.new()

stripChart(LogLead ~ Well, data = EPA.89b.loglead.df,
show.ci = FALSE, xlab = "Well Number",
ylab="Log [ Lead (ug/L) 1",
main="Lead Concentrations at Six Wells")

# Note: The assumption of a constant variance across
# all wells is suspect.
# Now perform the ANOVA and get the estimated sd

aov.list <- aov(LogLead ~ Well, data=EPA.89b.loglead.df)

summary(aov.list)

# Df Sum Sg Mean Sq F value Pr(>F)

#Well 5 5.7447 1.14895 3.3469 0.02599 =

#Residuals 18 6.1791 @.34328

#___

#Signif. codes: @ 'x*x' 0.001 'xx' ©0.01 'x' .05 '.' 0.1 '' 1

# Now call the function aovPower
aovPower(n.vec = rep(4, 6),

mu.vec = ¢(3.9,3.9,4.5,4.5,4.5,5), sigma=sqrt(0.34))
#[1] 0.5523148

# Clean up
rm(aov.list)

base Base b Representation of a Number

Description

For any number represented in base 10, compute the representation in any user-specified base.

Usage

base(n, base = 10, num.digits = max(@, floor(log(n, base))) + 1)
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Arguments
n a non-negative integer (base 10).
base a positive integer greater than 1 indicating what base to represent n in.
num.digits a positive integer indicating how many digits to use to represent n in base base.
By default, num.digits is equal to just the number of required digits (i.e.,
max (@, floor(log(n, base))) +1). Setting num.digits to a larger number
than this will result in 0’s padding the left.
Details
If b is a positive integer greater than 1, and n is a positive integer, then n can be expressed uniquely
in the form
_ . pk k-1
n = apb® + ar_1b +...+ab+ a0
where k is a non-negative integer, the coefficients ag, a1, . . ., a; are non-negative integers less than
b, and ai > 0 (Rosen, 1988, p.105). The function base computes the coefficients ag, a1, .. ., ai.
Value

A numeric vector of length num.digits showing the representation of n in base base.

Note

The function base is included in EnvStats because it is called by the function
oneSamplePermutationTest.

Author(s)
Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
Rosen, K.H. (1988). Discrete Mathematics and Its Applications. Random House, New York,
pp-105-107.

See Also

oneSamplePermutationTest.
Examples
# Compute the value of 7 in base 2.

base(7, 2)
#1111 1

base(7, 2, num.digits=5)
#1100 1 11
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Benthic.df Benthic Data from Monitoring Program in Chesapeake Bay

Description

Benthic data from a monitoring program in the Chesapeake Bay, Maryland, covering July 1994 -
December 1991.

Usage

Benthic.df

Format
A data frame with 585 observations on the following 7 variables.

Site.ID Site ID

Stratum Stratum Number (101-131)

Latitude Latitude (degrees North)

Longitude Longitude (negative values; degrees West)
Index Benthic Index (between 1 and 5)

Salinity Salinity (ppt)

Silt Silt Content (% clay in soil)

Details

Data from the Long Term Benthic Monitoring Program of the Chesapeake Bay. The data consist of
measurements of benthic characteristics and a computed index of benthic health for several locations
in the bay. Sampling methods and designs of the program are discussed in Ranasinghe et al. (1992).

The data represent observations collected at 585 separate point locations (sites). The sites are di-
vided into 31 different strata, numbered 101 through 131, each strata consisting of geographically
close sites of similar degradation conditions. The benthic index values range from 1 to 5 on a con-
tinuous scale, where high values correspond to healthier benthos. Salinity was measured in parts per
thousand (ppt), and silt content is expressed as a percentage of clay in the soil with high numbers
corresponding to muddy areas.

The United States Environmental Protection Agency (USEPA) established an initiative for the
Chesapeake Bay in partnership with the states bordering the bay in 1984. The goal of the initia-
tive is the restoration (abundance, health, and diversity) of living resources to the bay by reducing
nutrient loadings, reducing toxic chemical impacts, and enhancing habitats. USEPA’s Chesapeake
Bay Program Office is responsible for implementing this initiative and has established an extensive
monitoring program that includes traditional water chemistry sampling, as well as collecting data
on living resources to measure progress towards meeting the restoration goals.

Sampling benthic invertebrate assemblages has been an integral part of the Chesapeake Bay mon-
itoring program due to their ecological importance and their value as biological indicators. The
condition of benthic assemblages is a measure of the ecological health of the bay, including the
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effects of multiple types of environmental stresses. Nevertheless, regional-scale assessment of eco-
logical status and trends using benthic assemblages are limited by the fact that benthic assemblages
are strongly influenced by naturally variable habitat elements, such as salinity, sediment type, and
depth. Also, different state agencies and USEPA programs use different sampling methodolo-
gies, limiting the ability to integrate data into a unified assessment. To circumvent these limi-
tations, USEPA has standardized benthic data from several different monitoring programs into a
single database, and from that database developed a Restoration Goals Benthic Index that identifies
whether benthic restoration goals are being met.

Source

Ranasinghe, J.A., L.C. Scott, and R. Newport. (1992). Long-term Benthic Monitoring and Assess-
ment Program for the Maryland Portion of the Bay, Jul 1984-Dec 1991. Report prepared for the
Maryland Department of the Environment and the Maryland Department of Natural Resources by
Versar, Inc., Columbia, MD.

Examples

attach(Benthic.df)

# Show station locations

# _______________________

dev.new()

plot(Longitude, Latitude,
xlab = "-Longitude (Degrees West)",
ylab = "Latitude"”,
main = "Sampling Station Locations”)

# Scatterplot matrix of benthic index, salinity, and silt

dev.new()
pairs(~ Index + Salinity + Silt, data = Benthic.df)

# Contour and perspective plots based on loess fit
# showing only predicted values within the convex hull
# of station locations

library(sp)

loess.fit <- loess(Index ~ Longitude * Latitude,
data=Benthic.df, normalize=FALSE, span=0.25)

lat <- Benthic.df$Latitude

lon <- Benthic.df$Longitude

Latitude <- seq(min(lat), max(lat), length=50)

Longitude <- seq(min(lon), max(lon), length=50)

predict.list <- list(Longitude=Longitude,
Latitude=Latitude)

predict.grid <- expand.grid(predict.list)

predict.fit <- predict(loess.fit, predict.grid)

index.chull <- chull(lon, 1lat)
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boxcox

inside <- point.in.polygon(point.x = predict.grid$Longitude,
point.y = predict.grid$Latitude,
pol.x = lon[index.chull],
pol.y = lat[index.chulll)

predict.fit[inside == @] <- NA

dev.new()

contour(Longitude, Latitude, predict.fit,
levels=seq(1, 5, by=0.5), labcex=0.75,
xlab="-Longitude (degrees West)",
ylab="Latitude (degrees North)")

title(main=paste("”Contour Plot of Benthic Index",
"Based on Loess Smooth”, sep="\n"))

dev.new()
persp(Longitude, Latitude, predict.fit,
xlim = ¢(-77.3, -75.9), ylim = c(38.1, 39.5), zlim = c(@, 6),
theta = -45, phi = 30, d = 0.5,
xlab="-Longitude (degrees West)",
ylab="Latitude (degrees North)",
zlab="Benthic Index", ticktype = "detailed")
title(main=paste("Surface Plot of Benthic Index",
"Based on Loess Smooth”, sep="\n"))

detach("Benthic.df")

rm(loess.fit, lat, lon, Latitude, Longitude, predict.list,
predict.grid, predict.fit, index.chull, inside)

boxcox Boxcox Power Transformation

Description

boxcox is a generic function used to compute the value(s) of an objective for one or more Box-Cox
power transformations, or to compute an optimal power transformation based on a specified objec-
tive. The function invokes particular methods which depend on the class of the first argument.

Currently, there is a default method and a method for objects of class "1m".

Usage

boxcox(x, ...)

## Default S3 method:

boxcox(x,
lambda = {if (optimize) c(-2, 2) else seq(-2, 2, by = 0.5)},
optimize = FALSE, objective.name = "PPCC",
eps = .Machine$double.eps, include.x = TRUE, ...)
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## S3 method for class 'Im'

boxcox(x,
lambda = {if (optimize) c(-2, 2) else seq(-2, 2, by = 0.5)},
optimize = FALSE, objective.name = "PPCC",
eps = .Machine$double.eps, include.x = TRUE, ...)

Arguments

X an object of class "1m" for which the response variable is all positive numbers,
or else a numeric vector of positive numbers. When x is an object of class "1m",
the object must have been created with a call to the function 1m that includes the
data argument. When x is a numeric vector of positive observations, missing
(NA), undefined (NaN), and infinite (-Inf, Inf) values are allowed but will be
removed.

lambda numeric vector of finite values indicating what powers to use for the Box-Cox
transformation. When optimize=FALSE, the default value is
lambda=seq(-2, 2, by=0.5). When optimize=TRUE, 1ambda must be a vector
with two values indicating the range over which the optimization will occur and
the range of these two values must include 1. In this case, the default value is
lambda=c(-2, 2).

optimize logical scalar indicating whether to simply evalute the objective function at the
given values of lambda (optimize=FALSE; the default), or to compute the opti-
mal power transformation within the bounds specified by lambda (optimize=TRUE).

objective.name character string indicating what objective to use. The possible values are "PPCC"
(probability plot correlation coefficient; the default), "Shapiro-Wilk" (the Shapiro-
Wilk goodness-of-fit statistic), and "Log-Likelihood" (the log-likelihood func-
tion).

eps finite, positive numeric scalar. When the absolute value of lambda is less than
eps, lambda is assumed to be 0 for the Box-Cox transformation. The default
value is eps=.Machine$double. eps.

include.x logical scalar indicating whether to include the finite, non-missing values of the
argument x with the returned object. The default value is include.x=TRUE.

optional arguments for possible future methods. Currently not used.

Details
Two common assumptions for several standard parametric hypothesis tests are:

1. The observations all come from a normal distribution.

2. The observations all come from distributions with the same variance.

For example, the standard one-sample t-test assumes all the observations come from the same nor-
mal distribution, and the standard two-sample t-test assumes that all the observations come from a
normal distribution with the same variance, although the mean may differ between the two groups.

When the original data do not satisfy the above assumptions, data transformations are often used to
attempt to satisfy these assumptions. The rest of this section is divided into two parts: one that dis-
cusses Box-Cox transformations in the context of the original observations, and one that discusses
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Box-Cox transformations in the context of linear models.

Box-Cox Transformations Based on the Original Observations

Box and Cox (1964) presented a formalized method for deciding on a data transformation. Given a
random variable X from some distribution with only positive values, the Box-Cox family of power
transformations is defined as:

y = X2l \x0

log(X) Xx=0 (1)

where Y is assumed to come from a normal distribution. This transformation is continuous in A.
Note that this transformation also preserves ordering. See the help file for boxcoxTransform for
more information on data transformations.

Let x = z1,%9,...,2, denote a random sample of n observations from some distribution and
assume that there exists some value of \ such that the transformed observations

z)—1
Y = 5 AZ£0

log(z:) A=0 (2)

(t=1,2,...,n) form a random sample from a normal distribution.

Box and Cox (1964) proposed choosing the appropriate value of A based on maximizing the likeli-
hood function. Alternatively, an appropriate value of A can be chosen based on another objective,
such as maximizing the probability plot correlation coefficient or the Shapiro-Wilk goodness-of-fit
statistic.

In the case when optimize=TRUE, the function boxcox calls the R function nlminb to minimize the
negative value of the objective (i.e., maximize the objective) over the range of possible values of A
specified in the argument 1ambda. The starting value for the optimization is always A = 1 (i.e., no
transformation).

The rest of this sub-section explains how the objective is computed for the various options for
objective.name.

Objective Based on Probability Plot Correlation Coefficient (objective.name="PPCC")

When objective.name="PPCC", the objective is computed as the value of the normal probability
plot correlation coefficient based on the transformed data (see the description of the Probability
Plot Correlation Coefficient (PPCC) goodness-of-fit test in the help file for gofTest). That is, the
objective is the correlation coefficient for the normal quantile-quantile plot for the transformed data.
Large values of the PPCC tend to indicate a good fit to a normal distribution.

Objective Based on Shapiro-Wilk Goodness-of-Fit Statistic (objective.name="Shapiro-Wilk")
When objective.name="Shapiro-Wilk", the objective is computed as the value of the Shapiro-
Wilk goodness-of-fit statistic based on the transformed data (see the description of the Shapiro-Wilk
test in the help file for gofTest). Large values of the Shapiro-Wilk statistic tend to indicate a good
fit to a normal distribution.
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Objective Based on Log-Likelihood Function (objective.name="Log-Likelihood")

When objective.name="Log-Likelihood", the objective is computed as the value of the log-
likelihood function. Assuming the transformed observations in Equation (2) above come from
a normal distribution with mean y and standard deviation o, we can use the change of variable
formula to write the log-likelihood function as:

gl 0 0)) = 5 o9(2m) — Flog(o) ~ 5 D+ =) D legte) (3

where y; is defined in Equation (2) above (Box and Cox, 1964). For a fixed value of ), the log-
likelihood function is maximized by replacing p and o with their maximum likelihood estimators:

Z (4)

7;>
3\*—‘

n

Y- ()

i=1

o=

S|

Thus, when optimize=TRUE, Equation (3) is maximized by iteratively solving for A using the val-
ues for 1 and o given in Equations (4) and (5). When optimize=FALSE, the value of the objective is
computed by using Equation (3), using the values of \ specified in the argument lambda, and using
the values for ;4 and o given in Equations (4) and (5).

Box-Cox Transformation for Linear Models
In the case of a standard linear regression model with n observations and p predictors:

Y;:ﬁ0+ﬂ1Xi1+...+ﬁpXip+€i7i:1727...7n (6)
the standard assumptions are:

1. The error terms ¢; come from a normal distribution with mean 0.

2. The variance is the same for all of the error terms and does not depend on the predictor
variables.

Assuming Y is a random variable from some distribution that may depend on the predictor variables
and Y takes on only positive values, the Box-Cox family of power transformations is defined as:

y* = Y=L a#£0

logY) Xx=0 (7)

where Y* becomes the new response variable and the errors are now assumed to come from a
normal distribution with a mean of 0 and a constant variance.

In this case, the objective is computed as described above, but it is based on the residuals from the
fitted linear model in which the response variable is now Y * instead of Y.
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Value

When x is an object of class "1m", boxcox returns a list of class "boxcoxLm" containing the results.
See the help file for boxcoxLm. object for details.

When x is simply a numeric vector of positive numbers, boxcox returns a list of class "boxcox”
containing the results. See the help file for boxcox. object for details.

Note

Data transformations are often used to induce normality, homoscedasticity, and/or linearity, com-
mon assumptions of parametric statistical tests and estimation procedures. Transformations are not
“tricks” used by the data analyst to hide what is going on, but rather useful tools for understand-
ing and dealing with data (Berthouex and Brown, 2002, p.61). Hoaglin (1988) discusses “hidden”
transformations that are used everyday, such as the pH scale for measuring acidity. Johnson and
Wichern (2007, p.192) note that "Transformations are nothing more than a reexpression of the data
in different units."

In the case of a linear model, there are at least two approaches to improving a model fit: trans-
form the Y and/or X variable(s), and/or use more predictor variables. Often in environmental data
analysis, we assume the observations come from a lognormal distribution and automatically take
logarithms of the data. For a simple linear regression (i.e., one predictor variable), if regression
diagnostic plots indicate that a straight line fit is not adequate, but that the variance of the errors ap-
pears to be fairly constant, you may only need to transform the predictor variable X or perhaps use
a quadratic or cubic model in X. On the other hand, if the diagnostic plots indicate that the constant
variance and/or normality assumptions are suspect, you probably need to consider transforming the
response variable Y. Data transformations for linear regression models are discussed in Draper and
Smith (1998, Chapter 13) and Helsel and Hirsch (1992, pp. 228-229).

One problem with data transformations is that translating results on the transformed scale back to
the original scale is not always straightforward. Estimating quantities such as means, variances,
and confidence limits in the transformed scale and then transforming them back to the original scale
usually leads to biased and inconsistent estimates (Gilbert, 1987, p.149; van Belle et al., 2004,
p.400). For example, exponentiating the confidence limits for a mean based on log-transformed
data does not yield a confidence interval for the mean on the original scale. Instead, this yields a
confidence interval for the median (see the help file for elnormAlt). It should be noted, however,
that quantiles (percentiles) and rank-based procedures are invariant to monotonic transformations
(Helsel and Hirsch, 1992, p.12).

Finally, there is no guarantee that a Box-Cox tranformation based on the “optimal” value of A\ will
provide an adequate transformation to allow the assumption of approximate normality and constant
variance. Any set of transformed data should be inspected relative to the assumptions you want to
make about it (Johnson and Wichern, 2007, p.194).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
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See Also

boxcox.object, plot.boxcox, print.boxcox, boxcoxLm.object, plot.boxcoxLm, print.boxcoxLm,
boxcoxTransform, Data Transformations, Goodness-of-Fit Tests.

Examples

# Generate 30 observations from a lognormal distribution with

mean=10 and cv=2. Look at some values of various objectives

for various transformations. Note that for both the PPCC and

the Log-Likelihood objective, the optimal value of lambda is

about @, indicating that a log transformation is appropriate.

(Note: the call to set.seed simply allows you to reproduce this example.)

% o

set.seed(250)
X <= rlnormAlt(30, mean = 10, cv = 2)

dev.new()
hist(x, col = "cyan")
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# Using the PPCC objective:

boxcox(x)
#Results of Box-Cox Transformation

#

#0bjective Name: PPCC
#

#Data: X
#

#Sample Size: 30
#

# lambda PPCC

# -2.0 0.5423739

# -1.5 0.6402782

# -1.0 0.7818160

# -0.5 0.9272219

# 0.0 0.9921702

# 0.5 0.9581178

# 1.0 0.8749611

# 1.5 0.7827009

# 2.0 0.7004547

boxcox(x, optimize = TRUE)
#Results of Box-Cox Transformation

#

#0bjective Name: PPCC
#

#Data: X

#

#Sample Size: 30

#

#Bounds for Optimization: lower =
# upper
#

#0ptimal Value: lambda
#

#Value of Objective:

# Using the Log-Likelihodd objective

boxcox(x, objective.name = "Log-Likelihood")

#Results of Box-Cox Transformation

#

#0bjective Name: Log-Likelihood
#

#Data: X

#

PPCC = ©.9925919

boxcox



boxcox 31

#Sample Size: 30

#

# lambda Log-Likelihood

#  -2.0 -154.94255

# -1.5 -128.59988

#  -1.0 -106.23882

# -0.5 -90.84800

# 0.0 -85.10204

# 0.5 -88.69825

# 1.0 -99.42630

# 1.5 -115.23701

# 2.0 -134.54125

boxcox(x, objective.name = "Log-Likelihood”, optimize = TRUE)
#Results of Box-Cox Transformation

# _________________________________

#

#0bjective Name: Log-Likelihood

#

#Data: X

#

#Sample Size: 30

#

#Bounds for Optimization: lower = -2

# upper = 2

#

#0ptimal Value: lambda = 0.0405156
#

#Value of Objective: Log-Likelihood = -85.07123
# __________

boxcox.list <- boxcox(x)
dev.new()
plot(boxcox.list)

#lLook at QQ-Plots for the candidate values of lambda

plot(boxcox.list, plot.type = "Q-Q Plots”, same.window = FALSE)

The data frame Environmental.df contains daily measurements of

ozone concentration, wind speed, temperature, and solar radiation

in New York City for 153 consecutive days between May 1 and
September 30, 1973. In this example, we'll plot ozone vs.
temperature and look at the Q-Q plot of the residuals. Then

we'll look at possible Box-Cox transformations. The "optimal” one
based on the PPCC looks close to a log-transformation

(i.e., lambda=@). The power that produces the largest PPCC is

about 0.2, so a cube root (lambda=1/3) transformation might work too.

S E E E
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head(Environmental.df)

# ozone radiation temperature wind
#05/01/1973 41 190 67 7.4
#05/02/1973 36 118 72 8.0
#05/03/1973 12 149 74 12.6
#05/04/1973 18 313 62 11.5
#05/05/1973 NA NA 56 14.3
#05/06/1973 28 NA 66 14.9

tail(Environmental.df)

# ozone radiation temperature wind
#09/25/1973 14 20 63 16.6
#09/26/1973 30 193 70 6.9
#09/27/1973 NA 145 77 13.2
#09/28/1973 14 191 75 14.3
#09/29/1973 18 131 76 8.0
#09/30/1973 20 223 68 11.5

# Fit the model with the raw Ozone data
ozone.fit <- Im(ozone ~ temperature, data = Environmental.df)

# Plot Ozone vs. Temperature, with fitted line

# _____________________________________________
dev.new()
with(Environmental.df,
plot(temperature, ozone, xlab = "Temperature (degrees F)",
ylab = "Ozone (ppb)"”, main = "Ozone vs. Temperature"))

abline(ozone.fit)
# Look at the Q-Q Plot for the residuals

dev.new()
gqPlot(ozone.fit$residuals, add.line = TRUE)

# Look at Box-Cox transformations of Ozone

boxcox.list <- boxcox(ozone.fit)
boxcox.list
#Results of Box-Cox Transformation

#0bjective Name: PPCC

#

#lLinear Model: ozone.fit
#

#Sample Size: 116

#

# lambda PPCC

# -2.0 0.4286781

# -1.5 0.4673544
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# Plot PPCC vs. lambda based on Q-Q plot

dev.new()
plot(boxcox.list)

# Look at Q-Q plots of residuals for the
plot(boxcox.list, plot.type = "Q-Q Plots
# Compute the "optimal” transformation

boxcox(ozone.fit, optimize = TRUE)
#Results of Box-Cox Transformation

#0bjective Name: PPCC
#

#Linear Model: ozone.
#

#Sample Size: 116

#

#Bounds for Optimization: lower
# upper
#

#0ptimal Value: lambda
#

#Value of Objective: PPCC =

rm(x, boxcox.list, ozone.fit)
graphics.off ()

s of residuals

various transformation

", same.window = FALSE)

fit

1
N

= 0.2004305

0.9940222
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boxcox.object S3 Class "boxcox"

Description

Objects of S3 class "boxcox" are returned by the EnvStats function boxcox, which computes ob-
jective values for user-specified powers, or computes the optimal power for the specified objective.
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Details
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Objects of class "boxcox” are lists that contain information about the powers that were used, the ob-
jective that was used, the values of the objective for the given powers, and whether an optimization

was specified.

Value

Required Components
The following components must be included in a legitimate list of class "boxcox".

lambda

objective

objective.name

optimize

optimize.bounds

eps

sample.size
data.name

bad.obs

Numeric vector containing the powers used in the Box-Cox transformations. If
the value of the optimize component is FALSE, then 1ambda contains the values
of all of the powers at which the objective was evaluated. If the value of the
optimize component is TRUE, then lambda is a scalar containing the value of
the power that maximizes the objective.

Numeric vector containing the value(s) of the objective for the given value(s) of
A that are stored in the component 1ambda.

character string indicating the objective that was used. The possible values are
"PPCC" (probability plot correlation coefficient; the default), "Shapiro-Wilk"
(the Shapiro-Wilk goodness-of-fit statistic), and "Log-Likelihood"” (the log-
likelihood function).

logical scalar indicating whether the objective was simply evaluted at the given
values of 1ambda (optimize=FALSE), or instead the optimal power transforma-
tion was computed within the bounds specified by lambda (optimize=TRUE).

Numeric vector of length 2 with a names attribute indicating the bounds within
which the optimization took place. When optimize=FALSE, this contains miss-
ing values.

finite, positive numeric scalar indicating what value of eps was used. When the
absolute value of lambda is less than eps, lambda is assumed to be O for the
Box-Cox transformation.

Numeric scalar indicating the number of finite, non-missing observations.
The name of the data object used for the Box-Cox computations.

The number of missing (NA), undefined (NaN) and/or infinite (Inf, -Inf) values
that were removed from the data object prior to performing the Box-Cox com-
putations.

Optional Component

The following component may optionally be included in a legitimate list of class "boxcox”. It
must be included if you want to call the function plot.boxcox and specify Q-Q plots or Tukey
Mean-Difference Q-Q plots.

data

Numeric vector containing the data actually used for the Box-Cox computations
(i.e., the original data without any missing or infinite values).



boxcox.object 35

Methods

Generic functions that have methods for objects of class "boxcox” include:
plot, print.

Note

Since objects of class "boxcox" are lists, you may extract their components with the $ and [[
operators.

Author(s)
Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

boxcox, plot.boxcox, print.boxcox, boxcoxLm.object.

Examples

# Create an object of class "boxcox”, then print it out.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
X <= rlnormAlt(30, mean = 10, cv = 2)

dev.new()
hist(x, col = "cyan")

boxcox.list <- boxcox(x)

data.class(boxcox.list)
#[1] "boxcox”

names (boxcox.list)

# [1] "lambda” "objective” "objective.name"
# [4] "optimize” "optimize.bounds" "eps”
# [7] "data” "sample.size" "data.name”

#[10] "bad.obs”

boxcox.list
#Results of Box-Cox Transformation

#0bjective Name: PPCC
#

#Data: X

#

#Sample Size: 30

#

# lambda PPCC

# -2.0 0.5423739

# -1.5 0.6402782
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boxcox(x, optimize = TRUE)
#Results of Box-Cox Transformation

#0bjective Name: PPCC

#

#Data: X

#

#Sample Size: 30

#

#Bounds for Optimization: lower = -2
# upper
#

#Optimal Value: lambda = ©.04530789
#

#Value of Objective: PPCC = 0.9925919

1
N

rm(x, boxcox.list)

boxcoxCensored Boxcox Power Transformation for Type I Censored Data

Description

Compute the value(s) of an objective for one or more Box-Cox power transformations, or to com-
pute an optimal power transformation based on a specified objective, based on Type I censored

data.
Usage
boxcoxCensored(x, censored, censoring.side = "left",
lambda = {if (optimize) c(-2, 2) else seq(-2, 2, by = 0.5)3}, optimize = FALSE,
objective.name = "PPCC", eps = .Machine$double.eps,
include.x.and.censored = TRUE, prob.method = "michael-schucany”,

plot.pos.con = 0.375)
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Arguments
X a numeric vector of positive numbers. Missing (NA), undefined (NaN), and infi-
nite (-Inf, Inf) values are allowed but will be removed.
censored numeric or logical vector indicating which values of x are censored. This must

be the same length as x. If the mode of censored is "logical”, TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric”,
it must contain only 1’s and @’s; 1 corresponds to TRUE and @ corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left” (the default) and "right".

lambda numeric vector of finite values indicating what powers to use for the Box-Cox
transformation. When optimize=FALSE, the default value is
lambda=seq(-2, 2, by=0.5). When optimize=TRUE, 1ambda must be a vector
with two values indicating the range over which the optimization will occur and
the range of these two values must include 1. In this case, the default value is
lambda=c(-2, 2).

optimize logical scalar indicating whether to simply evalute the objective function at the
given values of lambda (optimize=FALSE; the default), or to compute the opti-
mal power transformation within the bounds specified by 1ambda (optimize=TRUE).

objective.name character string indicating what objective to use. The possible values are "PPCC"
(probability plot correlation coefficient; the default), "Shapiro-Wilk" (the Shapiro-
Wilk goodness-of-fit statistic), and "Log-Likelihood" (the log-likelihood func-
tion).

eps finite, positive numeric scalar. When the absolute value of 1ambda is less than
eps, lambda is assumed to be 0 for the Box-Cox transformation. The default
value is eps=.Machine$double. eps.

include.x.and.censored
logical scalar indicating whether to include the finite, non-missing values of the
argument x and the corresponding values of censored with the returned object.
The default value is include.x.and.censored=TRUE.

prob.method for multiply censored data, character string indicating what method to use to
compute the plotting positions (empirical probabilities) when
objective.name="PPCC". Possible values are:

"kaplan-meier" (product-limit method of Kaplan and Meier (1958)),
"modified kaplan-meier” (same as "kaplan-meier"” with the maximum value
included),

"nelson” (hazard plotting method of Nelson (1972)),

"michael-schucany” (generalization of the product-limit method due to Michael
and Schucany (1986)), and

"hirsch-stedinger” (generalization of the product-limit method due to Hirsch
and Stedinger (1987)).

The default value is prob.method="michael-schucany".
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The "nelson” method is only available for censoring.side="right"”, and
the "modified kaplan-meier” is only available for censoring.side="1eft".
See the DETAILS section for more explanation.

This argument is ignored if objective.name is not equal to "PPCC" and/or the
data are singly censored.

plot.pos.con for multiply censored data, numeric scalar between 0 and 1 containing the value
of the plotting position constant when objective.name="PPCC". The default
value is plot.pos.con=0.375. See the DETAILS section for more information.
This argument is used only if prob.method is equal to "michael-schucany” or
"hirsch-stedinger".
This argument is ignored if objective.name is not equal to "PPCC" and/or the
data are singly censored.

Details

Two common assumptions for several standard parametric hypothesis tests are:

1. The observations all come from a normal distribution.

2. The observations all come from distributions with the same variance.

For example, the standard one-sample t-test assumes all the observations come from the same nor-
mal distribution, and the standard two-sample t-test assumes that all the observations come from a
normal distribution with the same variance, although the mean may differ between the two groups.

When the original data do not satisfy the above assumptions, data transformations are often used
to attempt to satisfy these assumptions. Box and Cox (1964) presented a formalized method for
deciding on a data transformation. Given a random variable X from some distribution with only
positive values, the Box-Cox family of power transformations is defined as:

Yy = X1 \#o0

log(X) Xx=0 (1)

where Y is assumed to come from a normal distribution. This transformation is continuous in A.
Note that this transformation also preserves ordering. See the help file for boxcoxTransform for
more information on data transformations.

Box and Cox (1964) proposed choosing the appropriate value of A based on maximizing the likeli-
hood function. Alternatively, an appropriate value of A can be chosen based on another objective,
such as maximizing the probability plot correlation coefficient or the Shapiro-Wilk goodness-of-fit
statistic.

Shumway et al. (1989) investigated extending the method of Box and Cox (1964) to the case of
Type I censored data, motivated by the desire to produce estimated means and confidence intervals
for air monitoring data that included censored values.

In the case when optimize=TRUE, the function boxcoxCensored calls the R function nlminb to
minimize the negative value of the objective (i.e., maximize the objective) over the range of possible
values of \ specified in the argument lambda. The starting value for the optimization is always
A =1 (i.e., no transformation).
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The next section explains assumptions and notation, and the section after that explains how the ob-
jective is computed for the various options for objective.name.

Assumptions and Notation

Let x denote a random sample of /N observations from some continuous distribution. Assume n
(0 < n < N) of these observations are known and ¢ (c = N — n) of these observations are all
censored below (left-censored) or all censored above (right-censored) at k fixed censoring levels

TlaTQa"'aTK;Kzl (2)

For the case when K > 2, the data are said to be Type I multiply censored. For the case when
K =1, setT = T;. If the data are left-censored and all n known observations are greater than
or equal to 7', or if the data are right-censored and all n known observations are less than or equal
to T, then the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are
considered to be Type I multiply censored.

Let ¢; denote the number of observations censored below or above censoring level T} for j =

1,2,..., K, so that
K
dog=c (3
i=1

Let x (1), T(2), - - - , T(v) denote the “ordered” observations, where now “observation” means either
the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity x(;) does not necessarily represent the i’th “largest” observation
from the (unknown) complete sample.

Finally, let 2 (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations, and let €2; denote the set of c; subscripts in the “ordered” sample that
correspond to the censored observations censored at censoring level T); for j = 1,2,..., k.

‘We assume that there exists some value of \ such that the transformed observations
2 —1
Yy = 5 A#0
log(z;) A=0 (4)

(z=1,2,...,n) form a random sample of Type I censored data from a normal distribution.

Note that for the censored observations, Equation (4) becomes:

yo =17 = - A#0
log(T)) A=0 (5)
where ¢ € {);.

Computing the Objective
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Objective Based on Probability Plot Correlation Coefficient (objective.name="PPCC")

When objective.name="PPCC", the objective is computed as the value of the normal probability
plot correlation coefficient based on the transformed data (see the description of the Probability Plot
Correlation Coefficient (PPCC) goodness-of-fit test in the help file for gofTestCensored). That is,
the objective is the correlation coefficient for the normal quantile-quantile plot for the transformed
data. Large values of the PPCC tend to indicate a good fit to a normal distribution.

Objective Based on Shapiro-Wilk Goodness-of-Fit Statistic (objective.name="Shapiro-Wilk")
When objective.name="Shapiro-Wilk", the objective is computed as the value of the Shapiro-
Wilk goodness-of-fit statistic based on the transformed data (see the description of the Shapiro-Wilk
test in the help file for gofTestCensored). Large values of the Shapiro-Wilk statistic tend to indi-
cate a good fit to a normal distribution.

Objective Based on Log-Likelihood Function (objective.name="Log-Likelihood")

When objective.name="Log-Likelihood", the objective is computed as the value of the log-
likelihood function. Assuming the transformed observations in Equation (4) above come from
a normal distribution with mean y and standard deviation o, we can use the change of variable
formula to write the log-likelihood function as follows.

For Type I left censored data, the likelihood function is given by:

N k
log[L(\, u,0)] = lo +Y cilog[F(TH]+) lo A (A1 logx;
o) =togl(, ) > loslP )+ S tog{ oo+ 3t

where f and F' denote the probability density function (pdf) and cumulative distribution function
(cdf) of the population. That is,

where ¢ and ® denote the pdf and cdf of the standard normal distribution, respectively (Shumway
et al., 1989). For left singly censored data, Equation (6) simplifies to:

log[L(\, p,0)] = log[(i\:)] + clog[F Z log{fly@))} +(A—1) Z log[z ] (9)

1=c+1 1=c+1

Similarly, for Type I right censored data, the likelihood function is given by:

log[L(\, p, 0)] =109[<6162 N Ckn) +chlogl F(THIHY_log{flym}+(A=1) > logla)]

i€ 1€Q

and for right singly censored data this simplifies to:

log[L(\, p,0)] :log[<JZ)]+clog[l— F(T")) —i—Zlog{f A—1) Zlog (11)

(6)
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For a fixed value of ), the log-likelihood function is maximized by replacing  and o with their
maximum likelihood estimators (see the section Maximum Likelihood Estimation in the help file for
enormCensored).

Thus, when optimize=TRUE, Equation (6) or (10) is maximized by iteratively solving for A\ using
the MLEs for 1 and 0. When optimize=FALSE, the value of the objective is computed by using
Equation (6) or (10), using the values of \ specified in the argument 1ambda, and using the MLEs
of 1 and o.

Value

boxcoxCensored returns a list of class "boxcoxCensored” containing the results. See the help file
for boxcoxCensored.object for details.

Note

Data transformations are often used to induce normality, homoscedasticity, and/or linearity, com-
mon assumptions of parametric statistical tests and estimation procedures. Transformations are not
“tricks” used by the data analyst to hide what is going on, but rather useful tools for understand-
ing and dealing with data (Berthouex and Brown, 2002, p.61). Hoaglin (1988) discusses “hidden”
transformations that are used everyday, such as the pH scale for measuring acidity. Johnson and
Wichern (2007, p.192) note that "Transformations are nothing more than a reexpression of the data
in different units."

Shumway et al. (1989) investigated extending the method of Box and Cox (1964) to the case of
Type I censored data, motivated by the desire to produce estimated means and confidence intervals
for air monitoring data that included censored values.

Stoline (1991) compared the goodness-of-fit of Box-Cox transformed data (based on using the “op-
timal” power transformation from a finite set of values between -1.5 and 1.5) with log-transformed
data for 17 groundwater chemistry variables. Using the Probability Plot Correlation Coefficient
statistic for censored data as a measure of goodness-of-fit (see gofTest), Stoline (1991) found that
only 6 of the variables were adequately modeled by a Box-Cox transformation (p >0.10 for these
6 variables). Of these variables, five were adequately modeled by a a log transformation. Ten of
variables were “marginally” fit by an optimal Box-Cox transformation, and of these 10 only 6 were
marginally fit by a log transformation. Based on these results, Stoline (1991) recommends checking
the assumption of lognormality before automatically assuming environmental data fit a lognormal
distribution.

One problem with data transformations is that translating results on the transformed scale back to
the original scale is not always straightforward. Estimating quantities such as means, variances, and
confidence limits in the transformed scale and then transforming them back to the original scale usu-
ally leads to biased and inconsistent estimates (Gilbert, 1987, p.149; van Belle et al., 2004, p.400).
For example, exponentiating the confidence limits for a mean based on log-transformed data does
not yield a confidence interval for the mean on the original scale. Instead, this yields a confidence
interval for the median (see the help file for elnormAltCensored). It should be noted, however,
that quantiles (percentiles) and rank-based procedures are invariant to monotonic transformations
(Helsel and Hirsch, 1992, p.12).

Finally, there is no guarantee that a Box-Cox tranformation based on the “optimal” value of \ will
provide an adequate transformation to allow the assumption of approximate normality and constant
variance. Any set of transformed data should be inspected relative to the assumptions you want to
make about it (Johnson and Wichern, 2007, p.194).
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Examples

Generate 15 observations from a lognormal distribution with

mean=10 and cv=2 and censor the observations less than 2.

Then generate 15 more observations from this distribution and

censor the observations less than 4.

Then Look at some values of various objectives for various transformations.
Note that for both the PPCC objective the optimal value is about -0.3,
whereas for the Log-Likelihood objective it is about 0.3.

(Note: the call to set.seed simply allows you to reproduce this example.)

HoHF B H HF O H H

set.seed(250)

x.1 <= rlnormAlt(15, mean = 10, cv = 2)
censored.1 <- x.1 < 2
x.1[censored.1] <- 2

X.2 <= rlnormAlt(15, mean = 10, cv = 2)
censored.2 <- x.2 < 4
x.2[censored.2] <- 4

x <- c(x.1, x.2)
censored <- c(censored.1, censored.?2)

boxcoxCensored(x, censored)

#Results of Box-Cox Transformation
#Based on Type I Censored Data

#0bjective Name: PPCC
#

#Data: X

#

#Censoring Variable: censored
#

#Censoring Side: left
#

#Censoring Level(s): 2 4

#

#Sample Size: 30

#

#Percent Censored: 26.7%
#

# lambda PPCC

# -2.0 0.8954683

# -1.5 0.9338467

# -1.0 0.9643680

# -0.5 0.9812969
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# 0.0 0.9776834
# 0.5 0.9471025
# 1.0 0.8901990
# 1.5 0.8187488
# 2.0 0.7480494

boxcoxCensored(x, censored, optimize = TRUE)

#Results of Box-Cox Transformation
#Based on Type I Censored Data

# _________________________________

#

#0bjective Name: PPCC

#

#Data: X

#

#Censoring Variable: censored

#

#Censoring Side: left

#

#Censoring Level(s): 2 4

#

#Sample Size: 30

#

#Percent Censored: 26.7%

#

#Bounds for Optimization: lower = -2

# upper = 2

#

#Optimal Value: lambda = -0.3194799
#

#Value of Objective: PPCC = 0.9827546
# ___________________________________

# Using the Log-Likelihodd objective

# ___________________________________
boxcoxCensored(x, censored, objective.name = "Log-Likelihood")
#Results of Box-Cox Transformation

#Based on Type I Censored Data

# _________________________________

#

#0bjective Name: Log-Likelihood
#

#Data: X

#

#Censoring Variable: censored

#

#Censoring Side: left

#

boxcoxCensored
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#Censoring Level(s): 2 4

#

#Sample Size: 30

#

#Percent Censored: 26.7%
#

# lambda Log-Likelihood

# -2.0 -95.38785

# -1.5 -84.76697

# -1.0 -75.36204

# -0.5 -68.12058

# 0.0 -63.98902

# 0.5 -63.56701

# 1.0 -66.92599

# 1.5 -73.61638

# 2.0 -82.87970
boxcoxCensored(x, censored, objective.name = "Log-Likelihood”,

optimize = TRUE)

#Results of Box-Cox Transformation
#Based on Type I Censored Data

# _________________________________

#

#0bjective Name: Log-Likelihood
#

#Data: X

#

#Censoring Variable: censored

#

#Censoring Side: left

#

#Censoring Level(s): 2 4

#

#Sample Size: 30

#

#Percent Censored: 26.7%

#

#Bounds for Optimization: lower = -2

# upper = 2

#

#0ptimal Value: lambda = 0.3049744
#

#Value of Objective: Log-Likelihood = -63.2733
# __________

boxcox.list <- boxcoxCensored(x, censored)
dev.new()
plot(boxcox.list)

45
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#lLook at QQ-Plots for the candidate values of lambda

rm(x.1, censored.1, x.2, censored.2, x, censored, boxcox.list)

graphics.off()

boxcoxCensored.object 83 Class "boxcoxCensored"

Description

Objects of S3 class "boxcoxCensored” are returned by the EnvStats function boxcoxCensored,
which computes objective values for user-specified powers, or computes the optimal power for the
specified objective, based on Type I censored data.

Details

Objects of class "boxcoxCensored"” are lists that contain information about the powers that were
used, the objective that was used, the values of the objective for the given powers, and whether an
optimization was specified.

Value

Required Components
The following components must be included in a legitimate list of class "boxcoxCensored”.

lambda

objective

objective.name

optimize

Numeric vector containing the powers used in the Box-Cox transformations. If
the value of the optimize component is FALSE, then lambda contains the values
of all of the powers at which the objective was evaluated. If the value of the
optimize component is TRUE, then lambda is a scalar containing the value of
the power that maximizes the objective.

Numeric vector containing the value(s) of the objective for the given value(s) of
A that are stored in the component lambda.

Character string indicating the objective that was used. The possible values are
"PPCC" (probability plot correlation coefficient; the default), "Shapiro-Wilk"
(the Shapiro-Wilk goodness-of-fit statistic), and "Log-Likelihood"” (the log-
likelihood function).

Logical scalar indicating whether the objective was simply evaluted at the given
values of lambda (optimize=FALSE), or instead the optimal power transforma-
tion was computed within the bounds specified by lambda (optimize=TRUE).
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optimize.bounds
Numeric vector of length 2 with a names attribute indicating the bounds within
which the optimization took place. When optimize=FALSE, this contains miss-
ing values.

eps Finite, positive numeric scalar indicating what value of eps was used. When
the absolute value of 1ambda is less than eps, lambda is assumed to be O for the
Box-Cox transformation.

sample.size Numeric scalar indicating the number of finite, non-missing observations.

censoring.side Character string indicating the censoring side. Possible values are "left"” and
"right”.

censoring.levels
Numeric vector containing the censoring levels.

percent.censored
Numeric scalar indicating the percent of observations that are censored.

data.name The name of the data object used for the Box-Cox computations.

censoring.name The name of the data object indicating which observations are censored.

bad.obs The number of missing (NA), undefined (NaN) and/or infinite (Inf, -Inf) values
that were removed from the data object prior to performing the Box-Cox com-
putations.

Optional Component

The following components may optionally be included in a legitimate list of class "boxcoxCensored”.
They must be included if you want to call the function plot.boxcoxCensored and specify Q-Q
plots or Tukey Mean-Difference Q-Q plots.

data Numeric vector containing the data actually used for the Box-Cox computations
(i.e., the original data without any missing or infinite values).
censored Logical vector indicating which of the vales in the component data are cen-
sored.
Methods
Generic functions that have methods for objects of class "boxcoxCensored” include:
plot, print.
Note

Since objects of class "boxcoxCensored” are lists, you may extract their components with the $
and [[ operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

boxcoxCensored, plot.boxcoxCensored, print.boxcoxCensored.
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Examples

# Create an object of class "boxcoxCensored”, then print it out.

boxcoxCensored.object

# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

Xx.1 <= rlnormAlt(15, mean = 10, cv = 2)
censored.1 <- x.1 < 2
x.1[censored.1] <- 2

X.2 <= rlnormAlt(15, mean =
censored.2 <- x.2 < 4
x.2[censored.2] <- 4

10, cv = 2)

x <- c(x.1, x.2)
censored <- c(censored.1, censored.2)

boxcox.list <- boxcoxCensored(x, censored)

data.class(boxcox.list)
#[1] "boxcoxCensored"

names (boxcox.list)

# [1] "lambda” "objective”

# [4] "optimize" "optimize.bounds”
# [7] "data” "censored”

#[10] "censoring.side”  "censoring.levels”
#[13] "data.name" "censoring.name”

boxcox.list

#Results of Box-Cox Transformation
#Based on Type I Censored Data

#0bjective Name: PPCC
#

#Data: X

#

#Censoring Variable:
#

#Censoring Side:

#

#Censoring Level(s): 2 4
#

#Sample Size: 30
#

#Percent Censored:
#

# lambda PPCC
# -2.0 0.8954683
# -1.5 0.9338467

censored

left

26.7%

"objective.name”
"eps
"sample.size”
"percent.censored”
"bad.obs”

n
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.9643680
.9812969
.9776834
.9471025
.8901990
.8187488
.7480494

R R
st useuoe
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boxcox.list2 <- boxcox(x, optimize
names (boxcox.list2)
# [1] "lambda”

# [4] "optimize”

# [7] "data”

#[10] "bad.obs"”

"objective
"optimize.
"sample.si

boxcox.list2
#Results of Box-Cox Transformation

#0bjective Name:

#

#Data:

#

#Sample Size:

#

#Bounds for Optimization:
#

#

#Optimal Value:

#

#Value of Objective:

rm(x.1, censored.1, x.2, censored.
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TRUE)

" "objective.name"”

" reps”
"data.name"

bounds
Zell

PPCC

30

lower
upper

lambda -0.5826431

PPCC = 0.9755402

2, x, censored, boxcox.list, boxcox.list2)

boxcoxLm.object

S3 Class "boxcoxLm"

Description

Objects of S3 class "boxcoxLm” are returned by the EnvStats function boxcox when the argument

x is an object of class "1m". In this case, boxcox computes values of an objective function for user-
specified powers, or computes the optimal power for the specified objective, based on residuals
from the linear model.
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Details

boxcoxLm.object

Objects of class "boxcoxLm” are lists that contain information about the "1m" object that was su-
plied, the powers that were used, the objective that was used, the values of the objective for the
given powers, and whether an optimization was specified.

Value

The following components must be included in a legitimate list of class "boxcoxLm".

lambda

objective

objective.name

optimize

optimize.bounds

eps

Im.obj

sample.size

data.name

Methods

Numeric vector containing the powers used in the Box-Cox transformations. If
the value of the optimize component is FALSE, then 1ambda contains the values
of all of the powers at which the objective was evaluated. If the value of the
optimize component is TRUE, then lambda is a scalar containing the value of
the power that maximizes the objective.

Numeric vector containing the value(s) of the objective for the given value(s) of
A that are stored in the component 1ambda.

character string indicating the objective that was used. The possible values are
"PPCC" (probability plot correlation coefficient; the default), "Shapiro-Wilk"
(the Shapiro-Wilk goodness-of-fit statistic), and "Log-Likelihood” (the log-
likelihood function).

logical scalar indicating whether the objective was simply evaluted at the given
values of 1ambda (optimize=FALSE), or instead the optimal power transforma-
tion was computed within the bounds specified by lambda (optimize=TRUE).

Numeric vector of length 2 with a names attribute indicating the bounds within
which the optimization took place. When optimize=FALSE, this contains miss-
ing values.

finite, positive numeric scalar indicating what value of eps was used. When the
absolute value of lambda is less than eps, lambda is assumed to be O for the
Box-Cox transformation.

the value of the argument x provided to boxcox (an object that must inherit from
class "1m").

Numeric scalar indicating the number of finite, non-missing observations.

The name of the data object used for the Box-Cox computations.

Generic functions that have methods for objects of class "boxcoxLm” include:

plot, print.

Note

Since objects of class "boxcoxLm" are lists, you may extract their components with the $ and [[

operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

boxcox, plot.boxcoxLm, print.boxcoxLm, boxcox.object.

Examples

# Create an object of class "boxcoxLm”, then print it out.

The data frame Environmental.df contains daily measurements of

ozone concentration, wind speed, temperature, and solar radiation

in New York City for 153 consecutive days between May 1 and
September 30, 1973. In this example, we'll plot ozone vs.
temperature and look at the Q-Q plot of the residuals. Then

we'll look at possible Box-Cox transformations. The "optimal” one
based on the PPCC looks close to a log-transformation

(i.e., lambda=@). The power that produces the largest PPCC is

about 0.2, so a cube root (lambda=1/3) transformation might work too.

H oH H ¥ H H F

# Fit the model with the raw Ozone data
ozone.fit <- Im(ozone ~ temperature, data = Environmental.df)

# Plot Ozone vs. Temperature, with fitted line

# _____________________________________________
dev.new()
with(Environmental.df,
plot(temperature, ozone, xlab = "Temperature (degrees F)",
ylab = "Ozone (ppb)"”, main = "Ozone vs. Temperature"”))

abline(ozone.fit)
# Look at the Q-Q Plot for the residuals

dev.new()
ggPlot(ozone.fit$residuals, add.line = TRUE)

# Look at Box-Cox transformations of Ozone

boxcox.list <- boxcox(ozone.fit)
boxcox.list
#Results of Box-Cox Transformation

#0bjective Name: PPCC
#

#Linear Model: ozone.fit
#

#Sample Size: 116
#

# lambda PPCC

# -2.0 0.4286781

# -1.5 0.4673544

# -1.0 0.5896132

# -0.5 0.8301458
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# 0.0 0.9871519
# 0.5 0.9819825
# 1.0 0.9408694
# 1.5 0.8840770
# 2.0 0.8213675
# __________
# Clean up
# _________

rm(ozone.fit, boxcox.list)

boxcoxTransform Apply a Box-Cox Power Transformation to a Set of Data

Description

Apply a Box-Cox power transformation to a set of data to attempt to induce normality and homo-
geneity of variance.

Usage
boxcoxTransform(x, lambda, eps = .Machine$double.eps)
Arguments
X a numeric vector of positive numbers.
lambda finite numeric scalar indicating what power to use for the Box-Cox transforma-
tion.
eps finite, positive numeric scalar. When the absolute value of 1ambda is less than
eps, lambda is assumed to be 0 for the Box-Cox transformation. The default
value is eps=.Machine$double. eps.
Details

Two common assumptions for several standard parametric hypothesis tests are:

1. The observations all come from a normal distribution.

2. The observations all come from distributions with the same variance.

For example, the standard one-sample t-test assumes all the observations come from the same nor-
mal distribution, and the standard two-sample t-test assumes that all the observations come from a
normal distribution with the same variance, although the mean may differ between the two groups.
For standard linear regression models, these assumptions can be stated as: the error terms all come
from a normal distribution with mean 0 and and a constant variance.

Often, especially with environmental data, the above assumptions do not hold because the original
data are skewed and/or they follow a distribution that is not really shaped like a normal distribution.
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It is sometimes possible, however, to transform the original data so that the transformed observa-
tions in fact come from a normal distribution or close to a normal distribution. The transformation
may also induce homogeneity of variance and, for the case of a linear regression model, a linear
relationship between the response and predictor variable(s).

Sometimes, theoretical considerations indicate an appropriate transformation. For example, count
data often follow a Poisson distribution, and it can be shown that taking the square root of obser-
vations from a Poisson distribution tends to make these data look more bell-shaped (Johnson et
al., 1992, p.163; Johnson and Wichern, 2007, p.192; Zar, 2010, p.291). A common example in
the environmental field is that chemical concentration data often appear to come from a lognormal
distribution or some other positively-skewed distribution (e.g., gamma). In this case, taking the
logarithm of the observations often appears to yield normally distributed data.

Ideally, a data transformation is chosen based on knowledge of the process generating the data, as
well as graphical tools such as quantile-quantile plots and histograms.

Box and Cox (1964) presented a formalized method for deciding on a data transformation. Given a
random variable X from some distribution with only positive values, the Box-Cox family of power
transformations is defined as:

Yy = X1 \#o0

log(X) Ax=0 (1)

where Y is assumed to come from a normal distribution. This transformation is continuous in \.
Note that this transformation also preserves ordering; that is, if X; < X5 then Y7 < Y5.

Box and Cox (1964) proposed choosing the appropriate value of A based on maximizing a likelihood
function. See the help file for boxcox for details.

Note that for non-zero values of ), instead of using the formula of Box and Cox in Equation (1),
you may simply use the power transformation:

Y =X* (2

since these two equations differ only by a scale difference and origin shift, and the essential charac-
ter of the transformed distribution remains unchanged.

The value A = 1 corresponds to no transformation. Values of A less than 1 shrink large values of X,
and are therefore useful for transforming positively-skewed (right-skewed) data. Values of A larger
than 1 inflate large values of X, and are therefore useful for transforming negatively-skewed (left-
skewed) data (Helsel and Hirsch, 1992, pp.13-14; Johnson and Wichern, 2007, p.193). Commonly
used values of A include O (log transformation), 0.5 (square-root transformation), -1 (reciprocal),
and -0.5 (reciprocal root).

It is often recommend that when dealing with several similar data sets, it is best to find a common
transformation that works reasonably well for all the data sets, rather than using slightly different
transformations for each data set (Helsel and Hirsch, 1992, p.14; Shumway et al., 1989).

Value

numeric vector of transformed observations.
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Note

Data transformations are often used to induce normality, homoscedasticity, and/or linearity, com-
mon assumptions of parametric statistical tests and estimation procedures. Transformations are not
“tricks” used by the data analyst to hide what is going on, but rather useful tools for understand-
ing and dealing with data (Berthouex and Brown, 2002, p.61). Hoaglin (1988) discusses “hidden”
transformations that are used everyday, such as the pH scale for measuring acidity.

In the case of a linear model, there are at least two approaches to improving a model fit: trans-
form the Y and/or X variable(s), and/or use more predictor variables. Often in environmental data
analysis, we assume the observations come from a lognormal distribution and automatically take
logarithms of the data. For a simple linear regression (i.e., one predictor variable), if regression
diagnostic plots indicate that a straight line fit is not adequate, but that the variance of the errors ap-
pears to be fairly constant, you may only need to transform the predictor variable X or perhaps use
a quadratic or cubic model in X. On the other hand, if the diagnostic plots indicate that the constant
variance and/or normality assumptions are suspect, you probably need to consider transforming the
response variable Y. Data transformations for linear regression models are discussed in Draper and
Smith (1998, Chapter 13) and Helsel and Hirsch (1992, pp. 228-229).

One problem with data transformations is that translating results on the transformed scale back to
the original scale is not always straightforward. Estimating quantities such as means, variances,
and confidence limits in the transformed scale and then transforming them back to the original scale
usually leads to biased and inconsistent estimates (Gilbert, 1987, p.149; van Belle et al., 2004,
p.400). For example, exponentiating the confidence limits for a mean based on log-transformed
data does not yield a confidence interval for the mean on the original scale. Instead, this yields a
confidence interval for the median (see the help file for elnormAlt). It should be noted, however,
that quantiles (percentiles) and rank-based procedures are invariant to monotonic transformations
(Helsel and Hirsch, 1992, p.12).

Author(s)
Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

boxcox, Data Transformations, Goodness-of-Fit Tests.

Examples

# Generate 30 observations from a lognormal distribution with

# mean=10 and cv=2, then look at some normal quantile-quantile

# plots for various transformations.

# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
X <= rlnormAlt(30, mean = 10, cv = 2)

dev.new()
qgPlot(x, add.line = TRUE)

dev.new()
qgPlot(boxcoxTransform(x, lambda = ©.5), add.line = TRUE)

dev.new()
ggPlot(boxcoxTransform(x, lambda = @), add.line = TRUE)

# Clean up

calibrate Fit a Calibration Line or Curve

Description

Fit a calibration line or curve based on linear regression.
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Usage

calibrate

calibrate(formula, data, test.higher.orders = TRUE, max.order = 4, p.crit = 0.05,
F.test = "partial”, weights, subset, na.action, method = "qr", model = FALSE,

x = FALSE, y = FALSE, contrasts = NULL, warn = TRUE, ...)
Arguments
formula a formula object, with the response on the left of a ~ operator, and the single

data

predictor variable on the right. For example, Cadmium ~ Spike.

an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If not
found in data, the variables are taken from environment(formula), typically
the environment from which calibrate is called.

test.higher.orders

max.order

p.crit

F.test

weights

subset

na.action

logical scalar indicating whether to start with a model that contains a single
predictor variable and test the fit of higher order polynomials to consider for
the calibration curve (test.higher.orders=TRUE; the default), or to simply
use the model suppled and add the model matrix to the fit if it was not already
indicated by the argument x=TRUE in the call to calibrate.

integer indicating the maximum order of the polynomial to consider for the cal-
ibration curve. The default value is max.order=4, however, the final value of
max.order is the minimum of max.order and value of the number of unique
predictor values minus 1. So, for example, if there are only 4 unique values of
the single predictor variable, then the final value of max.order is the minimum
of what the user supplies and 3; thus, in this case, the highest order polynomial
that will be potentially tested is a cubic. See also the explanation below for the
argument warn.

numeric scaler between 0 and 1 indicating the p-value to use for the stepwise
regression when determining which polynomial model to use. The default value
iSp.crit=0.05.

character string indicating whether to perform the stepwise regression using the
standard partial F-test (F.test="partial"; the default) or using the lack-of-fit
F-test (F.test="1of").

optional vector of observation weights; if supplied, the algorithm fits to mini-
mize the sum of the weights multiplied into the squared residuals. The length of
weights must be the same as the number of observations. The weights must be
nonnegative and it is strongly recommended that they be strictly positive, since
zero weights are ambiguous, compared to use of the subset argument.

optional expression saying which subset of the rows of the data should be used
in the fit. This can be a logical vector (which is replicated to have length equal
to the number of observations), or a numeric vector indicating which observa-
tion numbers are to be included, or a character vector of the row names to be
included. All observations are included by default.

optional function which indicates what should happen when the data contain
NAs. The default is set by the na.action setting of options, and is

na.fail if that is unset. The ‘factory-fresh’ default is na.omit. Another possi-
ble value is NULL, no action. Value na.exclude can be useful.
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method optional method to be used; for fitting, currently only method = "qr" is sup-
ported; method = "model.frame"” returns the model frame (the same as with
model = TRUE, see below).

model, x, y, qr optional logicals. If TRUE the corresponding components of the fit (the model
frame, the model matrix, the response, the QR decomposition) are returned.

contrasts an optional list. See the argument contrasts.arg of model.matrix.

warn logical scalar indicating whether to issue a warning (warn=TRUE; the default)
when the value of max.order has been decreased from what the user supplied.
See also the explanation above for the argument max.order.

additional arguments to be passed to the low level regression fitting functions
(see 1m).

Details

A simple and frequently used calibration model is a straight line where the response variable S
denotes the signal of the machine and the predictor variable C denotes the true concentration in the
physical sample. The error term is assumed to follow a normal distribution with mean 0. Note that
the average value of the signal for a blank (C = 0) is the intercept. Other possible calibration models
include higher order polynomial models such as a quadratic or cubic model.

In a typical setup, a small number of samples (e.g., n = 6) with known concentrations are measured
and the signal is recorded. A sample with no chemical in it, called a blank, is also measured. (You
have to be careful to define exactly what you mean by a “blank.” A blank could mean a container
from the lab that has nothing in it but is prepared in a similar fashion to containers with actual
samples in them. Or it could mean a field blank: the container was taken out to the field and
subjected to the same process that all other containers were subjected to, except a physical sample
of soil or water was not placed in the container.) Usually, replicate measures at the same known
concentrations are taken. (The term “replicate” must be well defined to distinguish between for
example the same physical samples that are measured more than once vs. two different physical
samples of the same known concentration.)

The function calibrate initially fits a linear calibration model. If the argument max.order is
greater than 1, calibrate then performs forward stepwise linear regression to determine the “best”
polynomial model.

In the case where replicates are not availble, calibrate uses standard stepwise ANOVA to compare
models (Draper and Smith, 1998, p.335). In this case, if the p-value for the partial F-test to compare
models is greater than or equal to p.crit, then the model with fewer terms is used as the final
model.

In the case where replicates are available, if F.test="1of", then for each model calibrate com-
putes the p-value of the ANOVA for lack-of-fit vs. pure error (Draper and Smith, 1998, Chapters
2; see anovaPE). If the p-value is greater than or equal to p.crit, then this is the final model;
otherwise the next higher-order term is added to the polynomial and the model is re-fit. If, during
the stepwise procedure, the degrees of freedom associated with the residual sums of squares of a
model to be tested is less than or equal to the number of observations minus the number of unique
observations, calibrate uses the partial F-test instead of the lack-of-fit F-test.

The stepwise algorithm terminates when either the p-value is greater than or equal to p.crit, or
the currently selected model in the algorithm is of order max.order. The algorithm will terminate
earlier than this if the next model to be fit includes singularities so that not all coefficients can be
estimted.
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Value

An object of class "calibrate” that inherits from class "1m" and includes a component called x
that stores the model matrix (the values of the predictor variables for the final calibration model).

Note

Almost always the process of determining the concentration of a chemical in a soil, water, or air
sample involves using some kind of machine that produces a signal, and this signal is related to the
concentration of the chemical in the physical sample. The process of relating the machine signal to
the concentration of the chemical is called calibration. Once calibration has been performed, esti-
mated concentrations in physical samples with unknown concentrations are computed using inverse
regression (see inversePredictCalibrate). The uncertainty in the process used to estimate the
concentration may be quantified with decision, detection, and quantitation limits.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

calibrate.object, anovaPE, inversePredictCalibrate, detectionLimitCalibrate, 1m.

Examples

# The data frame EPA.97.cadmium.111.df contains calibration data for

# cadmium at mass 111 (ng/L) that appeared in Gibbons et al. (1997b)
# and were provided to them by the U.S. EPA.

# Display a plot of these data along with the fitted calibration line
# and 99% non-simultaneous prediction limits. See

# Millard and Neerchal (2001, pp.566-569) for more details on this

# example.

Cadmium <- EPA.97.cadmium.111.df$Cadmium
Spike <- EPA.97.cadmium.111.df$Spike

calibrate.list <- calibrate(Cadmium ~ Spike, data = EPA.97.cadmium.111.df)
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newdata <- data.frame(Spike = seq(min(Spike), max(Spike), len = 100))
pred.list <- predict(calibrate.list, newdata = newdata, se.fit = TRUE)

pointwise.list <- pointwise(pred.list, coverage = 0.99, individual = TRUE)

dev.new()
plot(Spike, Cadmium, ylim = c(min(pointwise.list$lower),
max (pointwise.list$upper)), xlab = "True Concentration (ng/L)",

ylab = "Observed Concentration (ng/L)")
abline(calibrate.list, 1lwd = 2)
lines(newdata$Spike, pointwise.list$lower, 1ty = 8, lwd = 2)
lines(newdata$Spike, pointwise.list$upper, lty = 8, 1lwd = 2)

title(paste(”Calibration Line and 99% Prediction Limits”,
"for US EPA Cadmium 111 Data”, sep = "\n"))

rm(Cadmium, Spike, newdata, calibrate.list, pred.list, pointwise.list)
graphics.off()

calibrate.object S3 Class "calibrate"

Description

Objects of S3 class "calibrate” are returned by the EnvStats function calibrate, which fits a
calibration line or curve based on linear regression.

Details

Objects of class "calibrate” are lists that inherit from class "1m" and include a component called
x that stores the model matrix (the values of the predictor variables for the final calibration model).

Value

See the help file for 1m.

Required Components
Besides the usual components in the list returned by the function 1m, the following components
must be included in a legitimate list of class "calibrate”.

X the model matrix from the linear model fit.
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Methods

Generic functions that have methods for objects of class "calibrate” include:
NONE AT PRESENT.

Note

Since objects of class "calibrate” are lists, you may extract their components with the $ and [[
operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also
calibrate, inversePredictCalibrate, detectionLimitCalibrate.
Examples
# Create an object of class "calibrate”, then print it out.
# The data frame EPA.97.cadmium.111.df contains calibration data for
# cadmium at mass 111 (ng/L) that appeared in Gibbons et al. (1997b)
# and were provided to them by the U.S. EPA.
calibrate.list <- calibrate(Cadmium ~ Spike, data = EPA.97.cadmium.111.df)

names(calibrate.list)

calibrate.list

rm(calibrate.list)

CastilloAndHadi1994 Abstract: Castillo and Hadi (1994)

Description

Detailed abstract of the manuscript:

Castillo, E., and A. Hadi. (1994). Parameter and Quantile Estimation for the Generalized Extreme-
Value Distribution. Environmetrics 5, 417-432.
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Details

Abstract

Castillo and Hadi (1994) introduce a new way to estimate the parameters and quantiles of the gen-
eralized extreme value distribution (GEVD) with parameters location=7, scale=6, and shape=x.
The estimator is based on a two-stage procedure using order statistics, denoted here by “TSOE”,
which stands for two-stage order-statistics estimator. Castillo and Hadi (1994) compare the TSOE
to the maximum likelihood estimator (MLE; Jenkinson, 1969; Prescott and Walden, 1983) and
probability-weighted moments estimator (PWME; Hosking et al., 1985).

Castillo and Hadi (1994) note that for some samples the likelihood may not have a local maximum,
and also when s > 1 the likelihood can be made infinite so the MLE does not exist. They also note,
as do Hosking et al., 1985), that when £ < —1, the moments and probability-weighed moments
of the GEVD do not exist, hence neither does the PWME. (Hosking et al., however, claim that in
practice the shape parameter usually lies between -1/2 and 1/2.) On the other hand, the TSOE exists
for all values of x.

Based on computer simulations, Castillo and Hadi (1994) found that the performance (bias and
root mean squared error) of the TSOE is comparable to the PWME for values of x in the range
—1/2 < k < 1/2. They also found that the TSOE is superior to the PWME for large values of k.
Their results, however, are based on using the PWME computed using the approximation given in
equation (14) of Hosking et al. (1985, p.253). The true PWME is computed using equation (12)
of Hosking et al. (1985, p.253). Hosking et al. (1985) introduced the approximation as a matter
of computational convenience, and noted that it is valid in the range —1/2 < k < 1/2. If Castillo
and Hadi (1994) had used the true PWME for values of « larger than 1/2, they probably would have
gotten very different results for the PWME. (Note: the function egevd with method="pwme" uses
the exact equation (12) of Hosking et al. (1985), not the approximation (14)).

Castillo and Hadi (1994) suggest using the bootstrap or jackknife to obtain variance estimates and
confidence intervals for the distribution parameters based on the TSOE.

More Details Let x = (x1, 2, ..., ;) be a vector of n observations from a generalized extreme
value distribution with parameters location=7, scale=0, and shape=« with cumulative distribu-
tion function F'. Also, let z(1), x(2),...,z(n) denote the ordered values of .

First Stage
Castillo and Hadi (1994) propose as initial estimates of the distribution parameters the solutions to
the following set of simultaneous equations based on just three observations from the total sample
of size n:

F[l‘(l), m, 95 K:] = Pin

F[x(])a m, 9, ’i] = pj,n

F[x(n)ﬂﬁev’%] :pn,n (1)

where 2 < j < n — 1, and A

pin = Flz(i);n, 0, K]
denotes the ¢’th plotting position for a sample of size n; that is, a nonparametric estimate of the
value of F" at z(4). Typically, plotting positions have the form:

t—a
n+b

(2)

where b > —a > —1. In their simulation studies, Castillo and Hadi (1994) used a=0.35, b=0.

Pin =
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Since j is arbitrary in the above set of equations (1), denote the solutions to these equations by:
There are thus n — 2 sets of estimates.

Castillo and Hadi (1994) show that the estimate of the shape parameter, «, is the solution to the

equation:
2(j) —a(n) _ 1= A5,

(1) —a(n)  1-Af ®)

where
Ay =Ci/Cr (4)
Ci = —log(pin) (5)
Castillo and Hadi (1994) show how to easily solve equation (3) using the method of bisection.
Once the estimate of the shape parameter is obtained, the other estimates are given by:

 _ Aule() -~ a()
SRRCATE AT
O

Second Stage

Apply a robust function to the n — 2 sets of estimates obtained in the first stage. Castillo and Hadi
(1994) suggest using either the median or the least median of squares (using a column of 1’s as
the predictor variable; see the help file for Imsreg in the package MASS). Using the median, for
example, the final distribution parameter estimates are given by:

’fl = Median(ﬁ27’f)37 ) ﬁn—l)
6= Median(ég,ég,, ol én_l)

R

Median(kao, R, -, Rn—1)
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See Also

Generalized Extreme Value Distribution, egevd, Hosking et al., 1985).

cdfCompare Plot Two Cumulative Distribution Functions

Description

For one sample, plots the empirical cumulative distribution function (ecdf) along with a theoretical
cumulative distribution function (cdf). For two samples, plots the two ecdf’s. These plots are used
to graphically assess goodness of fit.

Usage

cdfCompare(x, y = NULL, discrete = FALSE,
prob.method = ifelse(discrete, "emp.probs”, "plot.pos”), plot.pos.con = NULL,
distribution = "norm”, param.list = NULL,
estimate.params = is.null(param.list), est.arg.list = NULL,
x.col = "blue”, y.or.fitted.col = "black”,
x.lwd = 3 x par("cex"), y.or.fitted.lwd = 3 * par("cex"),
x.1lty = 1, y.or.fitted.1lty = 2, digits = .Options$digits, ...,
type = ifelse(discrete, "s", "1"), main = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL)

Arguments

X numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

y a numeric vector (not necessarily of the same length as x). Missing (NA), un-
defined (NaN), and infinite (Inf, -Inf) values are allowed but will be removed.
The default value is y=NULL, in which case the empirical cdf of x will be plotted
along with the theoretical cdf specified by the argument distribution.

discrete logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE; the default).

prob.method character string indicating what method to use to compute the plotting positions

(empirical probabilities). Possible values are plot.pos (plotting positions, the
default if discrete=FALSE) and emp. probs (empirical probabilities, the default
if discrete=TRUE). See the help file for ecdfPlot for more explanation.

plot.pos.con  numeric scalar between 0 and 1 containing the value of the plotting position
constant. When y is supplied, the default value is plot.pos.con=0.375. When
y is not supplied, for the normal, lognormal, three-parameter lognormal, zero-
modified normal, and zero-modified lognormal distributions, the default value
is plot.pos.con=0.375. For the Type I extreme value (Gumbel) distribu-
tion (distribution="evd"), the default value is plot.pos.con=0.44. For all
other distributions, the default value is plot.pos.con=0.4. See the help files
for ecdfPlot and gqPlot for more information. This argument is ignored if
prob.method="emp.probs".
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distribution when y is not supplied, a character string denoting the distribution abbreviation.
The default value is distribution="norm". See the help file for
Distribution.df for a list of possible distribution abbreviations. This argu-
ment is ignored if y is supplied.

param.list when y is not supplied, a list with values for the parameters of the distribu-
tion. The default value is param.list=1ist(mean=0, sd=1). See the help file
for Distribution.df for the names and possible values of the parameters as-
sociated with each distribution. This argument is ignored if y is supplied or
estimate.params=TRUE.

estimate.params
when y is not supplied, a logical scalar indicating whether to compute the cdf
for x based on estimating the distribution parameters (estimate.params=TRUE)
or using the known distribution parameters specified in param.list
(estimate.params=FALSE). The default value is TRUE unless the argument
param.list is supplied. The argument estimate.params is ignored if y is
supplied.

est.arg.list  when y is not supplied and estimate.params=TRUE, a list whose components
are optional arguments associated with the function used to estimate the pa-
rameters of the assumed distribution (see the help file Estimating Distribution
Parameters). For example, all functions used to estimate distribution parame-
ters have an optional argument called method that specifies the method to use
to estimate the parameters. (See the help file for Distribution.df for a list of
available estimation methods for each distribution.) To override the default es-
timation method, supply the argument est.arg.list with a component called
method; for example est.arg.list=1ist(method="mle"). The default value
isest.arg.list=NULL so that all default values for the estimating function are
used. This argument is ignored if estimate.params=FALSE or y is supplied.

x.col a numeric scalar or character string determining the color of the empirical cdf
(based on x) line or points. The default value is x.col="blue". See the entry
for col in the help file for par for more information.

y.or.fitted.col
a numeric scalar or character string determining the color of the empirical cdf
(based on y) or the theoretical cdf line or points. The default value is
y.or.fitted.col="black"”. See the entry for col in the help file for par for
more information.

x.lwd a numeric scalar determining the width of the empirical cdf (based on x) line.
The default value is x. lwd=3*par("”cex"). See the entry for 1wd in the help file
for par for more information.

y.or.fitted.lwd
a numeric scalar determining the width of the empirical cdf (based on y) or
theoretical cdf line. The default valueisy.or.fitted.lwd=3*par("cex"). See
the entry for 1wd in the help file for par for more information.

x. 1ty a numeric scalar determining the line type of the empirical cdf (based on x) line.
The default value is x.1ty=1. See the entry for 1ty in the help file for par for
more information.
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y.or.fitted.1lty
a numeric scalar determining the line type of the empirical cdf (based on y) or
theoretical cdf line. The default value is y.or.fitted.1ty=2. See the entry for
1ty in the help file for par for more information.

digits when y is not supplied, a scalar indicating how many significant digits to print
for the distribution parameters. The default value is digits=.0ptions$digits.

type, main, xlab, ylab, x1lim, ylim, ...
additional graphical parameters (see 1ines and par). In particular, the argument
type specifies the kind of line type. By default, the function cdfCompare plots
a step function (type="s") when discrete=TRUE, and plots a straight line be-
tween points (type="1") when discrete=FALSE. The user may override these
defaults by supplying the graphics parameter type (type="s" for a step func-
tion, type="1" for linear interpolation, type="p" for points only, etc.).

Details

When both x and y are supplied, the function cdfCompare creates the empirical cdf plot of x and y
on the same plot by calling the function ecdfPlot.

When vy is not supplied, the function cdfCompare creates the emprical cdf plot of x (by calling
ecdfPlot) and the theoretical cdf plot (by calling cdfPlot and using the argument distribution)
on the same plot.

Value

When y is supplied, cdfCompare invisibly returns a list with components:

x.ecdf.list a list with components Order.Statistics and Cumulative.Probabilities,
giving coordinates of the points that have been plotted for the x values.

y.ecdf.list a list with components Order.Statistics and Cumulative.Probabilities,
giving coordinates of the points that have been plotted for the y values.

When vy is not supplied, cdfCompare invisibly returns a list with components:

x.ecdf.list a list with components Order.Statistics and Cumulative.Probabilities,
giving coordinates of the points that have been plotted for the x values.

fitted.cdf.list
a list with components Quantiles and Cumulative.Probabilities, giving
coordinates of the points that have been plotted for the fitted cdf.

Note

An empirical cumulative distribution function (ecdf) plot is a graphical tool that can be used in
conjunction with other graphical tools such as histograms, strip charts, and boxplots to assess the
characteristics of a set of data. It is easy to determine quartiles and the minimum and maximum
values from such a plot. Also, ecdf plots allow you to assess local density: a higher density of
observations occurs where the slope is steep.

Chambers et al. (1983, pp.11-16) plot the observed order statistics on the y-axis vs. the ecdf on the
z-axis and call this a quantile plot.
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Empirical cumulative distribution function (ecdf) plots are often plotted with theoretical cdf plots
(see cdfPlot and cdfCompare) to graphically assess whether a sample of observations comes from
a particular distribution. The Kolmogorov-Smirnov goodness-of-fit test (see gofTest) is the statis-
tical companion of this kind of comparison; it is based on the maximum vertical distance between
the empirical cdf plot and the theoretical cdf plot. More often, however, quantile-quantile (Q-Q)
plots are used instead of ecdf plots to graphically assess departures from an assumed distribution
(see qqPlot).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

cdfPlot, ecdfPlot, qqPlot.

Examples

# Generate 20 observations from a normal (Gaussian) distribution

# with mean=10 and sd=2 and compare the empirical cdf with a

# theoretical normal cdf that is based on estimating the parameters.

# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

X <= rnorm(20, mean = 10, sd = 2)
dev.new()

cdfCompare(x)

# Generate 30 observations from an exponential distribution with parameter
# rate=0.1 (see the R help file for Exponential) and compare the empirical
# cdf with the empirical cdf of the normal observations generated in the

# previous example:

set.seed(432)

y <- rexp(30, rate = 0.1)
dev.new()

cdfCompare(x, y)

# Generate 20 observations from a Poisson distribution with parameter lambda=10
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# (see the R help file for Poisson) and compare the empirical cdf with a
# theoretical Poisson cdf based on estimating the distribution parameters.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

X <- rpois(20, lambda = 10)
dev.new()

cdfCompare(x, dist = "pois")

f==========
# Clean up
# _________
rm(x, y)

graphics.off()

cdfCompareCensored Plot Two Cumulative Distribution Functions Based on Censored Data

Description

For one sample, plots the empirical cumulative distribution function (ecdf) along with a theoretical
cumulative distribution function (cdf). For two samples, plots the two ecdf’s. These plots are used
to graphically assess goodness of fit.

Usage
cdfCompareCensored(x, censored, censoring.side = "left"”,
y = NULL, y.censored = NULL, y.censoring.side = censoring.side,
discrete = FALSE, prob.method = "michael-schucany”,
plot.pos.con = NULL, distribution = "norm”, param.list = NULL,
estimate.params = is.null(param.list), est.arg.list = NULL,
x.col = "blue”, y.or.fitted.col = "black”, x.lwd = 3 * par("cex"),
y.or.fitted.lwd = 3 * par("cex"), x.lty =1, y.or.fitted.1lty = 2,
include.x.cen = FALSE, x.cen.pch = ifelse(censoring.side == "left", 6, 2),
x.cen.cex = par("cex"), x.cen.col = "red",
include.y.cen = FALSE, y.cen.pch = ifelse(y.censoring.side == "left”, 6, 2),
y.cen.cex = par("cex"), y.cen.col = "black”, digits = .Options$digits, ...,
type = ifelse(discrete, "s”, "1"), main = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL)
Arguments
X numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.
censored numeric or logical vector indicating which values of x are censored. This must

be the same length as x. If the mode of censored is "logical”, TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
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censoring.side

y.censored

cdfCompareCensored

elements of x that are not censored. If the mode of censored is "numeric”,
it must contain only 1’s and @’s; 1 corresponds to TRUE and @ corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

character string indicating on which side the censoring occurs. The possible
values are "left"” (the default) and "right”.

a numeric vector (not necessarily of the same length as x). Missing (NA), un-
defined (NaN), and infinite (Inf, -Inf) values are allowed but will be removed.
The default value is y=NULL, in which case the empirical cdf of x will be plotted
along with the theoretical cdf specified by the argument distribution.

numeric or logical vector indicating which values of y are censored. This must
be the same length as y. If the mode of censored is "logical”, TRUE values
correspond to elements of y that are censored, and FALSE values correspond to
elements of y that are not censored. If the mode of censored is "numeric”,
it must contain only 1’s and @’s; 1 corresponds to TRUE and @ corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

This argument is ignored when y is not supplied. The default value is
y.censored=NULL since the default value of y is y=NULL.

y.censoring.side

discrete

prob.method

plot.pos.con

distribution

character string indicating on which side the censoring occurs for the values of
y. The possible values are "left"” (the default) and "right"”. This argument is
ignored when y is not supplied. The default value is
y.censoring.side=censoring.side.

logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE; the default).

character string indicating what method to use to compute the plotting posi-
tions (empirical probabilities). Possible values are "kaplan-meier"” (product-
limit method of Kaplan and Meier (1958)), "nelson” (hazard plotting method
of Nelson (1972)), "michael-schucany” (generalization of the product-limit
method due to Michael and Schucany (1986)), and "hirsch-stedinger” (gen-
eralization of the product-limit method due to Hirsch and Stedinger (1987)). The
default value is prob.method="michael-schucany".

The "nelson” method is only available for censoring.side="right". See the
help file for ecdfPlotCensored for more explanation.

numeric scalar between 0 and 1 containing the value of the plotting position
constant. When y is supplied, the default value is plot.pos.con=0.375. When
y is not supplied, for the normal, lognormal, three-parameter lognormal, zero-
modified normal, and zero-modified lognormal distributions, the default value
is plot.pos.con=0.375. For the Type I extreme value (Gumbel) distribution
(distribution="evd"), the default value is plot.pos.con=0.44. For all other
distributions, the default value is plot.pos.con=0.4. See the help files for
ecdfPlot and qgPlot for more information. This argument is used only if
prob.method is equal to "michael-schucany” or "hirsch-stedinger".

when y is not supplied, a character string denoting the distribution abbreviation.
The default value is distribution="norm". See the help file for
Distribution.df for a list of possible distribution abbreviations. This argu-
ment is ignored if y is supplied.
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param.list

estimate.params

est.arg.list

x.col

y.or.fitted.col

x.lwd

y.or.fitted.lwd

x.1ty

y.or.fitted.lty
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when y is not supplied, a list with values for the parameters of the distribu-
tion. The default value is param.list=1ist(mean=0, sd=1). See the help file
for Distribution.df for the names and possible values of the parameters as-
sociated with each distribution. This argument is ignored if y is supplied or
estimate.params=TRUE.

when y is not supplied, a logical scalar indicating whether to compute the cdf
for x based on estimating the distribution parameters (estimate.params=TRUE)
or using the known distribution parameters specified in param.list
(estimate.params=FALSE). The default value is TRUE unless the argument
param.list is supplied. The argument estimate.params is ignored if y is
supplied.

when y is not supplied and estimate.params=TRUE, a list whose components
are optional arguments associated with the function used to estimate the pa-
rameters of the assumed distribution (see the Section Estimating Distribution
Parameters in the help file Censored Data). For example, all functions used
to estimate distribution parameters have an optional argument called method
that specifies the method to use to estimate the parameters. (See the help file
for Distribution.df for a list of available estimation methods for each dis-
tribution.) To override the default estimation method, supply the argument
est.arg.list with a component called method; for example
est.arg.list=1list(method="mle"). The default valueis est.arg.list=NULL
so that all default values for the estimating function are used. This argument is
ignored if estimate.params=FALSE or y is supplied.

a numeric scalar or character string determining the color of the empirical cdf
(based on x) line or points. The default value is x.col="blue". See the entry
for col in the help file for par for more information.

a numeric scalar or character string determining the color of the empirical cdf
(based on y) or the theoretical cdf line or points. The default value is
y.or.fitted.col="black"”. See the entry for col in the help file for par for
more information.

a numeric scalar determining the width of the empirical cdf (based on x) line.
The default value is x. lwd=3*par("cex"). See the entry for 1wd in the help file
for par for more information.

a numeric scalar determining the width of the empirical cdf (based on y) or
theoretical cdf line. The default valueisy.or.fitted.lwd=3*par(”"cex"). See
the entry for 1wd in the help file for par for more information.

a numeric scalar determining the line type of the empirical cdf (based on x) line.
The default value is x.1ty=1. See the entry for 1ty in the help file for par for
more information.

a numeric scalar determining the line type of the empirical cdf (based on y) or
theoretical cdf line. The default value is y.or.fitted.1lty=2. See the entry for
1ty in the help file for par for more information.
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include.x.cen

x.cen.pch

X.cen.cex

X.cen.col

include.y.cen

y.cen.pch

y.cen.cex

y.cen.col

digits

cdfCompareCensored

logical scalar indicating whether to include censored values in x in the plot.
The default value is include. x.cen=FALSE. If include. x.cen=TRUE, censored
values in x are plotted using the plotting character indicated by the argument
x.cen.pch (see below). This argument is ignored if there are no censored values
in x.

numeric scalar or character string indicating the plotting character to use to plot
censored values in x. The default value is x.cen.pch=2 (hollow triangle point-
ing up) when x.censoring.side="right", and x.cen.pch=6 (hollow trian-
gle pointing down) when x.censoring.side="1eft". See the R help file for
points for an explanation of how plotting symbols are specified. This argument
is ignored if include. x.cen=FALSE.

numeric scalar that determines the size of the plotting character used to plot
censored values in x. The default value is the current value of the cex graphics
parameter. See the entry for cex in the R help file for par for more information.
This argument is ignored if include.x.cen=FALSE.

numeric scalar or character string that determines the color of the plotting char-
acter used to plot censored values in x. The default value is x.cen.col="red".
See the entry for col in the R help file for par for more information. This
argument is ignored if include.x.cen=FALSE.

logical scalar indicating whether to include censored values in y in the plot.
The default value is include.y.cen=FALSE. If include.y.cen=TRUE, censored
values in y are plotted using the plotting character indicated by the argument
y.cen.pch (see below). This argument is ignored if y is not supplied and/or
there are no censored values in y.

numeric scalar or character string indicating the plotting character to use to plot
censored values in y. The default value is y. cen.pch=2 (hollow triangle point-
ing up) when y.censoring.side="right", and y.cen.pch=6 (hollow trian-
gle pointing down) when y.censoring.side="1eft". See the R help file for
points for an explanation of how plotting symbols are specified. This argument
is ignored if include.y.cen=FALSE.

numeric scalar that determines the size of the plotting character used to plot
censored values in y. The default value is the current value of the cex graphics
parameter. See the entry for cex in the R help file for par for more information.
This argument is ignored if include.y.cen=FALSE.

numeric scalar or character string that determines the color of the plotting char-
acter used to plot censored values in y. The default valueis y.cen.col="black".
See the entry for col in the R help file for par for more information. This argu-
ment is ignored if include.y.cen=FALSE.

when y is not supplied, a scalar indicating how many significant digits to print
for the distribution parameters. The default value is digits=.0ptions$digits.

type, main, xlab, ylab, x1lim, ylim, ...

additional graphical parameters (see 1ines and par). In particular, the argument
type specifies the kind of line type. By default, the function

cdfCompareCensored plots a step function (type="s") when discrete=TRUE,
and plots a straight line between points (type="1") when discrete=FALSE.
The user may override these defaults by supplying the graphics parameter type
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(type="s" for a step function, type="1" for linear interpolation, type="p" for
points only, etc.).

Details

When both x and y are supplied, the function cdfCompareCensored creates the empirical cdf plot
of x and y on the same plot by calling the function ecdfPlotCensored.

When y is not supplied, the function cdfCompareCensored creates the emprical cdf plot of x (by
calling ecdfPlotCensored) and the theoretical cdf plot (by calling cdfPlot and using the argument
distribution) on the same plot.

Value
When y is supplied, cdfCompareCensored invisibly returns a list with components:

x.ecdf.list a list with components Order.Statistics and Cumulative.Probabilities,
giving coordinates of the points that have been plotted for the x values.

y.ecdf.list a list with components Order.Statistics and Cumulative.Probabilities,
giving coordinates of the points that have been plotted for the y values.

When y is not supplied, cdfCompareCensored invisibly returns a list with components:

x.ecdf.list a list with components Order.Statistics and Cumulative.Probabilities,
giving coordinates of the points that have been plotted for the x values.
fitted.cdf.list
a list with components Quantiles and Cumulative.Probabilities, giving
coordinates of the points that have been plotted for the fitted cdf.

Note

An empirical cumulative distribution function (ecdf) plot is a graphical tool that can be used in
conjunction with other graphical tools such as histograms, strip charts, and boxplots to assess the
characteristics of a set of data. It is easy to determine quartiles and the minimum and maximum
values from such a plot. Also, ecdf plots allow you to assess local density: a higher density of
observations occurs where the slope is steep.

Chambers et al. (1983, pp.11-16) plot the observed order statistics on the y-axis vs. the ecdf on the
z-axis and call this a quantile plot.

Censored observations complicate the procedures used to graphically explore data. Techniques from
survival analysis and life testing have been developed to generalize the procedures for constructing
plotting positions, empirical cdf plots, and g-q plots to data sets with censored observations (see
ppointsCensored).

Empirical cumulative distribution function (ecdf) plots are often plotted with theoretical cdf plots
to graphically assess whether a sample of observations comes from a particular distribution. More
often, however, quantile-quantile (Q-Q) plots are used instead of ecdf plots to graphically assess
departures from an assumed distribution (see qqPlotCensored).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

cdfPlot, ecdfPlotCensored, ggPlotCensored.

Examples

# Generate 20 observations from a normal distribution with mean=20 and sd=5,
# censor all observations less than 18, then compare the empirical cdf with a
# theoretical normal cdf that is based on estimating the parameters.

# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(333)
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<- sort(rnorm(20, mean=20, sd=5))

X

X

# [1] 9.743551 12.370197 14.375499 15.628482 15.883507 17.080124
# [7] 17.197588 18.097714 18.654182 19.585942 20.219308 20.268505
#[13] 20.552964 21.388695 21.763587 21.823639 23.168039 26.165269
#[19] 26.843362 29.673405

censored <- x < 18
x[censored] <- 18

sum(censored)
#[11 7

dev.new()
cdfCompareCensored(x, censored)

# Clean up

Example 15-1 of USEPA (2009, page 15-10) gives an example of
computing plotting positions based on censored manganese
concentrations (ppb) in groundwater collected at 5 monitoring
wells. The data for this example are stored in
EPA.09.Ex.15.1.manganese.df. Here we will compare the empirical
cdf based on Kaplan-Meier plotting positions or Michael-Schucany
plotting positions with various assumed distributions

(based on estimating the parameters of these distributions):

1) normal distribution

2) lognormal distribution

3) gamma distribution

H o H HF ¥ H OHF ¥ B HH

# First look at the data:

EPA.09.Ex.15.1.manganese.df
# Sample Well Manganese.Orig.ppb Manganese.ppb Censored

#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#4 4 Well .1 21.6 21.6 FALSE
#5 5 Well.1 <2 2.0 TRUE
#...

#21 1 Well.5 17.9 17.9 FALSE
#22 2 Well.5 22.7 22.7 FALSE
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb”, "Sample"”, "Well”,
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paste.

#

#Sample.
#Sample.
#Sample.
#Sample.
#Sample.

row.name = TRUE)

Well.1 Well.2 Well.3 Well.4 Well.5

1 <5 <5 <5 6.3
2 12.1 7.7 5.3 11.9
3 16.9 53.6 12.6 10
4 21.6 9.5 106.3 <2
5 <2 45.9 34.5 77.2

# Assume a normal distribution

# Michael-Schucany plotting positions:

dev.new()
with(EPA.09.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored))

# Kaplan-Meier plotting positions:
dev.new()
with(EPA.09.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored,

prob.method = "kaplan-meier"))

# Assume a lognormal distribution

# Michael-Schucany plotting positions:

dev.new()
with(EPA.@9.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored, dist =

# Kaplan-Meier plotting positions:
dev.new()
with(EPA.09.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored, dist =

prob.method = "kaplan-meier"))

# Assume a gamma distribution

# Michael-Schucany plotting positions:

dev.new()
with(EPA.@9.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored, dist

# Kaplan-Meier plotting positions:
dev.new()
with(EPA.@9.Ex.15.1.manganese.df,

cdfCompareCensored(Manganese.ppb, Censored, dist

prob.method = "kaplan-meier"))

17
22

o w

.9
.7
.3
.4

<2

"lnorm"))

"lnorm”,

"gamma”))

"gamma",

cdfCompareCensored
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# Clean up

# Compare the distributions of copper and zinc between the Alluvial Fan Zone
# and the Basin-Trough Zone using the data of Millard and Deverel (1988).
# The data are stored in Millard.Deverel.88.df.

Millard.Deverel.88.df

# Cu.orig Cu Cu.censored Zn.orig Zn Zn.censored Zone Location
#1 <1 1 TRUE <10 10 TRUE Alluvial.Fan 1
#2 <11 TRUE 9 9 FALSE Alluvial.Fan 2
#3 3 3 FALSE NA  NA FALSE Alluvial.Fan 3
#.

#.

#.

#116 5 5 FALSE 50 50 FALSE Basin.Trough 48
#117 14 14 FALSE 90 90 FALSE Basin.Trough 49
#118 4 4 FALSE 20 20 FALSE Basin.Trough 50

Cu.AF <- with(Millard.Deverel.88.df,
Cu[Zone == "Alluvial.Fan"])

Cu.AF.cen <- with(Millard.Deverel.88.df,
Cu.censored[Zone == "Alluvial.Fan"])

Cu.BT <- with(Millard.Deverel.88.df,
Cu[Zone == "Basin.Trough"])

Cu.BT.cen <- with(Millard.Deverel.88.df,
Cu.censored[Zone == "Basin.Trough"])

Zn.AF <- with(Millard.Deverel.88.df,
Zn[Zone == "Alluvial.Fan"])

Zn.AF.cen <- with(Millard.Deverel.88.df,
Zn.censored[Zone == "Alluvial.Fan"])

Zn.BT <- with(Millard.Deverel.88.df,
Zn[Zone == "Basin.Trough"])

Zn.BT.cen <- with(Millard.Deverel.88.df,
Zn.censored[Zone == "Basin.Trough"])

# First compare the copper concentrations

dev.new()

cdfCompareCensored(x = Cu.AF, censored = Cu.AF.cen,
y = Cu.BT, y.censored = Cu.BT.cen)
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# Now compare the zinc concentrations

dev.new()
cdfCompareCensored(x = Zn.AF, censored = Zn.AF.cen,
y = Zn.BT, y.censored = Zn.BT.cen)

# Compare the Zinc concentrations again, but delete
# the one "outlier”.

summaryStats(Zn.AF)
# N Mean SD Median Min Max NA's N.Total
#Zn.AF 67 23.5075 74.4192 10 3 620 1 68

summaryStats(Zn.BT)
# N Mean SD Median Min Max
#Zn.BT 50 21.94 18.7044 18.5 3 90

which(Zn.AF == 620)
#[1] 38

summaryStats(Zn.AF[-38])

# N Mean SD Median Min Max NA's N.Total
#Zn.AF[-38] 66 14.4697 8.1604 10 3 50 1 67
dev.new()

cdfCompareCensored(x = Zn.AF[-38], censored = Zn.AF.cen[-38],
y = Zn.BT, y.censored = Zn.BT.cen)

rm(Cu.AF, Cu.AF.cen, Cu.BT, Cu.BT.cen,
Zn.AF, Zn.AF.cen, Zn.BT, Zn.BT.cen)
graphics.off()

cdfPlot Plot Cumulative Distribution Function

Description

Produce a cumulative distribution function (cdf) plot for a user-specified distribution.
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Usage
cdfPlot(distribution = "norm”, param.list = list(mean = @, sd = 1),
left.tail.cutoff = ifelse(is.finite(supp.min), @, 0.001),
right.tail.cutoff = ifelse(is.finite(supp.max), @, ©.001), plot.it = TRUE,
add = FALSE, n.points = 1000, cdf.col = "black”, cdf.lwd = 3 * par("cex"),
cdf.lty = 1, curve.fill = FALSE, curve.fill.col = "cyan”,
digits = .Options$digits, ..., type = ifelse(discrete, "s", "1"),
main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL)
Arguments
distribution  a character string denoting the distribution abbreviation. The default value is
distribution="norm". See the help file for Distribution.df for a list of
possible distribution abbreviations.
param.list a list with values for the parameters of the distribution. The default value is

param.list=1ist(mean=0, sd=1). See the help file for Distribution.df for
the names and possible values of the parameters associated with each distribu-
tion.

left.tail.cutoff

a numeric scalar indicating what proportion of the left-tail of the probability
distribution to omit from the plot. For densities with a finite support minimum
(e.g., Lognormal) the default value is @; for all other densities the default value
is 0.001.

right.tail.cutoff

plot.it

add

n.points

cdf.col

cdf.1lwd

cdf.1lty

a scalar indicating what proportion of the right-tail of the probability distribu-
tion to omit from the plot. For densities with a finite support maximum (e.g.,
Binomial) the default value is @; for all other densities the default value is 0. 001.

a logical scalar indicating whether to create a plot or add to the existing plot (see
add) on the current graphics device. If plot. it=FALSE, no plot is produced, but
a list of (x,y) values is returned (see the section VALUE below). The default
value is plot.it=TRUE.

a logical scalar indicating whether to add the cumulative distribution function
curve to the existing plot (add=TRUE), or to create a new plot (add=FALSE; the
default). This argument is ignored if plot.it=FALSE.

a numeric scalar specifying at how many evenly-spaced points the cumulative
distribution function will be evaluated. The default value is n.points=1000.

a numeric scalar or character string determining the color of the cdf line in the
plot. The default value is pdf.col="black"”. See the entry for col in the help
file for par for more information.

a numeric scalar determining the width of the cdf line in the plot. The default
value is pdf.lwd=3*par(”"cex"). See the entry for 1wd in the help file for par
for more information.

a numeric scalar determining the line type of the cdf line in the plot. The default
value is pdf.1ty=1. See the entry for 1ty in the help file for par for more
information.
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curve.fill

curve.fill.col

digits

cdfPlot

a logical value indicating whether to fill in the area below the cumulative distri-
bution function curve with the color specified by curve.fill.col. The default
value is curve.fill=FALSE.

when curve.fill=TRUE, a numeric scalar or character string indicating what
color to use to fill in the area below the cumulative distribution function curve.
The default value is curve.fill.col="cyan". See the entry for col in the help
file for par for more information.

a scalar indicating how many significant digits to print for the distribution pa-
rameters. The default value is digits=.0ptions$digits.

type, main, xlab, ylab, xlim, ylim,

Details

additional graphical parameters (see 1ines and par). In particular, the argument
type specifies the kind of line type. By default, the function cdfPlot plots a step
function (type="s") for discrete distributions, and plots a straight line between
points (type="1") otherwise. The user may override these defaults by supplying
the graphics parameter type (type="s" for a step function, type="1" for linear
interpolation, type="p" for points only, etc.).

The cumulative distribution function (cdf) of a random variable X, usually denoted F', is defined

as:

F(z)=Pr(X <z (1)

That is, F'(x) is the probability that X is less than or equal to . This is the probability that the
random variable X takes on a value in the interval (—oo, z] and is simply the (Lebesgue) integral
of the pdf evaluated between —oo and x. That is,

F(z) = Pr(X <z) = [ S a2

where f(t) denotes the probability density function of X evaluated at ¢. For discrete distributions,
Equation (2) translates to summing up the probabilities of all values in this interval:

Flz)=Pr(X<z)= Y [t Y oPrx=t) (3

te(—o0,x] te(—o0,x]

A cumulative distribution function (cdf) plot plots the values of the cdf against quantiles of the
specified distribution. Theoretical cdf plots are sometimes plotted along with empirical cdf plots to
visually assess whether data have a particular distribution.

Value

cdfPlot invisibly returns a list giving coordinates of the points that have been or would have been

plotted:

Quantiles

The quantiles used for the plot.

Cumulative.Probabilities

The values of the cdf associated with the quantiles.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions, Second Edi-
tion. John Wiley and Sons, New York.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

Distribution.df, ecdfPlot, cdfCompare, pdfPlot.

Examples

# Plot the cdf of the standard normal distribution

dev.new()
cdfPlot()

# Plot the cdf of the standard normal distribution
# and a N(2, 2) distribution on the sample plot.

dev.new()
cdfPlot(param.list = list(mean=2, sd=2), main = "")

cdfPlot(add = TRUE, cdf.col = "red")

legend("topleft”, legend = c("N(2,2)", "N(0,1)"),
col = c("black”, "red”), lwd = 3 * par("cex"))

title("CDF Plots for Two Normal Distributions")

graphics.off()
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chenTTest Chen’s Modified One-Sided t-test for Skewed Distributions

Description

For a skewed distribution, estimate the mean, standard deviation, and skew; test the null hypothesis
that the mean is equal to a user-specified value vs. a one-sided alternative; and create a one-sided
confidence interval for the mean.

Usage
chenTTest(x, y = NULL, alternative = "greater”, mu = @, paired = !is.null(y),
conf.level = 0.95, ci.method = "z")
Arguments
X numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.
y optional numeric vector of observations that are paired with the observations in

x. The length of y must be the same as the length of x. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are allowed but will be removed. This
argument is ignored if paired=FALSE, and must be supplied if paired=TRUE.
The default value is y=NULL.

alternative character string indicating the kind of alternative hypothesis. The possible val-
ues are "greater"” (the default) and "less"”. The value "greater"” should be
used for positively-skewed distributions, and the value "less” should be used
for negatively-skewed distributions.

mu numeric scalar indicating the hypothesized value of the mean. The default value
is mu=0.
paired character string indicating whether to perform a paired or one-sample t-test. The

possible values are paired=FALSE (the default; indicates a one-sample t-test)
and paired=TRUE.

conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence interval for the population mean. The default value is
conf.level=0.95.

ci.method character string indicating which critical value to use to construct the confidence
interval for the mean. The possible values are "z" (the default), "t", and "Avg.
of zand t". See the DETAILS section below for more information.

Details

One-Sample Case (paired=FALSE)
Let z = (x1,9,...,%,) be a vector of n independent and identically distributed (i.i.d.) observa-
tions from some distribution with mean p and standard deviation o.
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Background: The Conventional Student’s t-Test
Assume that the n observations come from a normal (Gaussian) distribution, and consider the test
of the null hypothesis:

Ho:p=po (1)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater"):
Hy:p>po  (2)

the lower one-sided alternative (alternative="1less"):
Hy:p<po (3)

and the two-sided alternative:
Hy:p#po  (4)

The test of the null hypothesis (1) versus any of the three alternatives (2)-(4) is usually based on the
Student t-statistic:

_ T
= ©®
where .
7= % Yoo ©
= LS ()
i=1

(see the R help file for t.test). Under the null hypothesis (1), the t-statistic in (5) follows a Stu-
dent’s t-distribution with n — 1 degrees of freedom (Zar, 2010, p.99; Johnson et al., 1995, pp.362-
363). The t-statistic is fairly robust to departures from normality in terms of maintaining Type I
error and power, provided that the sample size is sufficiently large.

Chen’s Modified t-Test for Skewed Distributions

In the case when the underlying distribution of the n observations is positively skewed and the
sample size is small, the sampling distribution of the t-statistic under the null hypothesis (1) does
not follow a Student’s t-distribution, but is instead negatively skewed. For the test against the upper
alternative in (2) above, this leads to a Type I error smaller than the one assumed and a loss of power
(Chen, 1995b, p.767).

Similarly, in the case when the underlying distribution of the n observations is negatively skewed
and the sample size is small, the sampling distribution of the t-statistic is positively skewed. For the
test against the lower alternative in (3) above, this also leads to a Type I error smaller than the one
assumed and a loss of power.

In order to overcome these problems, Chen (1995b) proposed the following modified t-statistic that
takes into account the skew of the underlying distribution:

ta =t+a(l+2t%) +4a(t +2t*)  (8)

where

1

“= 6n )
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By = g?’ (10)

iz = m—1)n-2 Z(l“z —z)°  (11)

i=1

n

6'3 — 33 _ [ 1 Z(IZ _ j‘)Z]S/Q (12)

n—14
=1

Note that the quantity 4/ 1 in (9) is an estimate of the skew of the underlying distribution and is
based on unbiased estimators of central moments (see the help file for skewness).

For a positively-skewed distribution, Chen’s modified t-test rejects the null hypothesis (1) in favor
of the upper one-sided alternative (2) if the t-statistic in (8) is too large. For a negatively-skewed
distribution, Chen’s modified t-test rejects the null hypothesis (1) in favor of the lower one-sided
alternative (3) if the t-statistic in (8) is too small.

Chen’s modified t-test is not applicable to testing the two-sided alternative (4). It should also not
be used to test the upper one-sided alternative (2) based on negatively-skewed data, nor should it be
used to test the lower one-sided alternative (3) based on positively-skewed data.

Determination of Critical Values and p-Values

Chen (1995b) performed a simulation study in which the modified t-statistic in (8) was compared
to a critical value based on the normal distribution (z-value), a critical value based on Student’s
t-distribution (t-value), and the average of the critical z-value and t-value. Based on the simulation
study, Chen (1995b) suggests using either the z-value or average of the z-value and t-value when n
(the sample size) is small (e.g., n < 10) or « (the Type I error) is small (e.g. a < 0.01), and using
either the t-value or the average of the z-value and t-value when n > 20 or o > 0.05.

The function chenTTest returns three different p-values: one based on the normal distribution, one
based on Student’s t-distribution, and one based on the average of these two p-values. This last
p-value should roughly correspond to a p-value based on the distribution of the average of a normal
and Student’s t random variable.

Computing Confidence Intervals

The function chenTTest computes a one-sided confidence interval for the true mean p based on
finding all possible values of ;1 for which the null hypothesis (1) will not be rejected, with the
confidence level determined by the argument conf.level. The argument ci.method determines
which p-value is used in the algorithm to determine the bounds on p. When ci.method="z", the
p-value is based on the normal distribution, when ci.method="t", the p-value is based on Student’s
t-distribution, and when ci.method="Avg. of z and t" the p-value is based on the average of the
p-values based on the normal and Student’s t-distribution.

Paired-Sample Case (paired=TRUE)
When the argument paired=TRUE, the arguments x and y are assumed to have the same length, and
the n differences

di = T; — Y, 1= 1,2,...,7’1

are assumed to be i.i.d. observations from some distribution with mean p and standard deviation o.
Chen’s modified t-test can then be applied to the differences.
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Value

alistof class "htest” containing the results of the hypothesis test. See the help file for htest.object
for details.

Note

The presentation of Chen’s (1995b) method in USEPA (2002d) and Singh et al. (2010b, p. 52) is
incorrect for two reasons: it is based on an intermediate formula instead of the actual statistic that
Chen proposes, and it uses the intermediate formula to compute an upper confidence limit for the
mean when the sample data are positively skewed. As explained above, for the case of positively
skewed data, Chen’s method is appropriate to test the upper one-sided alternative hypothesis that the
population mean is greater than some specified value, and a one-sided upper alternative corresponds
to creating a one-sided lower confidence limit, not an upper confidence limit (see, for example,
Millard and Neerchal, 2001, p. 371).

A frequent question in environmental statistics is “Is the concentration of chemical X greater than
Y units?” For example, in groundwater assessment (compliance) monitoring at hazardous and solid
waste sites, the concentration of a chemical in the groundwater at a downgradient may be compared
to a groundwater protection standard (GWPS). If the concentration is “above” the GWPS, then the
site enters corrective action monitoring. As another example, soil screening at a Superfund site
involves comparing the concentration of a chemical in the soil with a pre-determined soil screening
level (SSL). If the concentration is “above” the SSL, then further investigation and possible remedial
action is required. Determining what it means for the chemical concentration to be “above” a GWPS
or an SSL is a policy decision: the average of the distribution of the chemical concentration must
be above the GWPS or SSL, or the median must be above the GWPS or SSL, or the 95’th percentile
must be above the GWPS or SSL, or something else. Often, the first interpretation is used.

The regulatory guidance document Soil Screening Guidance: Technical Background Document
(USEPA, 1996c, Part 4) recommends using Chen’s t-test as one possible method to compare chem-
ical concentrations in soil samples to a soil screening level (SSL). The document notes that the
distribution of chemical concentrations will almost always be positively-skewed, but not necessar-
ily fit a lognormal distribution well (USEPA, 1996¢, pp.107, 117-119). It also notes that using a
confidence interval based on Land’s (1971) method is extremely sensitive to the assumption of a
lognormal distribution, while Chen’s test is robust with respect to maintaining Type I and Type 11
errors for a variety of positively-skewed distributions (USEPA, 1996c, pp.99, 117-119, 123-125).

Hypothesis tests you can use to perform tests of location include: Student’s t-test, Fisher’s random-
ization test, the Wilcoxon signed rank test, Chen’s modified t-test, the sign test, and a test based
on a bootstrap confidence interval. For a discussion comparing the performance of these tests, see
Millard and Neerchal (2001, pp.408—409).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
Chen, L. (1995b). Testing the Mean of Skewed Distributions. Journal of the American Statistical
Association 90(430), 767-772.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York, Chapters 28, 31.
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Land, C.E. (1971). Confidence Intervals for Linear Functions of the Normal Mean and Variance.
The Annals of Mathematical Statistics 42(4), 1187-1205.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL, pp.402-404.

Singh, A., N. Armbya, and A. Singh. (2010b). ProUCL Version 4.1.00 Technical Guide (Draft).
EPA/600/R-07/041, May 2010. Office of Research and Development, U.S. Environmental Protec-
tion Agency, Washington, D.C.

USEPA. (1996c). Soil Screening Guidance: Technical Background Document. EPA/540/R-95/128,
PB96963502. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency,
Washington, D.C., May, 1996.

USEPA. (2002d). Estimation of the Exposure Point Concentration Term Using a Gamma Distri-
bution. EPA/600/R-02/084. October 2002. Technology Support Center for Monitoring and Site
Characterization, Office of Research and Development, Office of Solid Waste and Emergency Re-
sponse, U.S. Environmental Protection Agency, Washington, D.C.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

t.test, elnorm, elnormAlt.

Examples

# The guidance document "Calculating Upper Confidence Limits for

Exposure Point Concentrations at Hazardous Waste Sites”

(USEPA, 2002d, Exhibit 9, p. 16) contains an example of 60 observations
from an exposure unit. Here we will use Chen's modified t-test to test
the null hypothesis that the average concentration is less than 30 mg/L
versus the alternative that it is greater than 30 mg/L.

In EnvStats these data are stored in the vector EPA.02d.Ex.9.mg.per.L.vec.

o o OB H

sort(EPA.Q2d.Ex.9.mg.per.L.vec)

# [11 16 17 17 17 18 18 20 20 20 21 21 21 21 21 21 22
#[17] 22 22 23 23 23 23 24 24 24 25 25 25 25 25 25 26
#[33] 26 26 26 27 27 28 28 28 28 29 29 30 30 31 32 32
#[49] 32 33 33 35 35 97 98 105 107 111 117 119

dev.new()
hist(EPA.02d.Ex.9.mg.per.L.vec, col = "cyan”, xlab = "Concentration (mg/L)")

# The Shapiro-Wilk goodness-of-fit test rejects the null hypothesis of a
# normal, lognormal, and gamma distribution:

gofTest(EPA.02d.Ex.9.mg.per.L.vec)$p.value
#[1] 2.496781e-12

gofTest(EPA.02d.Ex.9.mg.per.L.vec, dist = "lnorm”")$p.value
#[1] 3.349035e-09

gofTest(EPA.02d.Ex.9.mg.per.L.vec, dist = "gamma")$p.value
#[1] 1.564341e-10
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# Use Chen's modified t-test to test the null hypothesis that
# the average concentration is less than 3@ mg/L versus the
# alternative that it is greater than 30 mg/L.

chenTTest(EPA.Q2d.Ex.9.mg.per.L.vec, mu = 30)

#Results of Hypothesis Test

#Null Hypothesis:

#

#Alternative Hypothesis:
#

#Test Name:

#

#

#

#

#Estimated Parameter(s):
#

#

#

#Data:

#

#Sample Size:

#

#Test Statistic:

#

#Test Statistic Parameter:
#

#P-values:

#

#

#

#Confidence Interval for:
#

#Confidence Interval Method:

#

#Confidence Interval Type:
#

#Confidence Level:

#

#Confidence Interval:

#

mean = 30
True mean is greater than 30

One-sample t-Test

Modified for

Positively-Skewed Distributions
(Chen, 1995)

mean = 34.566667
sd 27.330598
skew 2.365778

EPA.02d.Ex.9.mg.per.L.vec

60

t = 1.574075

df = 59

z = 0.05773508
t = 0.06040889

Avg. of z and t = 0.05907199

mean
Based on z
Lower

95%

LCL = 29.82
UCL = Inf

85

# The estimated mean, standard deviation, and skew are 35, 27, and 2.4,

# respectively. The p-value is 0.06, and the lower 95% confidence interval
# is [29.8, Inf). Depending on what you use for your Type I error rate, you
# may or may not want to reject the null hypothesis.
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Chi The Chi Distribution

Description

Density, distribution function, quantile function, and random generation for the chi distribution.

Usage
dchi(x, df)
pchi(q, df)
gchi(p, df)
rchi(n, df)
Arguments
X vector of (positive) quantiles.
q vector of (positive) quantiles.
p vector of probabilities between 0 and 1.
n sample size. If length(n) is larger than 1, then length(n) random values are
returned.
df vector of (positive) degrees of freedom (> 0). Non-integer values are allowed.
Details

Elements of x, g, p, or df that are missing will cause the corresponding elements of the result to be
missing.

The chi distribution with n degrees of freedom is the distribution of the positive square root of a
random variable having a chi-squared distribution with n degrees of freedom.

The chi density function is given by:
fz,v) = g(z*,v)2x,2 >0
where g(z, ) denotes the density function of a chi-square random variable with n degrees of free-
dom.
Value
density (dchi), probability (pchi), quantile (qchi), or random sample (rchi) for the chi distribution
with df degrees of freedom.
Note

The chi distribution takes on positive real values. It is important because for a sample of n obser-
vations from a normal distribution, the sample standard deviation multiplied by the square root of
the degrees of freedom v and divided by the true standard deviation follows a chi distribution with
v degrees of freedom. The chi distribution is also used in computing exact prediction intervals for
the next k observations from a normal distribution (see predIntNorm).
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

See Also

Chisquare, Normal, predIntNorm, Probability Distributions and Random Numbers.

Examples
# Density of a chi distribution with 4 degrees of freedom, evaluated at 3:

dchi(3, 4)
#[1] ©.1499715

# The 95'th percentile of a chi distribution with 10 degrees of freedom:

qchi(.95, 10)
#[1] 4.278672

# The cumulative distribution function of a chi distribution with
# 5 degrees of freedom evaluated at 3:

pchi(3, 5)
#[1] 0.8909358

# A random sample of 2 numbers from a chi distribution with 7 degrees of freedom.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rchi(2, 7)
#[1] 3.271632 2.035179
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ciBinomHalfWidth Half-Width of Confidence Interval for Binomial Proportion or Differ-
ence Between Two Proportions

Description

Compute the half-width of a confidence interval for a binomial proportion or the difference between
two proportions, given the sample size(s), estimated proportion(s), and confidence level.

Usage

ciBinomHalfWidth(n.or.n1, p.hat.or.pl.hat = 0.5,
n2 = n.or.nl, p2.hat = 0.4, conf.level = 0.95,
sample.type = "one.sample”, ci.method = "score",
correct = TRUE, warn = TRUE)

Arguments

n.or.nl numeric vector of sample sizes.
When sample.type="one.sample”, n.or.n1 denotes n, the number of obser-
vations in the single sample.
When sample. type="two.sample”, n.or.n1 denotes n, the number of obser-
vations from group 1.
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.
p.hat.or.p1.hat
numeric vector of estimated proportions.
When sample. type="one.sample”, p.hat.or.p1.hat denotes the estimated
value of p, the probability of “success”.
When sample. type="two.sample”, p.hat.or.p1.hat denotes the estimated
value of p1, the probability of “success” in group 1.
Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is the value of
n.or.n1. This argument is ignored when sample. type="one.sample”. Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

p2.hat numeric vector of estimated proportions for group 2. This argument is ignored
when sample. type="one.sample”. Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are not allowed.

conf.level numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf.level=0.95.

sample. type character string indicating whether this is a one-sample or two-sample confi-
dence interval. When sample.type="one.sample"”, the computed half-width
is based on a confidence interval for a single proportion. When
sample.type="two.sample”, the computed half-width is based on a confi-
dence interval for the difference between two proportions. The default value
is sample. type="one.sample” unless the argument n2 or p2.hat is supplied.
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ci.method character string indicating which method to use to construct the confidence in-
terval. Possible values are "score” (the default), "exact”,
"adjusted Wald"”, and "Wald” (the "Wald"” method is never recommended but
is included for historical purposes). The exact method is only available for the
one-sample case, i.e., when sample. type="one.sample”.

correct logical scalar indicating whether to use the continuity correction when
ci.method="score"” or ci.method="Wald".
The default value is correct=TRUE.

warn logical scalar indicating whether to issue a warning when
ci.method="Wald" for cases when the normal approximation to the binomial
distribution probably is not accurate. The default value is warn=TRUE.

Details

If the arguments n.or.n1, p.hat.or.p1.hat, n2, p2.hat, and conf.level are not all the same
length, they are replicated to be the same length as the length of the longest argument.

The values of p.hat.or.p1.hat and p2.hat are automatically adjusted to the closest legitimate
values, given the user-supplied values of n.or.n1 and n2. For example, if n.or.n1=5, legiti-
mate values for p.hat.or.pl1.hat are 0, 0.2, 0.4, 0.6, 0.8 and 1. In this case, if the user supplies
p.hat.or.pl1.hat=0.45, then p.hat.or.p1.hat is reset to

p.hat.or.p1.hat=0.4, and if the user supplies p.hat.or.p1.hat=0.55,

then p.hat.or.p1.hat is reset to p.hat.or.p1.hat=0.6. In cases where the two closest legiti-
mate values are equal distance from the user-suppled value of p.hat.or.p1.hat or p2.hat, the
value closest to 0.5 is chosen since that will tend to yield the wider confidence interval.

One-Sample Case (sample. type="one.sample").

ci.method="score"” The confidence interval for p based on the score method was developed by
Wilson (1927) and is discussed by Newcombe (1998a), Agresti and Coull (1998), and Agresti
and Caffo (2000). When ci=TRUE and ci.method="score", the function ebinom calls the
R function prop.test to compute the confidence interval. This method has been shown to
provide the best performance (in terms of actual coverage matching assumed coverage) of all
the methods provided here, although unlike the exact method, the actual coverage can fall
below the assumed coverage.

ci.method="exact"” The confidence interval for p based on the exact (Clopper-Pearson) method is
discussed by Newcombe (1998a), Agresti and Coull (1998), and Zar (2010, pp.543-547). This
is the method used in the R function binom. test. This method ensures the actual coverage is
greater than or equal to the assumed coverage.

ci.method="Wald"” The confidence interval for p based on the Wald method (with or without a
correction for continuity) is the usual “normal approximation” method and is discussed by
Newcombe (1998a), Agresti and Coull (1998), Agresti and Caffo (2000), and Zar (2010,
pp.543-547). This method is never recommended but is included for historical purposes.

ci.method="adjusted Wald" The confidence interval for p based on the adjusted Wald method is
discussed by Agresti and Coull (1998), Agresti and Caffo (2000), and Zar (2010, pp.543-547).
This is a simple modification of the Wald method and performs surpringly well.

Two-Sample Case (sample.type="two.sample").
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ci.method="score” This method is presented in Newcombe (1998b) and is based on the score
method developed by Wilson (1927) for the one-sample case. This is the method used by
the R function prop.test. In a comparison of 11 methods, Newcombe (1998b) showed this
method performs remarkably well.

ci.method="Wald" The confidence interval for the difference between two proportions based on
the Wald method (with or without a correction for continuity) is the usual “normal approxi-
mation” method and is discussed by Newcombe (1998b), Agresti and Caffo (2000), and Zar
(2010, pp.549-552). This method is not recommended but is included for historical purposes.

ci.method="adjusted Wald” This method is discussed by Agresti and Caffo (2000), and Zar
(2010, pp.549-552). This is a simple modification of the Wald method and performs sur-
pringly well.

Value

a list with information about the half-widths, sample sizes, and estimated proportions.

One-Sample Case (sample. type="one.sample").
When sample. type="one.sample”, the function ciBinomHalfWidth returns a list with these com-

ponents:

half.width the half-width(s) of the confidence interval(s)

n the sample size(s) associated with the confidence interval(s)
p.hat the estimated proportion(s)

method the method used to construct the confidence interval(s)

Two-Sample Case (sample.type="two.sample").
When sample. type="two.sample”, the function ciBinomHalfWidth returns a list with these com-

ponents:
half.width the half-width(s) of the confidence interval(s)
ni the sample size(s) for group 1 associated with the confidence interval(s)
p1.hat the estimated proportion(s) for group 1
n2 the sample size(s) for group 2 associated with the confidence interval(s)
p2.hat the estimated proportion(s) for group 2
method the method used to construct the confidence interval(s)
Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
trial, and that the probability of “success”, p, is the same on each trial. A binomial discrete random
variable X is the number of “successes” in n independent trials. A special case of the binomial
distribution occurs when n = 1, in which case X is also called a Bernoulli random variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,
Gilbert, 1987, p.143), or to compare the proportion of detects in a compliance well vs. a background



ciBinomHalfWidth 91

well (e.g., USEPA, 1989b, Chapter 8, p.3-7). (However, USEPA 2009, p.8-27 recommends using
the Wilcoxon rank sum test (wilcox. test) instead of comparing proportions.)

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciBinomHalfWidth, ciBinomN,
and plotCiBinomDesign can be used to investigate these relationships for the case of binomial
proportions.

Author(s)
Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

ciBinomN, plotCiBinomDesign, ebinom, binom. test, prop. test.

Examples

# Look at how the half-width of a one-sample confidence interval
# decreases with sample size:

ciBinomHalfWidth(n.or.n1 = c(1@, 50, 100, 500))
#$half.width

#[1] 0.26340691 0.13355486 0.09616847 0.04365873
#

#3$n

#[1]1 10 50 100 500

#

#$p.hat

#[1] 0.5 0.5 0.5 0.5

#

#$method

#[1] "Score normal approximation, with continuity correction”

# Look at how the half-width of a one-sample confidence interval
# tends to decrease as the estimated value of p decreases below
# 0.5 or increases above 0.5:

seq(0.2, 0.8, by

=0.1)
#[1] 0.2 0.3 0.4 0.

0.1
50.6 0.7 0.8

ciBinomHalfWidth(n.or.n1
#$half.width

#[1] ©.1536299 0.1707256 0.1801322 0.1684587 0.1801322 0.1707256
#[7] 0.1536299

30, p.hat = seq(0.2, 0.8, by = 0.1))

#

#$n

#[1] 30 30 30 30 30 30 30

#

#$p.hat

#[1] 0.2 0.3 0.4 0.5 0.6 0.7 0.8
#

#$method

#[1] "Score normal approximation, with continuity correction”

# Look at how the half-width of a one-sample confidence interval
# increases with increasing confidence level:

ciBinomHalfWidth(n.or.n1 = 20, conf.level = c(0.8, 0.9, 0.95, 0.99))
#$half.width
#[1] 0.1377380 0.1725962 0.2007020 ©.2495523
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#

#$n

#[1] 20 20 20 20

#

#$p.hat

#[1] 0.5 0.5 0.5 0.5
#

#$method

#[1] "Score normal approximation, with continuity correction”

# Compare the half-widths for a one-sample
# confidence interval based on the different methods:

ciBinomHalfWidth(n.or.n1 =
#[1] 0.1684587

ciBinomHalfWidth(n.or.n1 =
#[1] 0.1870297

ciBinomHalfWidth(n.or.n1 =
#[1] 0.1684587

ciBinomHalfWidth(n.or.n1 =
#[1] 0.1955861

30,

30,

30,

30,

ci.

ci.

ci.

ci

method

method

method

.method

"score”)$half.width

"exact”)$half.width

"adjusted Wald")$half.width

"Wald")$half.width

# Look at how the half-width of a two-sample
# confidence interval decreases with increasing

# sample sizes:

ciBinomHalfWidth(n.or.n1 =
#$half.width

c(10, 50, 100, 500), sample.type = "two")

#[1] ©.53385652 0.21402654 0.14719748 0.06335658

#

#$n1

#[1] 10 50 100 500
#

#$p1.hat

#[1] 0.5 0.5 0.5 0.5
#

#$n2

#[1] 10 50 100 500
#

#$p2.hat

#[1] 0.4 0.4 0.4 0.4
#

#$method

#[1] "Score normal approximation, with continuity correction”

93
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ciBinomN

Sample Size for Specified Half-Width of Confidence Interval for Bino-
mial Proportion or Difference Between Two Proportions

Description

Compute the sample size necessary to achieve a specified half-width of a confidence interval for a
binomial proportion or the difference between two proportions, given the estimated proportion(s),
and confidence level.

Usage

ciBinomN(half.width, p.hat.or.pl.hat = 0.5, p2.hat = 0.4,

conf.level
ci.method =
n.or.nl.min

= 0.95, sample.type = "one.sample”, ratio =1,

"score", correct = TRUE, warn = TRUE,
= 2, n.or.nl.max = 10000,

tol.half.width = 5e-04, tol.p.hat = 5e-04,

tol = le-7,

Arguments

half.width

p.hat.or.pl.hat

p2.hat

conf.level

sample. type

ratio

maxiter = 1000)

numeric vector of (positive) half-widths. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

numeric vector of estimated proportions.

When sample.type="one.sample”, p.hat.or.p1.hat denotes the estimated
value of p, the probability of “success”.

When sample. type="two.sample”, p.hat.or.p1.hat denotes the estimated
value of py, the probability of “success” in group 1.

Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

numeric vector of estimated proportions for group 2. This argument is ignored
when sample. type="one.sample". Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are not allowed.

numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf. level=0. 95.

character string indicating whether this is a one-sample or two-sample confi-
dence interval.

When sample.type="one.sample"”, the computed half-width is based on a
confidence interval for a single proportion.

When sample.type="two.sample"”, the computed half-width is based on a
confidence interval for the difference between two proportions.

The default value is sample.type="one.sample" unless the argument p2.hat
or ratio is supplied.

numeric vector indicating the ratio of sample size in group 2 to sample size in
group 1 (ny/n1). The default value is ratio=1. All values of ratio must be
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greater than or equal to 1. This argument is ignored if
sample.type="one.sample".

ci.method character string indicating which method to use to construct the confidence in-
terval. Possible values are:

e "score"” (the default),
e "exact"”,
e "adjusted Wald"” and,

¢ "Wald"” (the "Wald" method is never recommended but is included for his-
torical purposes).

The exact method is only available for the one-sample case, i.e., when
sample.type="one.sample”.

correct logical scalar indicating whether to use the continuity correction when
ci.method="score" or ci.method="Wald". The default value is
correct=TRUE.

warn logical scalar indicating whether to issue a warning when ci.method="Wald"
for cases when the normal approximation to the binomial distribution probably
is not accurate. The default value is warn=TRUE.

n.or.nl.min integer indicating the minimum allowed value for
n (sample. type="one.sample") or
ny (sample.type="two.sample").
The default value is n.or.n1.min=2.

n.or.nl.max integer indicating the maximum allowed value for
n (sample.type="one.sample") or
n1 (sample.type="two.sample").
The default value is n.or.n1.max=10000.

tol.half.width numeric scalar indicating the tolerance to use for the half width for the search al-
gorithm. The sample sizes are computed so that the actual half width is less than
orequal tohalf.width + tol.half.width. The default valueis tol.half.width=5e-04.

tol.p.hat numeric scalar indicating the tolerance to use for the estimated proportion(s)
for the search algorithm. For the one-sample case, the sample sizes are com-
puted so that the absolute value of the difference between the user supplied
value of p.hat.or.p1.hat and the actual estimated proportion is less than or
equal to tol.p.hat. For the two-sample case, the sample sizes are computed
so that the absolute value of the difference between the user supplied value of
p.hat.or.pl1.hat and the actual estimated proportion for group 1 is less than
or equal to tol.p.hat, and the absolute value of the difference between the user
supplied value of p2.hat and the actual estimated proportion for group 2 is less
than or equal to tol.p.hat. The default value is tol.p.hat=0.005.

tol positive scalar indicating the tolerance to use for the search algorithm (passed to
uniroot). The default value is tol=1e-7.

maxiter integer indicating the maximum number of iterations to use for the search algo-
rithm (passed to uniroot). The default value is maxiter=1000.
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Details

If the arguments half.width, p.hat.or.pl1.hat, p2.hat, conf.level and ratio are not all the
same length, they are replicated to be the same length as the length of the longest argument.

For the one-sample case, the arguments p.hat.or.p1.hat, tol.p.hat, half.width, and
tol.half.width must satisfy:

(p.hat.or.pl.hat + tol.p.hat + half.width + tol.half.width) <=1,

and

(p.hat.or.pl.hat - tol.p.hat - half.width - tol.half.width) >=0.

For the two-sample case, the arguments p.hat.or.p1.hat, p2.hat, tol.p.hat,

half.width, and tol.half.width must satisfy:

((p.hat.or.pl.hat + tol.p.hat) - (p2.hat - tol.p.hat) + half.width + tol.half.width) <=
1, and

((p.hat.or.pl.hat - tol.p.hat) - (p2.hat + tol.p.hat) - half.width - tol.half.width) >=
-1.

The function ciBinomN uses the search algorithm in the function uniroot to call the function
ciBinomHalfWidth to find the values of n (sample.type="one.sample"”) or ny and ns

(sample. type="two.sample") that satisfy the requirements for the half-width, estimated propor-
tions, and confidence level. See the Details section of the help file for ciBinomHalfWidth for more
information.

Value

a list with information about the sample sizes, estimated proportions, and half-widths.

One-Sample Case (sample. type="one.sample").
When sample. type="one.sample”, the function ciBinomN returns a list with these components:

n the sample size(s) associated with the confidence interval(s)
p.hat the estimated proportion(s)

half.width the half-width(s) of the confidence interval(s)

method the method used to construct the confidence interval(s)

Two-Sample Case (sample.type="two.sample").
When sample. type="two.sample”, the function ciBinomN returns a list with these components:

ni the sample size(s) for group 1 associated with the confidence interval(s)
n2 the sample size(s) for group 2 associated with the confidence interval(s)
p1.hat the estimated proportion(s) for group 1

p2.hat the estimated proportion(s) for group 2

half.width the half-width(s) of the confidence interval(s)

method the method used to construct the confidence interval(s)
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Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
trial, and that the probability of “success”, p, is the same on each trial. A binomial discrete random
variable X is the number of “successes” in n independent trials. A special case of the binomial
distribution occurs when n = 1, in which case X is also called a Bernoulli random variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,
Gilbert, 1987, p.143), or to compare the proportion of detects in a compliance well vs. a background
well (e.g., USEPA, 1989b, Chapter 8, p.3-7). (However, USEPA 2009, p.8-27 recommends using
the Wilcoxon rank sum test (wilcox. test) instead of comparing proportions.)

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciBinomHalfWidth, ciBinomN,
and plotCiBinomDesign can be used to investigate these relationships for the case of binomial
proportions.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
Agresti, A., and B.A. Coull. (1998). Approximate is Better than "Exact" for Interval Estimation of
Binomial Proportions. The American Statistician, 52(2), 119-126.

Agresti, A., and B. Caffo. (2000). Simple and Effective Confidence Intervals for Proportions and
Differences of Proportions Result from Adding Two Successes and Two Failures. The American
Statistician, 54(4), 280-288.

Berthouex, PM., and L.C. Brown. (1994). Statistics for Environmental Engineers. Lewis Publish-
ers, Boca Raton, FL, Chapters 2 and 15.

Cochran, W.G. (1977). Sampling Techniques. John Wiley and Sons, New York, Chapter 3.

Fisher, R.A., and F. Yates. (1963). Statistical Tables for Biological, Agricultural, and Medical
Research. 6th edition. Hafner, New York, 146pp.

Fleiss, J. L. (1981). Statistical Methods for Rates and Proportions. Second Edition. John Wiley
and Sons, New York, Chapters 1-2.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY, Chapter 11.

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

Newcombe, R.G. (1998a). Two-Sided Confidence Intervals for the Single Proportion: Comparison
of Seven Methods. Statistics in Medicine, 17, 857-872.

Newcombe, R.G. (1998b). Interval Estimation for the Difference Between Independent Propor-
tions: Comparison of Eleven Methods. Statistics in Medicine, 17, 873-890.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL,
Chapter 4.
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See Also

ciBinomHalfWidth, uniroot, plotCiBinomDesign, ebinom,
binom. test, prop.test.

Examples

# Look at how the required sample size of a one-sample
# confidence interval increases with decreasing
# required half-width:

ciBinomN(half.width = c(0.1, 0.05, 0.03))
#$n

#[1]1 92 374 1030

#

#$p.hat

#[1] 0.5 0.5 0.5

#

#$half.width

#[1] 0.10010168 0.05041541 0.03047833

#

#$method

#[1] "Score normal approximation, with continuity correction”

# Note that the required sample size decreases if we are less
# stringent about how much the confidence interval width can
# deviate from the supplied value of the 'half.width' argument:

ciBinomN(half.width = c(0.1, 0.05, 0.03), tol.half.width = 0.005)
#3$n
#[1] 84 314 782

#

#%$p.hat

#[1] 0.5 0.5 0.5
#

#$half.width

#[1] 0.10456066 0.05496837 0.03495833
#

#$method

ciBinomN

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.6-38.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapter 24.
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#[1] "Score normal approximation, with continuity correction”

# Look at how the required sample size for a one-sample
# confidence interval tends to decrease as the estimated
# value of p decreases below 0.5 or increases above 0.5:

seq(0.2, 0.8, by

=0.1)
#[1] 0.2 0.3 0.4 0.

0.1

50.6 0.7 0.8

ciBinomN(half.width = 0.1, p.hat = seq(@.2, 0.8, by = 0.1))
#$n

#[11 70 90 100 92 100 90 70

#

#3$p.hat

#(1] 0.2 0.3 0.4 0.5 0.6 0.7 0.8

#

#$half.width

#[1] 0.09931015 0.09839843 0.09910818 0.10010168 0.09910818 0.09839843
#[7] 0.09931015

#

#$method

#[1] "Score normal approximation, with continuity correction”

# Look at how the required sample size for a one-sample
# confidence interval increases with increasing confidence level:

ciBinomN(half.width = .05, conf.level = c(0.8, 0.9, 0.95, 0.99))

#3n

#[1] 160 264 374 644
#

#$p.hat

#[1] 0.5 0.5 0.5 0.5
#

#$half.width

#[1] 0.05039976 0.05035948 0.05041541 0.05049152

#

#$method

#[1] "Score normal approximation, with continuity correction”

# Compare required sample size for a one-sample
# confidence interval based on the different methods:

ciBinomN(half.width = .05, ci.method = "score")
#3n

#[1] 374

#

#%p.hat
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#[1] 0.5

#

#$half.width

#[1] 0.05041541

#

#$method

#[1] "Score normal approximation, with continuity correction”

ciBinomN(half.width = .05, ci.method = "exact")

#$n

#[1] 394
#
#3$p.hat
#[1] 0.5
#

#$half.width
#[1] 0.05047916
#

#$method

#[1] "Exact”

ciBinomN(half.width = .05, ci.method = "adjusted Wald")

#%n

#[1] 374
#
#$p.hat
#[1] 0.5
#

#$half.width

#[1] 0.05041541

#

#$method

#[1] "Adjusted Wald normal approximation”

ciBinomN(half.width = .05, ci.method = "Wald")

#$n

#[1] 398
#
#$p.hat
#[1] 0.5
#

#$half.width

#[1] 0.05037834

#

#$method

#[1] "Wald normal approximation, with continuity correction”

## Not run:

# Look at how the required sample size of a two-sample
# confidence interval increases with decreasing

# required half-width:
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ciBinomN(half.width = c(0.1, 9.05, 0.03), sample.type

#$n1

#[1] 210 778 2089

#

#$n2

#[1] 210 778 2089

#

#$p1.hat

#[1] 0.5000000 0.5000000 0.4997607
#

#$p2.hat

#[1] 0.4000000 ©.3997429 0.4001915
#

#$half.width

#[1] 0.09943716 0.05047044 0.03049753
#

#$method

101

= "two")

#[1] "Score normal approximation, with continuity correction”

## End(Not run)

ciNormHalfWidth

Half-Width of Confidence Interval for Normal Distribution Mean or
Difference Between Two Means

Description

Compute the half-width of a confidence interval for the mean of a normal distribution or the dif-
ference between two means, given the sample size(s), estimated standard deviation, and confidence
level.

Usage

ciNormHalfWidth(n.or.n1, n2 = n.or.nl,
sigma.hat = 1, conf.level = 0.95,

sample.type = ifelse(missing(n2), "one.sample”, "two.sample"))
Arguments

n.or.nl numeric vector of sample sizes. When sample. type="one.sample”, this ar-
gument denotes n, the number of observations in the single sample. When
sample.type="two.sample", this argument denotes n;, the number of obser-
vations from group 1. Missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is the value of

n.or.nl. This argument is ignored when sample. type="one.sample”. Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.
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sigma.hat numeric vector specifying the value(s) of the estimated standard deviation(s).

conf.level numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf.level=0.95.

sample. type character string indicating whether this is a one-sample
(sample. type="one.sample") or two-sample
(sample.type="two.sample") confidence interval.
When sample.type="one.sample”, the computed half-width is based on a
confidence interval for a single mean.
When sample.type="two.sample"”, the computed half-width is based on a
confidence interval for the difference between two means.
The default value is sample.type="one.sample” unless the argument n2 is
supplied.

Details

If the arguments n.or.n1, n2, sigma.hat, and conf.level are not all the same length, they are
replicated to be the same length as the length of the longest argument.

One-Sample Case (sample.type="one.sample")
Let x = x1,29,...,x, denote a vector of n observations from a normal distribution with mean
and standard deviation o. A two-sided (1 — «)100% confidence interval for y is given by:

[b—tn—1,1—«a/2) n—1,1—a/2)

jﬁ, it jﬁl (1)

where

3

i=1

S|

&252;1;(%@2 3)

and t(v, p) is the p’th quantile of Student’s t-distribution with v degrees of freedom (Zar, 2010;
Gilbert, 1987; Ott, 1995; Helsel and Hirsch, 1992). Thus, the half-width of this confidence interval
is given by:

o

HW:t(n—1,1—a/2)ﬁ

(4)

Two-Sample Case (sample.type="two.sample")

Let x; = x11,%12,...,Z1n, denote a vector of n; observations from a normal distribution with
mean ;4 and standard deviation o, and let zo = x21, %22, . . ., T2n, denote a vector of ny observa-
tions from a normal distribution with mean p5 and standard deviation o. A two-sided (1 — «/)100%
confidence interval for j1; — s is given by:

L . /1 | .1 1
(=)=t (m1+na=2, 1=/2)6 | = + . (fa—fia) (i +mo=2, 1=0/2)0\ [ = + ] (5)

ni n2

where
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(Zar, 2010, p.142; Helsel and Hirsch, 1992, p.135, Berthouex and Brown, 2002, pp.157—-158). Thus,
the half-width of this confidence interval is given by:

1 1
HW:t(n1+n2—2,1—a/2)6 — 4+ — (11)
ny )
Note that for the two-sample case, the function ciNormHalfWidth assumes the two populations
have the same standard deviation.

Value

a numeric vector of half-widths.

Note

The normal distribution and lognormal distribution are probably the two most frequently used dis-
tributions to model environmental data. In order to make any kind of probability statement about a
normally-distributed population (of chemical concentrations for example), you have to first estimate
the mean and standard deviation (the population parameters) of the distribution. Once you estimate
these parameters, it is often useful to characterize the uncertainty in the estimate of the mean. This
is done with confidence intervals.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciNormHalfWidth, ciNormN,
and plotCiNormDesign can be used to investigate these relationships for the case of normally-
distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY.
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Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.

Millard, S.P., and N. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.21-3.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapters 7 and 8.

See Also

ciNormN, plotCiNormDesign, Normal, enorm, t.test
Estimating Distribution Parameters.

Examples

# Look at how the half-width of a one-sample confidence interval
# decreases with increasing sample size:

seq(5, 30, by = 5)
#[1]1 5 10 15 20 25 30

hw <- ciNormHalfWidth(n.or.n1 = seq(5, 30, by = 5))

roundChw, 2)
#[1]1 1.24 0.72 0.55 0.47 0.41 0.37

# Look at how the half-width of a one-sample confidence interval
# increases with increasing estimated standard deviation:

seq(0.5, 2, by

=0.5)
#[11 0.5 1.0 1.5

0.5
2.0
hw <- ciNormHalfWidth(n.or.n1 = 20, sigma.hat = seq(@.5, 2, by = 0.5))

roundChw, 2)
#[1] 0.23 0.47 0.70 0.94

# Look at how the half-width of a one-sample confidence interval
# increases with increasing confidence level:

seq(@0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 0.8 0.9
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hw <- ciNormHalfWidth(n.or.n1 = 20, conf.level = seq(@.5, 0.9, by = 0.1))

round(hw, 2)
#[1] .15 0.19 0.24 0.30 0.39

Modifying the example on pages 21-4 to 21-5 of USEPA (2009),
determine how adding another four months of observations to
increase the sample size from 4 to 8 will affect the half-width
of a two-sided 95% confidence interval for the Aldicarb level at
the first compliance well.

#
#
#
#
#
#
# Use the estimated standard deviation from the first four months

# of data. (The data are stored in EPA.09.Ex.21.1.aldicarb.df.)

# Note that the half-width changes from 34% of the observed mean to
# 18% of the observed mean by increasing the sample size from

# 4 to 8.

EPA.09.Ex.21.1.aldicarb.df

# Month  Well Aldicarb.ppb

#1 1 Well.1 19.9
#2 2 Well.1 29.6
#3 3 Well.1 18.7
#4 4 Well.1 24.2
#...

mu.hat <- with(EPA.Q9.Ex.21.1.aldicarb.df,
mean(Aldicarb.ppb[Well=="Well.1"]))

mu.hat
#[1] 23.1

sigma.hat <- with(EPA.09.Ex.21.1.aldicarb.df,
sd(Aldicarb.ppb[Well=="Well.1"1))

sigma.hat
#[1] 4.93491

hw.4 <- ciNormHalfWidth(n.or.n1 = 4, sigma.hat = sigma.hat)

hw. 4
#[1] 7.852543

hw.8 <- ciNormHalfWidth(n.or.n1 = 8, sigma.hat = sigma.hat)

hw.8
#[1] 4.125688

100 * hw.4/mu.hat
#[1] 33.99369



106

ciNormN

100 * hw.8/mu.hat

#[1] 17.86012

rm(hw, mu.hat, sigma.hat, hw.4, hw.8)

ciNormN

Sample Size for Specified Half-Width of Confidence Interval for Nor-
mal Distribution Mean or Difference Between Two Means

Description

Compute the sample size necessary to achieve a specified half-width of a confidence interval for the
mean of a normal distribution or the difference between two means, given the estimated standard
deviation and confidence level.

Usage

ciNormN(half.width, sigma.hat = 1, conf.level = 0.95,
sample.type = ifelse(is.null(n2), "one.sample”, "two.sample”),
n2 = NULL, round.up = TRUE, n.max = 5000, tol = 1e-07, maxiter = 1000)

Arguments

half.width

sigma.hat

conf.level

sample. type

n2

round.up

numeric vector of (positive) half-widths. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

numeric vector specifying the value(s) of the estimated standard deviation(s).

numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf.level=0.95.

character string indicating whether this is a one-sample
(sample.type="one.sample") or two-sample

(sample. type="two.sample") confidence interval.

When sample. type="one.sample”, the computed sample size is based on a
confidence interval for a single mean.

When sample. type="two.sample”, the computed sample size is based on a
confidence interval for the difference between two means.

The default value is sample.type="one.sample” unless the argument n2 is
supplied.

numeric vector of sample sizes for group 2. The default value is NULL, in which
case it is assumed that the sample sizes for groups 1 and 2 are equal. This argu-
ment is ignored when sample.type="one.sample”. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is round. up=TRUE.
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n.max positive integer greater than 1 specifying the maximum sample size for the single
group when sample. type="one.sample” or for group 1 when
sample. type="two.sample". The default value is n.max=5000.

tol numeric scalar indicating the tolerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations to use in the uniroot
search algorithm. The default value is maxiter=1000.

Details

If the arguments half.width, n2, sigma.hat, and conf.level are not all the same length, they
are replicated to be the same length as the length of the longest argument.

The function ciNormN uses the formulas given in the help file for ciNormHalfWidth for the half-
width of the confidence interval to iteratively solve for the sample size. For the two-sample case,
the default is to assume equal sample sizes for each group unless the argument n2 is supplied.

Value

When sample. type="one.sample”, or sample.type="two.sample” and n2 is not supplied (so
equal sample sizes for each group is assumed), the function ciNormN returns a numeric vector of
sample sizes. When sample. type="two.sample” and n2 is supplied, the function ciNormN returns
a list with two components called n1 and n2, specifying the sample sizes for each group.

Note

The normal distribution and lognormal distribution are probably the two most frequently used dis-
tributions to model environmental data. In order to make any kind of probability statement about a
normally-distributed population (of chemical concentrations for example), you have to first estimate
the mean and standard deviation (the population parameters) of the distribution. Once you estimate
these parameters, it is often useful to characterize the uncertainty in the estimate of the mean. This
is done with confidence intervals.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciNormHalfWidth, ciNormN,
and plotCiNormDesign can be used to investigate these relationships for the case of normally-
distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY.
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Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.

Millard, S.P., and N. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.21-3.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapters 7 and 8.

See Also

ciNormHalfWidth, plotCiNormDesign, Normal, enorm, t. test,
Estimating Distribution Parameters.

Examples

# Look at how the required sample size for a one-sample
# confidence interval decreases with increasing half-width:

seq(0.25, 1, by = 0.25)
#[1] 0.25 0.50 0.75 1.00

ciNormN(half.width = seq(@.25, 1, by = 0.25))
#[1] 64 18 10 7

ciNormN(seq(@.25, 1, by=0.25), round = FALSE)
#[1] 63.897899 17.832337 9.325967 6.352717

# Look at how the required sample size for a one-sample
# confidence interval increases with increasing estimated
# standard deviation for a fixed half-width:

seq(0.5, 2, by = 0.

=0.5)
#[1]1 0.5 1.0 1.5 2.

5
0

ciNormN(half.width = 0.5, sigma.hat = seq(@.5, 2, by = 0.5))
#[1] 7 18 38 64

# Look at how the required sample size for a one-sample
# confidence interval increases with increasing confidence
# level for a fixed half-width:

seq(0.5, 0.9, by = 0.1)
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#[1] 0.5 0.6 0.7 0.8 0.9

ciNormN(half.width = 0.25, conf.level = seq(@.5, 0.9, by = 0.1))
#[1] 9 13 19 28 46

#

#

#

#

#

#

#

#

#

#
EPA.09.Ex
# Month
#1 1
#2 2
#3 3
#4 4
#...
mu.hat <-

Modifying the example on pages 21-4 to 21-5 of USEPA (2009),
determine the required sample size in order to achieve a
half-width that is 10% of the observed mean (based on the first
four months of observations) for the Aldicarb level at the first
compliance well. Assume a 95% confidence level and use the
estimated standard deviation from the first four months of data.
(The data are stored in EPA.09.Ex.21.1.aldicarb.df.)

The required sample size is 20, so almost two years of data are
required assuming observations are taken once per month.

.21.1.aldicarb.df
Well Aldicarb.ppb
Well.1 19.9
Well.1 29.6
Well.1 18.7
Well.1 24.2
with(EPA.09.Ex.21.1.aldicarb.df,

mean(Aldicarb.ppb[Well=="Well.1"]))

mu. hat

#[11 23.

1

sigma.hat <- with(EPA.09.Ex.21.1.aldicarb.df,
sd(Aldicarb.ppb[Well=="Well.1"1))

sigma.hat
#[1] 4.93491

ciNormN(half.width = ©.1 * mu.hat, sigma.hat = sigma.hat)

#[1] 20

# Clean up
rm(mu.hat, sigma.hat)

ciNparConfLevel Compute Confidence Level Associated with a Nonparametric Confi-

dence Interval for a Quantile
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Description

ciNparConfLevel

Compute the confidence level associated with a nonparametric confidence interval for a quantile,
given the sample size and order statistics associated with the lower and upper bounds.

Usage
ciNparConfLevel(n, p = 0.5, 1cl.rank = ifelse(ci.type == "upper”, 0, 1),
n.plus.one.minus.ucl.rank = ifelse(ci.type == "lower”, @, 1),
ci.type = "two.sided")
Arguments
n numeric vector of sample sizes. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are not allowed.
p numeric vector of probabilities specifying which quantiles to consider for the

sample size calculation. All values of p must be between 0 and 1. The default
value is p=0.5.

lcl.rank, n.plus.one.minus.ucl.rank

ci.type

Details

numeric vectors of non-negative integers indicating the ranks of the order statis-
tics that are used for the lower and upper bounds of the confidence interval for
the specified quantile(s). When 1cl.rank=1 that means use the smallest value as
the lower bound, when 1cl.rank=2 that means use the second to smallest value
as the lower bound, etc. When n.plus.one.minus.ucl.rank=1 that means use
the largest value as the upper bound, when n.plus.one.minus.ucl.rank=2
that means use the second to largest value as the upper bound, etc. A value
of @ for 1cl.rank indicates no lower bound (i.e., -Inf) and a value of @ for
n.plus.one.minus.ucl.rank indicates no upper bound (i.e., Inf). When
ci.type="upper" then 1cl.rank is set to @ by default, otherwise it is set to 1
by default. When ci.type="lower" then n.plus.one.minus.ucl.rank is set
to @ by default, otherwise it is set to 1 by default.

character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower”, and "upper"”.

If the arguments n, p, 1cl.rank, and n.plus.one.minus.ucl.rank are not all the same length,
they are replicated to be the same length as the length of the longest argument.

The help file for eqnpar explains how nonparametric confidence intervals for quantiles are con-
structed and how the confidence level associated with the confidence interval is computed based on
specified values for the sample size and the ranks of the order statistics used for the bounds of the
confidence interval.

Value

A numeric vector of confidence levels.

Note

See the help file for eqnpar.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for egnpar.

See Also

egnpar, ciNparN, plotCiNparDesign.

Examples

# Look at how the confidence level of a nonparametric confidence interval
# increases with increasing sample size for a fixed quantile:

seq(5, 25, by = 5)
#[1] 5 10 15 20 25

round(ciNparConfLevel (n = seq(5, 25, by = 5), p = 0.9), 2)
#[1] 0.41 0.65 0.79 0.88 0.93

# Look at how the confidence level of a nonparametric confidence interval
# decreases as the quantile moves away from 0.5:

)

seq(0.5, 0.9, by 1
7 0.9

= 0.
#[1] 0.5 0.6 0.7 0.8
round(ciNparConfLevel(n = 10, p = seq(@.5, 0.9, by = 0.1)), 2)
#[1] 1.00 0.99 0.97 0.89 0.65

Reproduce Example 21-6 on pages 21-21 to 21-22 of USEPA (2009).

Use 12 measurements of nitrate (mg/L) at a well used for drinking water
to determine with 95% confidence whether or not the infant-based, acute
risk standard of 10 mg/L has been violated. Assume that the risk
standard represents an upper 95'th percentile limit on nitrate
concentrations. So what we need to do is construct a one-sided

lower nonparametric confidence interval for the 95'th percentile

that has associated confidence level of no more than 95%, and we will
compare the lower confidence limit with the MCL of 10 mg/L.

T E E E E EEE

The data for this example are stored in EPA.09.Ex.21.6.nitrate.df.

# Look at the data:

EPA.@9.Ex.21.6.nitrate.df
# Sampling.Date Date Nitrate.mg.per.l.orig Nitrate.mg.per.l Censored

111
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#1 7/28/1999 1999-07-28 <5.0 5.0 TRUE
#2 9/3/1999 1999-09-03 12.3 12.3 FALSE
#3 11/24/1999 1999-11-24 <5.0 5.0 TRUE
#4 5/3/2000 2000-05-03 <5.0 5.0 TRUE
#5 7/14/2000 2000-07-14 8.1 8.1 FALSE
#6 10/31/2000 2000-10-31 <5.0 5.0 TRUE
#7 12/14/2000 2000-12-14 1 11.0 FALSE
#8 3/27/2001 2001-03-27 35.1 35.1 FALSE
#9 6/13/2001 2001-06-13 <5.0 5.0 TRUE
#10 9/16/2001 2001-09-16 <5.0 5.0 TRUE
#11 11/26/2001 2001-11-26 9.3 9.3 FALSE
#12 3/2/2002 2002-03-02 10.3 10.3 FALSE

# Determine what order statistic to use for the lower confidence limit
# in order to achieve no more than 95% confidence.

conf.levels <- ciNparConflLevel(n = 12, p = 0.95, 1lcl.rank = 1:12,
ci.type = "lower"”)
names(conf.levels) <- 1:12

round(conf.levels, 2)
# 1 2 3 4 5 6 7 8 9 10 11 12
#1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.88 0.54

Using the 11'th largest observation for the lower confidence limit
yields a confidence level of 88%. Using the 10'th largest
observation yields a confidence level of 98%. The example in
USEPA (2009) uses the 10'th largest observation.

The 10'th largest observation is 11 mg/L which exceeds the
MCL of 1@ mg/L, so there is evidence of contamination.

o o B o R

with(EPA.09.Ex.21.6.nitrate.df,
egnpar(Nitrate.mg.per.1l, p = 0.95, ci = TRUE,
ci.type = "lower”, lcl.rank = 10))

#Results of Distribution Parameter Estimation

# ____________________________________________

#

#Assumed Distribution: None

#

#Estimated Quantile(s): 95'th %ile = 22.56
#

#Quantile Estimation Method: Nonparametric

#

#Data: Nitrate.mg.per.1l
#

#Sample Size: 12

#

#Confidence Interval for: 95'th %ile

#
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#Confidence Interval Method: exact
#
#Confidence Interval Type: lower
#
#Confidence Level: 98.04317%
#
#Confidence Limit Rank(s): 10
#
#Confidence Interval: LCL = 11
# UCL = Inf
fm=========
# Clean up
# _________
rm(conf.levels)
ciNparN Sample Size for Nonparametric Confidence Interval for a Quantile

Description

Compute the sample size necessary to achieve a specified confidence level for a nonparametric
confidence interval for a quantile.

Usage
ciNparN(p = 0.5, 1lcl.rank = ifelse(ci.type == "upper"”, 0, 1),
n.plus.one.minus.ucl.rank = ifelse(ci.type == "lower”, @, 1),
ci.type = "two.sided”, conf.level = 0.95)
Arguments
p numeric vector of probabilities specifying the quantiles. All values of p must be

between 0 and 1. The default value is p=0.5.

lcl.rank, n.plus.one.minus.ucl.rank
numeric vectors of non-negative integers indicating the ranks of the order statis-
tics that are used for the lower and upper bounds of the confidence interval for
the specified quantile(s). When 1cl.rank=1 that means use the smallest value as
the lower bound, when 1cl.rank=2 that means use the second to smallest value
as the lower bound, etc. When n.plus.one.minus.ucl.rank=1 that means use
the largest value as the upper bound, when n.plus.one.minus.ucl.rank=2
that means use the second to largest value as the upper bound, etc. A value
of @ for 1cl.rank indicates no lower bound (i.e., -Inf) and a value of @ for
n.plus.one.minus.ucl.rank indicates no upper bound (i.e., Inf). When
ci.type="upper" then 1cl.rank is set to @ by default, otherwise it is set to 1
by default. When ci.type="1ower" then n.plus.one.minus.ucl.rank is set
to @ by default, otherwise it is set to 1 by default.
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ci.type

conf.level

Details

ciNparN

character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower”, and "upper”.

numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf=0.95.

If the arguments p, 1cl.rank, n.plus.one.minus.ucl.rank and conf.level are not all the same
length, they are replicated to be the same length as the length of the longest argument.

The help file for eqnpar explains how nonparametric confidence intervals for quantiles are con-
structed and how the confidence level associated with the confidence interval is computed based on
specified values for the sample size and the ranks of the order statistics used for the bounds of the
confidence interval.

The function ciNparN determines the required the sample size via a nonlinear optimization.

Value

numeric vector of sample sizes.

Note

See the help file for eqnpar.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for egnpar.

See Also

egnpar, ciNparConfLevel, plotCiNparDesign.

Examples

# Look at how the required sample size for a confidence interval
# increases with increasing confidence level for a fixed quantile:

seq(0.5, 0.9, by = 0.
#[1] 0.5 0.6 0.7 0.8

D)
0.9

ciNparN(p = 0.9, conf.level=seq(0.5, 0.9, by = 0.1))
#[1]1 7 9 12 16 22

# Look at how the required sample size for a confidence interval increases
# as the quantile moves away from 0.5:
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ciNparN(p = seq(@.5, 0.9, by = 0.1))
#[11 6 7 9 14 29

ciTableMean

Table of Confidence Intervals for Mean or Difference Between Two
Means

Description

Create a table of confidence intervals for the mean of a normal distribution or the difference be-
tween two means following Bacchetti (2010), by varying the estimated standard deviation and the
estimated mean or differene between the two estimated means given the sample size(s).

Usage

ciTableMean(n1 = 10, n2 = nl1, diff.or.mean = 2:0, SD = 1:3,
sample.type = "two.sample”, ci.type = "two.sided”, conf.level = 0.95,

digits =
Arguments
nl
n2

diff.or.mean

SD

sample. type

ci.type

conf.level

digits

positive integer greater than 1 specifying the sample size when
sample.type="one.sample” or the sample size for group 1 when
sample. type="two.sample"”. The default value is n1=10.

positive integer greater than 1 specifying the sample size for group 2 when
sample.type="two.sample”. The default value is n2=n1, i.e., equal sample
sizes. This argument is ignored when sample.type="one.sample".

numeric vector indicating either the assumed difference between the two sam-
ple means when sample. type="two.sample"” or the value of the sample mean
when sample. type="one.sample". The default value is diff.or.mean=2:0.
Missing (NA), undefined (NaN), an infinite (-Inf, Inf) values are not allowed.

numeric vector of positive values specifying the assumed estimated standard de-
viation. The default value is SD=1:3. Missing (NA), undefined (NaN), an infinite
(-Inf, Inf) values are not allowed.

character string specifying whether to create confidence intervals for the differ-
ence between two means (sample.type="two.sample"; the default) or confi-
dence intervals for a single mean (sample.type="one.sample").

character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower", and "upper”.

a scalar between 0 and 1 indicating the confidence level of the confidence inter-
val. The default value is conf.level=0.95.

positive integer indicating how many decimal places to display in the table. The
default value is digits=1.
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Details

Following Bacchetti (2010) (see NOTE below), the function ciTableMean allows you to perform
sensitivity analyses while planning future studies by producing a table of confidence intervals for
the mean or the difference between two means by varying the estimated standard deviation and the
estimated mean or differene between the two estimated means given the sample size(s).

One Sample Case (sample.type="one.sample")
Letx = (z1,2,...,Z,) be a vector of n observations from an normal (Gaussian) distribution with
parameters mean=p and sd=c.

The usual confidence interval for p is constructed as follows. If ci.type="two-sided", the (1 —
«)100% confidence interval for y is given by:

it tn—1,1—a/2)——

it = 11=0/2) S i+ 1w

where

H I

Z (2)

3\)—‘

0f =" n—lz . 3)

and t(v, p) is the p’th quantile of Student’s t-distribution with v degrees of freedom (Zar, 2010;
Gilbert, 1987; Ott, 1995; Helsel and Hirsch, 1992).

If ci.type="1lower", the (1 — «)100% confidence interval for 4 is given by:

f—tn=1,1-a) 7=, o] (4)
and if ci.type="upper", the confidence interval is given by:
o0, it Hn— 11— 0/2) ] (5)
—00, n—11—-a/2)—
i 7

For the one-sample case, the argument n1 corresponds to n in Equation (1), the argument
diff.or.mean corresponds to i = Z in Equation (2), and the argument SD corresponds to & = s in
Equation (3).

Two Sample Case (sample.type="two.sample”)

Let z; = (z11,%21,-..,Zn,1) be a vector of 11 observations from an normal (Gaussian) distri-
bution with parameters mean=p; and sd=o, and let z, = (212, Z22,...,%n,2) be a vector of ng
observations from an normal (Gaussian) distribution with parameters mean=g and sd=o.

The usual confidence interval for the difference between the two population means p; — pg is
constructed as follows. If ci. type="two-sided", the (1 — a)100% confidence interval for 117 — 1o
is given by:

L L1 r . .
[(fn—fiz)—t(n1+n2—2,1-/2)6 o Ty (=) +t(mtna=2,1-0/2)6 [ + —]
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where
N IR
=71 = o Z»Tﬂ (7)
i—1
1 &
flo = Tg = . me (8)
i—1
2 o (n1—1)s7 4 (ny —1)s3
6% =85 = (9)
p ny 4+ ng — 2
ny
§? = 1 > (@i —x)*  (10)
ny — 1 -1
no
F=— S @a-m? (1)
ne -1

and t(v, p) is the p’th quantile of Student’s t-distribution with v degrees of freedom (Zar, 2010;
Gilbert, 1987; Ott, 1995; Helsel and Hirsch, 1992).

If ci.type="lower", the (1 — «)100% confidence interval for ;11 — s is given by:

[(fi1 — fig) — t(ny 4+ ng — 2,1 — )&y /ni1 + n% oo (12)

and if ci.type="upper"”, the confidence interval is given by:

. N .1 1
[—oo, (i1 — fi2) —t(ny +ng — 2,1 —a)oy/— +—]  (13)
ny N9

For the two-sample case, the arguments n1 and n2 correspond to n; and ns in Equation (6), the
argument diff.or.mean corresponds to tiy — fis = Z1 — Z2 in Equations (7) and (8), and the
argument SD corresponds to & = s, in Equation (9).

Value

a data frame with the rows varying the standard deviation and the columns varying the estimated
mean or difference between the means. Elements of the data frame are character strings indicating
the confidence intervals.

Note

Bacchetti (2010) presents strong arguments against the current convention in scientific research for
computing sample size that is based on formulas that use a fixed Type I error (usually 5%) and a
fixed minimal power (often 80%) without regard to costs. He notes that a key input to these formulas
is a measure of variability (usually a standard deviation) that is difficult to measure accurately
"unless there is so much preliminary data that the study isn’t really needed." Also, study designers
often avoid defining what a scientifically meaningful difference is by presenting sample size results
in terms of the effect size (i.e., the difference of interest divided by the elusive standard deviation).
Bacchetti (2010) encourages study designers to use simple tables in a sensitivity analysis to see
what results of a study may look like for low, moderate, and high rates of variability and large,
intermediate, and no underlying differences in the populations or processes being studied.



118

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

ciTableMean

Bacchetti, P. (2010). Current sample size conventions: Flaws, Harms, and Alternatives. BMC

Medicine 8, 17-23.

Berthouex, PM., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,

New York, NY.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca

Raton, FL.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.
Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

enorm, t.test, ciTableProp, ciNormHalfWidth, ciNormN, plotCiNormDesign.

Examples

# Show how potential confidence intervals for the difference between two means
# will look assuming standard deviations of 1, 2, or 3, differences between

# the two means of 2, 1, or @, and a sample size of 10 in each group.

ciTableMean()

# Diff=2 Diff=1
#SD=1 [ 1.1, 2.91 [ 0.1, 1.9] [-0
#sD=2 [ 0.1, 3.9] [-0.9, 2.9] [-1
#SD=3 [-0.8, 8] [-1.8, 3.8] [-2
f==========

# Show how a potential confidence
# standard deviations of 1, 2, or
# a sample size of 15.

ciTableMean(nl = 15, diff.or.mean

# Mean=5 Mean=3

#SD=1 [ 4.4, 5.61 [ 2.4, 3.6] [ @
#SD=2 [ 3.9, 6.11 [ 1.9, 4.1] [-0
#SD=5 [ 2.2, 7.8]1 [ 0.2, 5.8] [-1

# The data frame EPA.09.Ex.16.1.sulfate.df contains sulfate concentrations

Diff=0

.9, 0.9]
.9, 1.9]
.8, 2.8]

interval for a mean will look assuming
5, a sample mean of 5, 3, or 1, and

=c(5, 3, 1), SD = c(1, 2, 5), sample.type = "one")

Mean=1

4, 1.6]
A, 2.11
.8, 3.8]
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(ppm) at one background and one downgradient well. The estimated

mean and standard deviation for the background well are 536 and 27 ppm,
respectively, based on a sample size of n = 8 quarterly samples taken over
2 years. A two-sided 95% confidence interval for this mean is [514, 559],
which has a half-width of 23 ppm.

The estimated mean and standard deviation for the downgradient well are
608 and 18 ppm, respectively, based on a sample size of n = 6 quarterly
samples. A two-sided 95% confidence interval for the difference between
this mean and the background mean is [44, 100] ppm.

Suppose we want to design a future sampling program and are interested in

the size of the confidence interval for the difference between the two means.

We will use ciTableMean to generate a table of possible confidence intervals
by varying the assumed standard deviation and assumed differences between
the means.

Look at the data

A.09.Ex.16.1.sulfate.df
Month Year Well.type Sulfate.ppm
Jan 1995  Background 560
Apr 1995  Background 530
Jul 1995 Background 570
Oct 1995 Background 490
Jan 1996  Background 510
Apr 1996  Background 550
Jul 1996  Background 550
Oct 1996  Background 530
Jan 1995 Downgradient NA
@ Apr 1995 Downgradient NA
1 Jul 1995 Downgradient 600
2 Oct 1995 Downgradient 590
3 Jan 1996 Downgradient 590
4 Apr 1996 Downgradient 630
5 Jul 1996 Downgradient 610
6 Oct 1996 Downgradient 630

Compute the estimated mean and standard deviation for the
background well.

1fate.back <- with(EPA.09.Ex.16.1.sulfate.df,
Sulfate.ppm[Well.type == "Background”])

orm(Sulfate.back, ci = TRUE)

esults of Distribution Parameter Estimation

119
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#Assumed Distribution:

#

#Estimated Parameter(s):
#

#

#Estimation Method:

#

#Data:

#

#Sample Size:

#

#Confidence Interval for:
#

#Confidence Interval Method:

#

#Confidence Interval Type:
#

#Confidence Level:

#

#Confidence Interval:

#

# Compute the estimated mean and standard deviation for the

# downgradient well.

Normal

mean = 536.2500
sd 26.6927

mvue

Sulfate.back

mean

Exact

two-sided

95%

LCL
uCL

513.9343
558.5657

Sulfate.down <- with(EPA.09.Ex.16.1.sulfate.df,
Sulfate.ppm[Well.type == "Downgradient"])

enorm(Sulfate.down, ci = TRUE)

#Results of Distribution Parameter Estimation

#Assumed Distribution:

#

#Estimated Parameter(s):
#

#

#Estimation Method:

#

#Data:

#

#Sample Size:

#

#Number NA/NaN/Inf's:

#

#Confidence Interval for:
#

#Confidence Interval Method:

#
#Confidence Interval Type:

Normal

mean = 608.33333
sd = 18.34848
mvue

Sulfate.down

mean

Exact

two-sided

ciTableMean
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#

#Confidence Level: 95%

#

#Confidence Interval: LCL = 589.0778
# UCL = 627.5889

# Compute the estimated difference between the means and the confidence
# interval for the difference:

t.test(Sulfate.down, Sulfate.back, var.equal = TRUE)

#Results of Hypothesis Test

# __________________________

#

#Null Hypothesis: difference in means = 0
#

#Alternative Hypothesis: True difference in means is not equal to @
#

#Test Name: Two Sample t-test

#

#Estimated Parameter(s): mean of x = 608.3333

# mean of y = 536.2500

#

#Data: Sulfate.down and Sulfate.back
#

#Test Statistic: t = 5.660985

#

#Test Statistic Parameter: df =12

#

#P-value: 0.0001054306

#

#95% Confidence Interval: LCL = 44.33974

# UCL = 99.82693

# Use ciTableMean to look how the confidence interval for the difference

# between the background and downgradient means in a future study using eight

# quarterly samples at each well varies with assumed value of the pooled standard
# deviation and the observed difference between the sample means.

# Our current estimate of the pooled standard deviation is 24 ppm:

summary (1lm(Sulfate.ppm ~ Well.type, data = EPA.09.Ex.16.1.sulfate.df))$sigma
#[1] 23.57759

# We can see that if this is overly optimistic and in our next study the

# pooled standard deviation is around 50 ppm, then if the observed difference
# between the means is 50 ppm, the lower end of the confidence interval for
# the difference between the two means will include @, so we may want to

# increase our sample size.
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ciTableMean(nl = 8, n2 = 8, diff = c(10@, 50, @), SD = c(15, 25, 50), digits = @)

# Diff=100  Diff=50 Diff=0
#SD=15 [ 84, 1161 [ 34, 661 [-16, 16]
#SD=25 [ 73, 1271 [ 23, 771 [-27, 271
#SD=50 [ 46, 1541 [ -4, 104] [-54, 54]

rm(Sulfate.back, Sulfate.down)

ciTableProp Table of Confidence Intervals for Proportion or Difference Between
Two Proportions

Description

Create a table of confidence intervals for probability of "success" for a binomial distribution or the
difference between two proportions following Bacchetti (2010), by varying the estimated proportion
or differene between the two estimated proportions given the sample size(s).

Usage

ciTableProp(nl = 10, pl.hat = c(0.1, 0.2, 0.3), n2 = nl,
p2.hat.minus.pl.hat = ¢c(0.2, 0.1, @), sample.type = "two.sample”,
ci.type = "two.sided”, conf.level = 0.95, digits = 2, ci.method = "score”,
correct = TRUE, tol = 10*-(digits + 1))

Arguments

ni positive integer greater than 1 specifying the sample size when
sample.type="one.sample"” or the sample size for group 1 when
sample. type="two.sample"”. The default value is n1=10.

p1.hat numeric vector of values between 0 and 1 indicating the estimated proportion
(sample.type="one.sample”) or the estimated proportion for group 1
(sample.type="two.sample"). The default value is c(0.1, 0.2, 0.3). Miss-
ing (NA), undefined (NaN), an infinite (-Inf, Inf) values are not allowed.

n2 positive integer greater than 1 specifying the sample size for group 2 when

sample.type="two.sample"”. The default value is n2=n1, i.e., equal sample

sizes. This argument is ignored when sample. type="one.sample”.
p2.hat.minus.pl.hat

numeric vector indicating the assumed difference between the two sample pro-

portions when sample. type="two.sample”. The default value is c(0.2, 0.1,

0). Missing (NA), undefined (NaN), an infinite (-Inf, Inf) values are not allowed.

This argument is ignored when sample. type="one.sample”.
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sample. type character string specifying whether to create confidence intervals for the dif-
ference between two proportions (sample. type="two.sample”; the default) or
confidence intervals for a single proportion (sample. type="one.sample"”).

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower”, and "upper”.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence inter-
val. The default value is conf.level=0.95.

digits positive integer indicating how many decimal places to display in the table. The
default value is digits=2.

ci.method character string indicating the method to use to construct the confidence interval.
The default value is ci.method="score" (i.e., the score method; see the help
file for prop. test), which is the only method available when
sample.type="two.sample”. When sample.type="one.sample”, you may
also set ci.method="exact" (i.e., the exact method).

correct logical scalar indicating whether to use the correction for continuity when
ci.method="score"” (see the help file for prop.test). The default value is
correct=TRUE.

tol numeric scalar indicating how close the values of the adjusted elements of
p2.hat.minus.p1.hat have to be in order to provide a simply display of con-
fidence intervals (see DETAILS section below). The default value is
tol=10"-(digits + 1).

Details

One-Sample Case (sample.type="one.sample")

For the one-sample case, the function ciTableProp calls the R function prop. test when
ci.method="score"”, and calls the R function binom. test, when ci.method="exact". To ensure
that the user-supplied values of p1.hat are valid for the given user-supplied values of n1, values for
the argument x to the function prop.test or binom. test are computed using the formula

x <-unique(round((p1.hat *nl1), 0))
and the argument p. hat is then adjusted using the formula

p.hat <- x/n1

Two-Sample Case (sample.type="two.sample")

For the two-sample case, the function ciTableProp calls the R function prop. test. To ensure that
the user-supplied values of p1.hat are valid for the given user-supplied values of n1, the values for
the first component of the argument x to the function prop.test are computed using the formula

x1 <= unique(round((p1.hat xn1), 0))

and the argument p1.hat is then adjusted using the formula
p1.hat <- x1/n1

Next, the estimated proportions from group 2 are computed by adding together all possible com-
binations from the elements of p1.hat and p2.hat.minus.p1.hat. These estimated proportions
from group 2 are then adjusted using the formulas:
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x2.rep <- round((p2.hat.rep * n2), 0)
p2.hat.rep <- x2.rep/n2

If any of these adjusted proportions from group 2 are < 0 or > 1 the function terminates with a
message indicating that impossible values have been supplied.

In cases where the sample sizes are small there may be instances where the user-supplied values of
p1.hat and/or p2.hat.minus.p1.hat are not attainable. The argument tol is used to determine
whether to return the table in conventional form or whether it is necessary to modify the table to
include twice as many columns (see EXAMPLES section below).

Value

a data frame with elements that are character strings indicating the confidence intervals.

When sample. type="two.sample”, a data frame with the rows varying the estimated proportion
for group 1 (i.e., the values of p1.hat) and the columns varying the estimated difference between
the proportions from group 2 and group 1 (i.e., the values of p2.hat.minus.p1.hat). In cases
where the sample sizes are small, it may not be possible to obtain certain differences for given
values of p1.hat, in which case the returned data frame contains twice as many columns indicating
the actual difference in one column and the compute confidence interval next to it (see EXAMPLES
section below).

When sample.type="one.sample"”, a 1-row data frame with the columns varying the estimated
proportion (i.e., the values of p1.hat).

Note

Bacchetti (2010) presents strong arguments against the current convention in scientific research for
computing sample size that is based on formulas that use a fixed Type I error (usually 5%) and a
fixed minimal power (often 80%) without regard to costs. He notes that a key input to these formulas
is a measure of variability (usually a standard deviation) that is difficult to measure accurately
"unless there is so much preliminary data that the study isn’t really needed." Also, study designers
often avoid defining what a scientifically meaningful difference is by presenting sample size results
in terms of the effect size (i.e., the difference of interest divided by the elusive standard deviation).
Bacchetti (2010) encourages study designers to use simple tables in a sensitivity analysis to see
what results of a study may look like for low, moderate, and high rates of variability and large,
intermediate, and no underlying differences in the populations or processes being studied.

Author(s)
Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Bacchetti, P. (2010). Current sample size conventions: Flaws, Harms, and Alternatives. BMC
Medicine 8, 17-23.

Also see the references in the help files for prop. test and binom. test.

See Also

prop.test, binom. test, ciTableMean, ciBinomHalfWidth, ciBinomN, plotCiBinomDesign.
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Examples

Reproduce Table 1 in Bacchetti (2010). This involves planning a study with
nl = n2 = 935 subjects per group, where Group 1 is the control group and
Group 2 is the treatment group. The outcome in the study is proportion of
subjects with serious outcomes or death. A negative value for the difference
in proportions between groups (Group 2 proportion - Group 1 proportion)
indicates the treatment group has a better outcome. In this table, the
proportion of subjects in Group 1 with serious outcomes or death is set

to 3%, 6.5%, and 12%, and the difference in proportions between the two
groups is set to -2.8 percentage points, -1.4 percentage points, and 0.

H oH H F H H HF

ciTableProp(nl = 935, pl.hat = c(0.03, 0.065, 0.12), n2 = 935,
p2.hat.minus.pl.hat = c(-0.028, -0.014, @), digits = 3)

# Diff=-0.028 Diff=-0.014 Diff=0

#P1.hat=0.030 [-0.040, -0.015] [-0.029, ©0.001] [-0.015, ©0.015]

#P1.hat=0.065 [-0.049, -0.007] [-0.036, ©0.008] [-0.022, 0.022]

#P1.hat=0.120 [-0.057, ©0.001] [-0.044, 0.016] [-0.029, 0.029]

# Show how the returned data frame has to be modified for cases of small
# sample sizes where not all user-supplied differenes are possible.

ciTableProp(nl = 5, n2 = 5, pl.hat = ¢c(0.3, 0.6, 0.12), p2.hat = c(0.2, 0.1, 0))

# Diff CI Diff CI Diff CI

#P1.hat=0.4 0.2 [-0.61, 1.00] 0.0 [-0.61, 0.61] 0 [-0.61, 0.61]

#P1.hat=0.6 0.2 [-0.55, ©.95] 0.2 [-0.55, 0.95] 0 [-0.61, 0.61]

#P1.hat=0.2 0.2 [-0.55, ©0.95] 0.2 [-0.55, 0.95] 0 [-0.50, 0.50]

f==========

# Suppose we are planning a study to compare the proportion of nondetects at

# a background and downgradient well, and we can use ciTableProp to look how

# the confidence interval for the difference between the two proportions using

# say 36 quarterly samples at each well varies with the observed estimated

# proportions. Here we'll let the argument "p1.hat"” denote the proportion of

# nondetects observed at the downgradient well and set this equal to

# 20%, 40% and 60%. The argument "p2.hat.minus.pl.hat"” represents the proportion
# of nondetects at the background well minus the proportion of nondetects at the
# downgradient well.

ciTableProp(nl = 36, pl.hat = c(0.2, 0.4, 0.6), n2 = 36,
p2.hat.minus.pl.hat = c(0.3, 0.15, @))

# Diff=0.31 Diff=0.14 Diff=0

#P1.hat=0.19 [ 0.07, 0.54] [-0.09, 0.37] [-0.18, 0.18]

#P1.hat=0.39 [ 0.06, 0.55] [-0.12, 0.39] [-0.23, 0.23]

#P1.hat=0.61 [ 0.09, ©.52] [-0.10, 0.38] [-0.23, 0.23]

# We see that even if the observed difference in the proportion of nondetects
# is about 15 percentage points, all of the confidence intervals for the

# difference between the proportions of nondetects at the two wells contain 0,
# so if a difference of 15 percentage points is important to substantiate, we
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cv

# may need to increase our sample sizes.

cv

Sample Coefficient of Variation.

Description

Compute the sample coefficient of variation.

Usage
cv(x, method = "moments”, sd.method = "sqrt.unbiased",
1.moment.method = "unbiased”, plot.pos.cons = c(a = 0.35, b = 0),
na.rm = FALSE)
Arguments
X numeric vector of observations.
method character string specifying what method to use to compute the sample coeffi-
cient of variation. The possible values are "moments” (product moment ratio
estimator; the default), or "1.moments"” (L-moment ratio estimator).
sd.method character string specifying what method to use to compute the sample standard

1.moment.method

plot.pos.cons

na.rm

deviation when method="moments". The possible values are "sqrt.ubiased"
(the square root of the unbiased estimate of variance; the default), or "moments”
(the method of moments estimator).

character string specifying what method to use to compute the L-moments when
method="1.moments". The possible values are "ubiased” (method based on
the U-statistic; the default), or "plotting.position” (method based on the
plotting position formula).

numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="1.moments" and
1.moment.method="plotting.position"”. The default value is
plot.pos.cons=c(a=0.35, b=0). If this vector has a names attribute with the
value c("a","b") or c("b","a"), then the elements will be matched by name
in the formula for computing the plotting positions. Otherwise, the first element
is mapped to the name "a" and the second element to the name "b".

logical scalar indicating whether to remove missing values from x. If
na.rm=FALSE (the default) and x contains missing values, then a missing value
(NA) is returned. If na.rm=TRUE, missing values are removed from x prior to
computing the coefficient of variation.
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Details

Let z denote a random sample of n observations from some distribution with mean p and standard
deviation o.

Product Moment Coefficient of Variation (method="moments")
The coefficient of variation (sometimes denoted CV) of a distribution is defined as the ratio of the
standard deviation to the mean. That is:

The coefficient of variation measures how spread out the distribution is relative to the size of the
mean. It is usually used to characterize positive, right-skewed distributions such as the lognormal
distribution.

When sd.method="sqrt.unbiased”, the coefficient of variation is estimated using the sample
mean and the square root of the unbaised estimator of variance:

CV = 2)

SRR

where

1 n
i=1

s=— Y @w-aIY2 @

n—1

=1
Note that the estimator of standard deviation in equation (4) is not unbiased.

When sd.method="moments", the coefficient of variation is estimated using the sample mean and
the square root of the method of moments estimator of variance:
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L-Moment Coefficient of Variation (method="1.moments")
Hosking (1990) defines an L-moment analog of the coefficient of variation (denoted the L-CV) as:

l
r=2 (7)
h
that is, the second L-moment divided by the first L-moment. He shows that for a positive-valued
random variable, the L-CV lies in the interval (0, 1).
When 1.moment.method="unbiased”, the L-CV is estimated by:
l
t==2(8)
h
that is, the unbiased estimator of the second L-moment divided by the unbiased estimator of the
first L-moment.
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When 1.moment.method="plotting.position”, the L-CV is estimated by:

that is, the plotting-position estimator of the second L-moment divided by the plotting-position
estimator of the first L-moment.

See the help file for 1Moment for more information on estimating L-moments.

Value

A numeric scalar — the sample coefficient of variation.

Note

Traditionally, the coefficient of variation has been estimated using product moment estimators.
Hosking (1990) introduced the idea of L-moments and the L-CV. Vogel and Fennessey (1993) argue
that L-moment ratios should replace product moment ratios because of their superior performance
(they are nearly unbiased and better for discriminating between distributions).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers, Second Edition.
Lewis Publishers, Boca Raton, FL.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, NY.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.
Taylor, J.K. (1990). Statistical Techniques for Data Analysis. Lewis Publishers, Boca Raton, FL.

Vogel, R.M., and N.M. Fennessey. (1993). L Moment Diagrams Should Replace Product Moment
Diagrams. Water Resources Research 29(6), 1745-1752.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

Summary Statistics, summaryFull, var, sd, skewness, kurtosis.

Examples

# Generate 20 observations from a lognormal distribution with
# parameters mean=10 and cv=1, and estimate the coefficient of variation.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlnormAlt(20, mean = 10, cv = 1)
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cv(dat)
#[1] 0.5077981

cv(dat, sd.method = "moments")
#[1] 0.4949403

cv(dat, method = "1.moments")

#[1] 0.2804148

# Clean up
rm(dat)

detectionLimitCalibrate
Determine Detection Limit

Description

Determine the detection limit based on using a calibration line (or curve) and inverse regression.

Usage

detectionLimitCalibrate(object, coverage = ©0.99, simultaneous = TRUE)

Arguments
object an object of class "calibrate” thatis the result of calling the function calibrate.
coverage optional numeric scalar between 0 and 1 indicating the confidence level associ-

ated with the prediction intervals used in determining the detection limit. The
default value is coverage=0.99.

simultaneous  optional logical scalar indicating whether to base the prediction intervals on
simultaneous or non-simultaneous prediction limits. The default value is
simultaneous=TRUE.

Details

The idea of a decision limit and detection limit is directly related to calibration and can be framed
in terms of a hypothesis test, as shown in the table below. The null hypothesis is that the chemical
is not present in the physical sample, i.e., Hy : C = 0, where C denotes the concentration.

Your Decision Hy True (C =0) Hy False (C > 0)

Reject Hy Type I Error
(Declare Chemical Present)  (Probability = )

Do Not Reject H Type II Error
(Declare Chemical Absent) (Probability = ()
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Ideally, you would like to minimize both the Type I and Type II error rates. Just as we use critical
values to compare against the test statistic for a hypothesis test, we need to use a critical signal level
Sp called the decision limit to decide whether the chemical is present or absent. If the signal is
less than or equal to Sp we will declare the chemical is absent, and if the signal is greater than Sp
we will declare the chemical is present.

First, suppose no chemical is present (i.e., the null hypothesis is true). If we want to guard against
the mistake of declaring that the chemical is present when in fact it is absent (Type I error), then we
should choose Sp so that the probability of this happening is some small value «. Thus, the value
of Sp depends on what we want to use for a (the Type I error rate), and the true (but unknown)
value of o (the standard deviation of the errors assuming a constant standard deviation) (Massart et
al., 1988, p. 111).

When the true concentration is 0, the decision limit is the (1-a))100th percentile of the distribution
of the signal S. Note that the decision limit is on the scale of and in units of the signal S.

Now suppose that in fact the chemical is present in some concentration C (i.e., the null hypothesis
is false). If we want to guard against the mistake of declaring that the chemical is absent when in
fact it is present (Type II error), then we need to determine a minimal concentration Cp L called the
detection limit (DL) that we know will yield a signal less than the decision limit Sp only a small
fraction of the time (3).

In practice we do not know the true value of the standard deviation of the errors (o), so we cannot
compute the true decision limit. Also, we do not know the true values of the intercept and slope of
the calibration line, so we cannot compute the true detection limit. Instead, we usually set a = 3
and estimate the decision and detection limits by computing prediction limits for the calibration line
and using inverse regression.

The estimated detection limit corresponds to the upper confidence bound on concentration given
that the signal is equal to the estimated decision limit. Currie (1997) discusses other ways to define
the detection limit, and Glaser et al. (1981) define a quantity called the method detection limit.

Value

A numeric vector of length 2 indicating the signal detection limit and the concentration detection
limit. This vector has two attributes called coverage and simultaneous indicating the values of
these arguments that were used in the call to detectionLimitCalibrate.

Note

Perhaps no other topic in environmental statistics has generated as much confusion or controversy
as the topic of detection limits. After decades of disparate terminology, ISO and IUPAC provided
harmonized guidance on the topic in 1995 (Currie, 1997). Intuitively, the idea of a detection limit
is simple to grasp: the detection limit is “the smallest amount or concentration of a particular
substance that can be reliably detected in a given type of sample or medium by a specific measure-
ment process” (Currie, 1997, p. 152). Unfortunately, because of the exceedingly complex nature of
measuring chemical concentrations, this simple idea is difficult to apply in practice.

Detection and quantification capabilities are fundamental performance characteristics of the Chem-
ical Measurement Process (CMP) (Currie, 1996, 1997). In this help file we discuss some currently
accepted definitions of the terms decision, detection, and quantification limits. For more details, the
reader should consult the references listed in this help file.
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The quantification limit is defined as the concentration C at which the coefficient of variation
(also called relative standard deviation or RSD) for the distribution of the signal S is some small
value, usually taken to be 10% (Currie, 1968, 1997). In practice the quantification limit is difficult
to estimate because we have to estimate both the mean and the standard deviation of the signal
S for any particular concentration, and usually the standard deviation varies with concentration.
Variations of the quantification limit include the quantitation limit (Keith, 1991, p. 109), minimum
level (USEPA, 1993), and alternative minimum level (Gibbons et al., 1997a).
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See Also

calibrate, inversePredictCalibrate, pointwise.

Examples

H*

The data frame EPA.97.cadmium.111.df contains calibration
data for cadmium at mass 111 (ng/L) that appeared in
Gibbons et al. (1997b) and were provided to them by the U.S. EPA.

The Example section in the help file for calibrate shows how to
plot these data along with the fitted calibration line and 99%
non-simultaneous prediction limits.

For the current example, we will compute the decision limit (7.68)
and detection limit (12.36 ng/L) based on using alpha = beta = 0.01
and a linear calibration line with constant variance. See

Millard and Neerchal (2001, pp.566-575) for more details on this
example.

HoH H ¥ ¥ H ¥ H HEF R

calibrate.list <- calibrate(Cadmium ~ Spike, data = EPA.97.cadmium.111.df)

detectionLimitCalibrate(calibrate.list, simultaneous = FALSE)

# Decision Limit (Signal) Detection Limit (Concentration)
# 7.677842 12.364670
#attr(, "coverage")

#[1] 0.99

#attr(, "simultaneous")

#[1] FALSE

# __________

# Clean up

# _________

rm(calibrate.list)

distChoose Choose Best Fitting Distribution Based on Goodness-of-Fit Tests

Description

Perform a series of goodness-of-fit tests from a (possibly user-specified) set of candidate probability
distributions to determine which probability distribution provides the best fit for a data set.
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Usage

distChoose(y,

distChoose

)

## S3 method for class 'formula'
distChoose(y, data = NULL, subset,
na.action = na.pass, ...)

## Default S3 method:
distChoose(y, alpha = 0.05, method = "sw",

choices = c¢("norm”, "gamma", "lnorm"), est.arg.list = NULL,
warn = TRUE, keep.data = TRUE, data.name = NULL,
parent.of.data = NULL, subset.expression = NULL, ...)
Arguments
y an object containing data for the goodness-of-fit tests. In the default method, the
argument y must be numeric vector of observations. In the formula method, y
must be a formula of the form y ~ 1. Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are allowed but will be removed.
data specifies an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If not
found in data, the variables are taken from environment(formula), typically
the environment from which distChoose is called.
subset specifies an optional vector specifying a subset of observations to be used.
na.action specifies a function which indicates what should happen when the data contain
NAs. The default is na.pass.
alpha numeric scalar between 0 and 1 specifying the Type I error associated with each
goodness-of-fit test. When method="proucl” the only allowed values for alpha
are 0.01, 0.05, and 0.1. The default value is alpha=0.05.
method character string defining which method to use. Possible values are:
* "sw". Shapiro-Wilk; the default.
* "sf". Shapiro-Francia.
* "ppcc”. Probability Plot Correlation Coefficient.
e "proucl”. ProUCL.
See the DETAILS section below.
choices a character vector denoting the distribution abbreviations of the candidate dis-

est.arg.list

tributions. See the help file for Distribution.df for a list of distributions
and their abbreviations. The default value is choices=c("norm”, "gamma”,
"lnorm™), indicating the Normal, Gamma, and Lognormal distributions.

This argument is ignored when method="proucl”.

a list containing one or more lists of arguments to be passed to the function(s)
estimating the distribution parameters. The name(s) of the components of the
list must be equal to or a subset of the values of the argument choices. For
example, if choices=c("norm”, "gamma”, "lnorm"), setting
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est.arg.list=list(gamma = list(method="bcmle")) indicates using the bias-
corrected maximum-likelihood estimators of shape and scale for the gamma
distribution (see the help file for egamma). See the help file Estimating Dis-
tribution Parameters for a list of estimating functions. The default value is
est.arg.list=NULL so that all default values for the estimating functions are
used.

When testing for some form of normality (i.e., Normal, Lognormal, Three-
Parameter Lognormal, Zero-Modified Normal, or Zero-Modified Lognormal
(Delta)), the estimated parameters are provided in the output merely for informa-
tion, and the choice of the method of estimation has no effect on the goodness-
of-fit test statistics or p-values.

This argument is ignored when method="proucl”.

warn logical scalar indicating whether to print a warning message when observations
with NAs, NaNs, or Infs in y are removed. The default value is TRUE.

keep.data logical scalar indicating whether to return the original data. The default value is
keep.data=TRUE.

data.name optional character string indicating the name of the data used for argument y.

parent.of.data character string indicating the source of the data used for the goodness-of-fit
test.

subset.expression
character string indicating the expression used to subset the data.

additional arguments affecting the goodness-of-fit test.

Details

The function distChoose returns a list with information on the goodness-of-fit tests for various
distributions and which distribution appears to best fit the data based on the p-values from the
goodness-of-fit tests. This function was written in order to compare ProUCL’s way of choosing the
best-fitting distribution (USEPA, 2015) with other ways of choosing the best-fitting distribution.

Method Based on Shapiro-Wilk, Shapiro-Francia, or Probability Plot Correlation Test
(method="sw", method="sf", or method="ppcc")

For each value of the argument choices, the function distChoose runs the goodness-of-fit test
using the data in y assuming that particular distribution. For example, if

choices=c("norm”, "gamma"”, "lnorm"), indicating the Normal, Gamma, and Lognormal distri-
butions, and method="sw", then the usual Shapiro-Wilk test is performed for the Normal and Log-
normal distributions, and the extension of the Shapiro-Wilk test is performed for the Gamma distri-
bution (see the section Testing Goodness-of-Fit for Any Continuous Distribution in the help file for
gofTest for an explanation of the latter). The distribution associated with the largest p-value is the
chosen distribution. In the case when all p-values are less than the value of the argument alpha, the
distribution ‘“Nonparametric” is chosen.

Method Based on ProUCL Algorithm (method="proucl”)

When method="proucl”, the function distChoose uses the algorithm that ProUCL (USEPA, 2015)
uses to determine the best fitting distribution. The candidate distributions are the Normal, Gamma,
and Lognormal distributions. The algorithm used by ProUCL is as follows:
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Value

a list

distChoose

. Perform the Shapiro-Wilk and Lilliefors goodness-of-fit tests for the Normal distribution, i.e.,

call the function gofTest with distribution = "norm”, test="sw"” and

distribution = "norm"”, test="1illie". If either or both of the associated p-values are
greater than or equal to the user-supplied value of alpha, then choose the Normal distribution.
Otherwise, proceed to the next step.

Perform the “ProUCL Anderson-Darling” and “ProUCL Kolmogorov-Smirnov”’ goodness-of-
fit tests for the Gamma distribution, i.e., call the function gofTest with
distribution="gamma"”, test="proucl.ad.gamma" and

distribution="gamma", test="proucl.ks.gamma". If either or both of the associated p-
values are greater than or equal to the user-supplied value of alpha, then choose the Gamma
distribution. Otherwise, proceed to the next step.

. Perform the Shapiro-Wilk and Lilliefors goodness-of-fit tests for the Lognormal distribution,

i.e., call the function gofTest with distribution="1norm", test="sw" and
distribution="lnorm"”, test="1illie". If either or both of the associated p-values are
greater than or equal to the user-supplied value of alpha, then choose the Lognormal distri-
bution. Otherwise, proceed to the next step.

. If none of the goodness-of-fit tests above yields a p-value greater than or equal to the user-

supplied value of alpha, then choose the “Nonparametric” distribution.

of class "distChoose"” containing the results of the goodness-of-fit tests. Objects of class

"distChoose” have a special printing method. See the help files for distChoose.object for
details.

Note

In practice, almost any goodness-of-fit test will not reject the null hypothesis if the number of obser-
vations is relatively small. Conversely, almost any goodness-of-fit test will reject the null hypothesis

if the

number of observations is very large, since “real” data are never distributed according to any

theoretical distribution (Conover, 1980, p.367). For most cases, however, the distribution of “real”
data is close enough to some theoretical distribution that fairly accurate results may be provided by
assuming that particular theoretical distribution. One way to asses the goodness of the fit is to use
goodness-of-fit tests. Another way is to look at quantile-quantile (Q-Q) plots (see qqPlot).
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Examples

# Generate 20 observations from a gamma distribution with
# parameters shape = 2 and scale = 3 and:
#

1) Call distChoose using the Shapiro-Wilk method.

2) Call distChoose using the Shapiro-Wilk method and specify
the bias-corrected method of estimating shape for the Gamma
distribution.

ProUCL method.

Notes: The call to set.seed lets you reproduce this example.

The ProUCL method chooses the Normal distribution, whereas the

#

#

#

#

#

#

# 3) Compare the results in 2) above with the results using the
#

#

#

#

#

# Shapiro-Wilk method chooses the Gamma distribution.

set.seed(47)
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dat <- rgamma(20, shape = 2, scale

# 1) Call distChoose using the Shapiro-Wilk method.

distChoose(dat)

#Results of Choosing Distribution

# ________________________________
#

#Candidate Distributions:
#

#

#

#Choice Method:

#

#Type I Error per Test:
#

#Decision:

#

#Estimated Parameter(s):
#

#

#Estimation Method:

#

#Data:

#

#Sample Size:

#

#Test Results:

#

# Normal

# Test Statistic:

# P-value:

#

# Gamma

# Test Statistic:

# P-value:

#

# Lognormal

# Test Statistic:

# P-value:

# ____________________
#

#

# distribution.

distChoose(dat, method = "sw",

est.arg.list = list(gamma = list(method = "bcmle")))

:3)

Normal

Gamma
Lognormal
Shapiro-Wilk
0.05

Gamma

shape = 1.909462
scale = 4.056819

MLE
dat

20

W = 0.9097488

0.06303695

W = 0.9834958
0.970903

W = 0.9185006
0.09271768

2) Call distChoose using the Shapiro-Wilk method and specify
the bias-corrected method of estimating shape for the Gamma

139
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#Results of Choosing Distribution

# ________________________________

#

#Candidate Distributions: Normal

# Gamma

# Lognormal

#

#Choice Method: Shapiro-Wilk

#

#Type I Error per Test: 0.05

#

#Decision: Gamma

#

#Estimated Parameter(s): shape = 1.656376
# scale = 4.676680
#

#Estimation Method: Bias-Corrected MLE
#

#Data: dat

#

#Sample Size: 20

#

#Test Results:

#

# Normal

# Test Statistic: W = 0.9097488

# P-value: 0.06303695

#

# Gamma

# Test Statistic: W = 0.9834346

# P-value: 0.9704046

#

# Lognormal

# Test Statistic: W = 0.9185006

# P-value: 0.09271768

# ____________________

# 3) Compare the results in 2) above with the results using the
# ProUCL method.

# _______________________________________________________________

distChoose(dat, method = "proucl”)

#Results of Choosing Distribution

# ________________________________

#

#Candidate Distributions: Normal

# Gamma

# Lognormal
#

#Choice Method: ProUCL
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#

#Type I Error per Test: 0.05

#

#Decision: Normal

#

#Estimated Parameter(s): mean = 7.746340
# sd = 5.432175
#

#Estimation Method: mvue

#

#Data: dat

#

#Sample Size: 20

#

#Test Results:

#

# Normal

# Shapiro-Wilk GOF

# Test Statistic: W = 0.9097488
# P-value: 0.06303695

# Lilliefors (Kolmogorov-Smirnov) GOF

# Test Statistic: D = 0.1547851
# P-value: 0.238092

#

# Gamma

# ProUCL Anderson-Darling Gamma GOF

# Test Statistic: A = 0.1853826
# P-value: >= 0.10

# ProUCL Kolmogorov-Smirnov Gamma GOF

# Test Statistic: D = 0.0988692
# P-value: >= 0.10

#

# Lognormal

# Shapiro-Wilk GOF

# Test Statistic: W = 0.9185006
# P-value: 0.09271768

# Lilliefors (Kolmogorov-Smirnov) GOF

# Test Statistic: D = 0.149317
# P-value: 0.2869177

# ____________________

# Clean up

# _________

rm(dat)

# Example 10-2 of USEPA (2009, page 10-14) gives an example of

# using the Shapiro-Wilk test to test the assumption of normality
# for nickel concentrations (ppb) in groundwater collected over
# 4 years. The data for this example are stored in
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# EPA.09.Ex.10.1.nickel.df.

EPA.09.Ex.10.1.nickel.df
# Month  Well Nickel.ppb

#1 1 Well.1 58.8
#2 3 Well.1 1.0
#3 6 Well.1 262.0
#4 8 Well.1 56.0
#5 10 Well.1 8.7
#6 1 Well.2 19.0
#7 3 Well.2 81.5
#8 6 Well.2 331.0
#9 8 Well.2 14.0
#10 10 Well.2 64.4
#11 1 Well.3 39.0
#12 3 Well.3 151.0
#13 6 Well.3 27.0
#14 8 Well.3 21.4
#15 10 Well.3 578.0
#16 1 Well.4 3.1
#17 3 Well.4 942.0
#18 6 Well.4 85.6
#19 8 Well.4 10.0
#20 10 Well.4 637.0

# Use distChoose with the probability plot correlation method,
# and for the lognormal distribution specify the
# mean and CV parameterization:

distChoose(Nickel.ppb ~ 1, data = EPA.©9.Ex.10.1.nickel.df,
choices = c("norm”, "gamma”, "lnormAlt"”), method = "ppcc")

#Results of Choosing Distribution

# ________________________________

#

#Candidate Distributions: Normal

# Gamma

# Lognormal

#

#Choice Method: PPCC

#

#Type I Error per Test: 0.05

#

#Decision: Lognormal

#

#Estimated Parameter(s): mean = 213.415628
# cv = 2.809377
#

#Estimation Method: mvue

#

#Data: Nickel.ppb

#
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#Data Source: EPA.09.Ex.10.1.nickel.df
#

#Sample Size: 20

#

#Test Results:

#

# Normal

# Test Statistic: r = 0.8199825
# P-value: 5.753418e-05
#

# Gamma

# Test Statistic: r = 0.9749044
# P-value: 0.317334

#

# Lognormal

# Test Statistic: r =0.9912528
# P-value: 0.9187852

# ____________________

distChoose(Nickel.ppb ~ 1, data = EPA.©9.Ex.10.1.nickel.df,
method = "proucl”)

#Results of Choosing Distribution

# ________________________________

#

#Candidate Distributions: Normal

# Gamma

# Lognormal

#

#Choice Method: ProUCL

#

#Type I Error per Test: 0.05

#

#Decision: Gamma

#

#Estimated Parameter(s): shape = 0.5198727
# scale = 326.0894272
#

#Estimation Method: MLE

#

#Data: Nickel.ppb

#

#Data Source: EPA.09.Ex.10.1.nickel.df
#

#Sample Size: 20

#

#Test Results:

#

# Normal
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# Shapiro-Wilk GOF

# Test Statistic: W = 0.6788888

# P-value: 2.17927e-05

# Lilliefors (Kolmogorov-Smirnov) GOF

# Test Statistic: D = 0.3267052

# P-value: 5.032807e-06

#

# Gamma

# ProUCL Anderson-Darling Gamma GOF

# Test Statistic: A = 0.5076725

# P-value: >= 0.10

# ProUCL Kolmogorov-Smirnov Gamma GOF

# Test Statistic: D = 0.1842904

# P-value: >= 0.10

#

# Lognormal

# Shapiro-Wilk GOF

# Test Statistic: W = 0.978946

# P-value: 0.9197735

# Lilliefors (Kolmogorov-Smirnov) GOF

# Test Statistic: D = 0.08405167

# P-value: 0.9699648

## Not run:

# 1) Simulate 1000 trials where for each trial you:
# a) Generate 20 observations from a Gamma distribution with
# parameters mean = 10 and CV = 1.

# b) Use distChoose with the Shapiro-Wilk method.
# c) Use distChoose with the ProUCL method.

#

# 2) Compare the proportion of times the

# Normal vs. Gamma vs. Lognormal vs. Nonparametric distribution
# is chosen for b) and c) above.

# __________________________________________________________________

set.seed(58)

N <- 1000

Choose. fac <- factor(rep(""”, N), levels = c(”"Normal”, "Gamma"”, "Lognormal”, "Nonparametric”))
Choose.df <- data.frame(SW = Choose.fac, ProUCL = Choose.fac)

for(i in 1:N) {
dat <- rgammaAlt(20, mean = 10, cv = 1)
Choose.df[i, "SW"] <- distChoose(dat, method = "sw")$decision
Choose.df[i, "ProUCL"] <- distChoose(dat, method "proucl”)$decision

}
summaryStats(Choose.df, digits = 0)

# ProUCL(N) ProUCL(Pct) SW(N) SW(Pct)
#Normal 443 44 41 4
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#Gamma 546 55 733 73
#Lognormal 9 1 215 22
#Nonparametric 2 0 11 1
#Combined 1000 100 1000 100
# ____________________

set.seed(297)
N <- 1000

Choose. fac <- factor(rep("", N), levels = c("Normal”, "Gamma", "Lognormal”, "Nonparametric"))
Choose.df <- data.frame(SW = Choose.fac, ProUCL = Choose.fac)

for(i in 1:N) {
dat <- rlnormAlt(20, mean = 10, cv = 1)
Choose.df[i, "SW"] <- distChoose(dat, method = "sw")$decision
Choose.df[i, "ProUCL"] <- distChoose(dat, method = "proucl”)$decision
}

summaryStats(Choose.df, digits = @)

# ProUCL(N) ProUCL(Pct) SW(N) SW(Pct)
#Normal 313 31 15 2
#Gamma 556 56 254 25
#Lognormal 121 12 706 71
#Nonparametric 10 1 25 2
#Combined 1000 100 1000 100
# ____________________

# Clean up

# _________

rm(N, Choose.fac, Choose.df, i, dat)

## End(Not run)

distChoose.object S3 Class "distChoose"

Description

Objects of S3 class "distChoose” are returned by the EnvStats function distChoose.
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Details

Objects of S3 class "distChoose” are lists that contain information about the candidate distribu-
tions, the estimated distribution parameters for each candidate distribution, and the test statistics
and p-values associated with each candidate distribution.

Value

Required Components
The following components must be included in a legitimate list of class "distChoose”.

choices a character vector containing the full names of the candidate distributions. (see
Distribution.df).

method a character string denoting which method was used.

decision a character vector containing the full name of the chosen distribution.

alpha a numeric scalar between 0 and 1 specifying the Type I error associated with

each goodness-of-fit test.

distribution.parameters
a numeric vector containing the estimated parameters associated with the chosen
distribution.

estimation.method
a character string indicating the method used to compute the estimated param-
eters associated with the chosen distribution. The value of this component will
depend on the available estimation methods (see Distribution.df).

sample.size a numeric scalar containing the number of non-missing observations in the sam-
ple used for the goodness-of-fit tests.

test.results a list with the same number of components as the number of elements in the
component choices. The names of the list are the distribution abbreviations of
the candidate distributions. (See the help file for Distribution.df for a list of
distributions and their abbreviations.) Each component is an object of class gof
containing the results of the goodness-of-fit test for that particular hypothesized
distribution.

data.name character string indicating the name of the data object used for the goodness-of-
fit tests.

Optional Components
The following component is included in the result of calling distChoose when the argument
keep.data=TRUE:

data numeric vector containing the data actually used for the goodness-of-fit tests
(i.e., the original data without any missing or infinite values).

The following component is included in the result of calling distChoose when missing (NA), unde-
fined (NaN) and/or infinite (Inf, -Inf) values are present:

bad.obs numeric scalar indicating the number of missing (NA), undefined (NaN) and/or in-
finite (Inf, -Inf) values that were removed from the data object prior to choos-
ing a distribution.
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Methods

Generic functions that have methods for objects of class "distChoose” include:
print.

Note

Since objects of class "distChoose” are lists, you may extract their components with the $ and [[
operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

distChoose, print.distChoose, Goodness-of-Fit Tests, Distribution.df.

Examples

# Create an object of class "distChoose"”, then print it out.
# (Note: the call to set.seed simply allows you to reproduce
# this example.)

set.seed(47)
dat <- rgamma(20, shape = 2, scale = 3)

distChoose.obj <- distChoose(dat)

mode (distChoose.obj)
#[1] "list"

class(distChoose.obj)
#[1] "distChoose”

names (distChoose.obj)

#[1] "choices” "method”

#[3] "decision” "alpha"

#[5] "distribution.parameters” "estimation.method”
#[7] "sample.size” "test.results”

#[9] "data” "data.name”

distChoose.obj

#Results of Choosing Distribution

# ________________________________

#

#Candidate Distributions: Normal

# Gamma

# Lognormal

#

#Choice Method: Shapiro-Wilk

#
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#Type I Error per Test: 0.05
#
#Decision: Gamma
#
#Estimated Parameter(s): shape = 1.909462
# scale = 4.056819
#
#Estimation Method: MLE
#
#Data: dat
#
#Sample Size: 20
#
#Test Results:
#
# Normal
# Test Statistic: W = 0.9097488
# P-value: 0.06303695
#
# Gamma
# Test Statistic: W = 0.9834958
# P-value: 0.970903
#
# Lognormal
# Test Statistic: W = 0.9185006
# P-value: 0.09271768
f==========
# Extract the choices
# ____________________
distChoose.obj$choices
#[1] "Normal” "Gamma" "Lognormal”
f=========c=
# Clean up
# _________
rm(dat, distChoose.obj)
distChooseCensored Choose Best Fitting Distribution Based on Goodness-of-Fit Tests for

Censored Data

Description

Perform a series of goodness-of-fit tests for censored data from a (possibly user-specified) set of
candidate probability distributions to determine which probability distribution provides the best fit
for a data set.



distChooseCensored 149

Usage
distChooseCensored(x, censored, censoring.side = "left”, alpha = 0.05,
method = "sf", choices = c("norm”, "gamma”, "lnorm”),
est.arg.list = NULL, prob.method = "hirsch-stedinger”,
plot.pos.con = 0.375, warn = TRUE, keep.data = TRUE,
data.name = NULL, censoring.name = NULL)
Arguments
X a numeric vector containing data for the goodness-of-fit tests. Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are allowed but will be removed.
censored numeric or logical vector indicating which values of x are censored. This must

be the same length as x. If the mode of censored is "logical”, TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric”,
it must contain only 1’s and @’s; 1 corresponds to TRUE and @ corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left"” (the default) and "right”.

alpha numeric scalar between 0 and 1 specifying the Type I error associated with each
goodness-of-fit test. When method="proucl” the only allowed values for alpha
are 0.01, 0.05, and 0.1. The default value is alpha=0.05.

method character string defining which method to use. Possible values are:
* "sw". Shapiro-Wilk.
e "sf". Shapiro-Francia; the default.

* "ppcc”. Probability Plot Correlation Coefficient.
e "proucl”. ProUCL.

The Shapiro-Wilk method is only available for singly censored data.
See the DETAILS section for more information.

choices a character vector denoting the distribution abbreviations of the candidate dis-
tributions. See the help file for Distribution.df for a list of distributions
and their abbreviations. The default value is choices=c("norm”, "gamma”,
"lnorm"), indicating the Normal, Gamma, and Lognormal distributions.

This argument is ignored when method="proucl”.

est.arg.list a list containing one or more lists of arguments to be passed to the function(s)
estimating the distribution parameters. The name(s) of the components of the
list must be equal to or a subset of the values of the argument choices. For
example, if choices=c("norm”, "gammaAlt”, "lnormAlt"), setting
est.arg.list=list(lnormAlt=1list(method="bcmle")) indicates using the
bias-corrected maximum-likelihood estimators (see the help file for elnormAltCensored).
See the section Estimating Distribution Parameters in the help file EnvStats
Functions for Censored Data for a list of available estimating functions for cen-
sored data. The default value is est.arg.list=NULL so that all default values
for the estimating functions are used.
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In the course of testing for some form of normality (i.e., Normal, Lognormal),
the estimated parameters are saved in the test.results component of the re-
turned object, but the choice of the method of estimation has no effect on the
goodness-of-fit test statistic or p-value.

This argument is ignored when method="proucl”.

prob.method character string indicating what method to use to compute the plotting positions
(empirical probabilities) when test="sf" or test="ppcc"”. Possible values are:

* "modified kaplan-meier” (modification of product-limit method of Ka-
plan and Meier (1958))

* "nelson” (hazard plotting method of Nelson (1972))

* "michael-schucany” (generalization of the product-limit method due to
Michael and Schucany (1986))

* "hirsch-stedinger” (generalization of the product-limit method due to
Hirsch and Stedinger (1987))

The default value is prob.method="hirsch-stedinger".

The "nelson” method is only available for censoring.side="right", and the
"modified kaplan-meier"” method is only available for censoring.side="1eft".
See the help files for gofTestCensored and ppointsCensored for more infor-
mation.

plot.pos.con numeric scalar between 0 and 1 containing the value of the plotting position
constant to use when test="sf" or test="ppcc". The default value is
plot.pos.con=0.375. See the help files for gofTestCensored and ppointsCensored
for more information.

warn logical scalar indicating whether to print a warning message when observations
with NAs, NaNs, or Infs in y are removed. The default value is warn=TRUE.

keep.data logical scalar indicating whether to return the original data. The default value is
keep.data=TRUE.

data.name optional character string indicating the name of the data used for argument x.

censoring.name optional character string indicating the name for the data used for argument
censored.

Details

The function distChooseCensored returns a list with information on the goodness-of-fit tests for
various distributions and which distribution appears to best fit the data based on the p-values from
the goodness-of-fit tests. This function was written in order to compare ProUCL’s way of choosing
the best-fitting distribution (USEPA, 2015) with other ways of choosing the best-fitting distribution.

Method Based on Shapiro-Wilk, Shapiro-Francia, or Probability Plot Correlation Test
(method="sw", method="sf", or method="ppcc")

For each value of the argument choices, the function distChooseCensored runs the goodness-of-
fit test using the data in x assuming that particular distribution. For example, if

choices=c("norm”, "gamma"”, "lnorm"), indicating the Normal, Gamma, and Lognormal distri-
butions, and method="sf", then the usual Shapiro-Francia test is performed for the Normal and
Lognormal distributions, and the extension of the Shapiro-Francia test is performed for the Gamma
distribution (see the section Testing Goodness-of-Fit for Any Continuous Distribution in the help
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file for gofTestCensored for an explanation of the latter). The distribution associated with the
largest p-value is the chosen distribution. In the case when all p-values are less than the value of the
argument alpha, the distribution “Nonparametric” is chosen.

Method Based on ProUCL Algorithm (method="proucl”)

When method="proucl”, the function distChooseCensored uses the algorithm that ProUCL (USEPA,
2015) uses to determine the best fitting distribution. The candidate distributions are the Normal,
Gamma, and Lognormal distributions. The algorithm used by ProUCL is as follows:

1. Remove all censored observations and use only the uncensored observations.

2. Perform the Shapiro-Wilk and Lilliefors goodness-of-fit tests for the Normal distribution, i.e.,
call the function gofTest with distribution="norm"”, test="sw" and
distribution = "norm"”, test="1illie". If either or both of the associated p-values are
greater than or equal to the user-supplied value of alpha, then choose the Normal distribution.
Otherwise, proceed to the next step.

3. Perform the “ProUCL Anderson-Darling” and “ProUCL Kolmogorov-Smirnov” goodness-of-
fit tests for the Gamma distribution, i.e., call the function gofTest with
distribution="gamma"”, test="proucl.ad.gamma" and
distribution="gamma", test="proucl.ks.gamma". If either or both of the associated p-
values are greater than or equal to the user-supplied value of alpha, then choose the Gamma
distribution. Otherwise, proceed to the next step.

4. Perform the Shapiro-Wilk and Lilliefors goodness-of-fit tests for the Lognormal distribution,
i.e., call the function gofTest with distribution = "lnorm”, test="sw" and
distribution ="lnorm", test="1illie". If either or both of the associated p-values are
greater than or equal to the user-supplied value of alpha, then choose the Lognormal distri-
bution. Otherwise, proceed to the next step.

5. If none of the goodness-of-fit tests above yields a p-value greater than or equal to the user-
supplied value of alpha, then choose the “Nonparametric” distribution.

Value

a list of class "distChooseCensored” containing the results of the goodness-of-fit tests. Objects
of class "distChooseCensored” have a special printing method. See the help file for
distChooseCensored.object for details.

Note

In practice, almost any goodness-of-fit test will not reject the null hypothesis if the number of obser-
vations is relatively small. Conversely, almost any goodness-of-fit test will reject the null hypoth-
esis if the number of observations is very large, since “real” data are never distributed according
to any theoretical distribution (Conover, 1980, p.367). For most cases, however, the distribution
of “real” data is close enough to some theoretical distribution that fairly accurate results may be
provided by assuming that particular theoretical distribution. One way to asses the goodness of
the fit is to use goodness-of-fit tests. Another way is to look at quantile-quantile (Q-Q) plots (see
ggPlotCensored).
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See Also

gofTestCensored, distChooseCensored.object, print.distChooseCensored, distChoose.

Examples

# Generate 30 observations from a gamma distribution with

# parameters mean=10 and cv=1 and then censor observations less than 5.
# Then:

#

# 1) Call distChooseCensored using the Shapiro-Wilk method and specify
# choices of the
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normal,

distributions.

ProUCL method.

H o H F ¥ H O ¥ H HF ¥ H

set.seed(598)

dat <- sort(rgammaAlt(30, mean

dat
# [1] 0.5313509

dat.censored <- dat

censored <- dat.censored < 5
dat.censored[censored] <- 5

1.4741833
# [6] 3.7987348 4.5542952 5.
#[11] 5.7513827 9.1086375 9.
#[16] 11.7925398 13.3432689 13.
#[21] 15.8730642 16.0039936 16.
#[26] 19.1105522 20.2657141 26.

1

=10, cv

.9936208

5207531
8444090
9562777
6910715
3815970

10.
14.

17

30.

gamma (alternative parameterzation), and
lognormal (alternative parameterization)

D))

.7980636 3.
.5253596 5.
6247123 10.
6029065 15.
.0288922 17.
2912797 42.

2) Compare the results in 1) above with the results using the

Notes: The call to set.seed lets you reproduce this example.

4509840
7177872
9304922
0563342
8507891
8726101

# 1) Call distChooseCensored using the Shapiro-Wilk method.

distChooseCensored(dat.censored, censored, method = "sw",

choices = c("norm”, "gammaAlt”, "lnormAlt"))

#Results of Choosing Distribution

#Candidate Distributions:

#

#

#

#Choice Method:

#

#Type I Error per Test:
#

#Decision:

#

#Estimated Parameter(s):

#
#
#Estimation Method:
#

Norma
Gamma

1

Lognormal

Shapiro-Wilk

0.05

Gamma

mean
cv

MLE

12.4911448
0.7617343

n

distChooseCensored

The ProUCL method chooses the Normal distribution, whereas the
Shapiro-Wilk method chooses the Gamma distribution.
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#Data: dat.censored

#

#Sample Size: 30

#

#Censoring Side: left

#

#Censoring Variable: censored

#

#Censoring Level(s): 5

#

#Percent Censored: 23.33333%

#

#Test Results:

#

# Normal

# Test Statistic: W = 0.9372741

# P-value: 0.1704876

#

# Gamma

# Test Statistic: W =0.9613711

# P-value: 0.522329

#

# Lognormal

# Test Statistic: W = 0.9292406

# P-value: 0.114511

# ____________________

# 2) Compare the results in 1) above with the results using the
# ProUCL method.

# _______________________________________________________________
distChooseCensored(dat.censored, censored, method = "proucl”)

#Results of Choosing Distribution

#Candidate Distributions:
#

#

#

#Choice Method:

#

#Type I Error per Test:
#

#Decision:

#

#Estimated Parameter(s):
#

#

#Estimation Method:

#

#Data:

Normal
Gamma
Lognormal
ProUCL
0.05

Normal

15.397584
8.688302

mean =
sd

mvue

dat.censored
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#

#Sample Size: 30

#

#Censoring Side: left

#

#Censoring Variable: censored
#

#Censoring Level(s): 5

#

#Percent Censored: 23.33333%
#

#ProUCL Sample Size: 23

#

#Test Results:

#

# Normal

# Shapiro-Wilk GOF

# Test Statistic: W = 0.861652
# P-value: 0.004457924

# Lilliefors (Kolmogorov-Smirnov) GOF

# Test Statistic: D = 0.1714435
# P-value: 0.07794315

#

# Gamma

# ProUCL Anderson-Darling Gamma GOF

# Test Statistic: A = 0.3805556
# P-value: >= 0.10

# ProUCL Kolmogorov-Smirnov Gamma GOF

# Test Statistic: D = 0.1035271
# P-value: >= 0.10

#

# Lognormal

# Shapiro-Wilk GOF

# Test Statistic: W = 0.9532604
# P-value: 0.3414187

# Lilliefors (Kolmogorov-Smirnov) GOF

# Test Statistic: D = 0.115588
# P-value: 0.5899259

# ____________________

# Clean up

# _________

rm(dat, censored, dat.censored)

# Check the assumption that the silver data stored in Helsel.Cohn.88.silver.df

# follows a lognormal distribution.

# Note that the small p-value and the shape of the Q-Q plot

# (an inverted S-shape) suggests that the log transformation is not quite strong
# enough to "bring in” the tails (i.e., the log-transformed silver data has tails
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# First create a lognormal Q-Q plot

dev.new()

with(Helsel.Cohn.88.silver.df,
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that are slightly too long relative to a normal distribution).

Helsel and Cohn (1988, p.2002) note that the gross outlier of 560 mg/L tends to
make the shape of the data resemble a gamma distribution, but

the distChooseCensored function decision is neither Gamma nor Lognormal,

but instead Nonparametric.

qgPlotCensored(Ag, Censored, distribution = "lnorm”,
points.col = "blue”, add.line = TRUE))

with(Helsel.Cohn.88.silver.df,

distChooseCensored(Ag, Censored))

#Results of Choosing Distribution

#Candidate Distributions:

#
#
#
#Choice Method:
#

#Type I Error per Test:

#

#Decision:

#

#Data:

#

#Sample Size:
#

#Censoring Side:

#

#Censoring Variable:

#

#Censoring Level(s):

#

#Percent Censored:

#
#Test Results:

Normal

P-value:

T T

Test Statistic:

Normal
Gamma
Lognormal

Shapiro-Francia

0.05
Nonparametric
Ag
56
left
Censored

0.1 0.2 0.3 0.5

60.71429%

W = 0.3065529
8.346126e-08

1.0 2.0 2.5 5.0 6.0 10.0 20.0 25.0
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# Gamma

# Test Statistic:
# P-value:

#

# Lognormal

# Test Statistic:
# P-value:

# __________

# Clean up

# _________

graphics.off()

++

W = 0.625414
1.884155e-05

W = 0.895719
0.03490314

8

8

distChooseCensored

H o H HF ¥ B H

S T T T T

++

Chapter 15 of
at normal Q-Q
for manganese
wells (USEPA,
on page 15-13
is a good fit
In EnvStats these data are stored in the data frame EPA.09.Ex.15.1.manganese.df.

USEPA (2009) gives several examples of looking

plots and estimating the mean and standard deviation
concentrations (ppb) in groundwater at five background

2009, p. 15-10).

for these data.

EPA.09.Ex.15.1.manganese.df

#  Sample
#1 1
#2 2
#3 3
#...

#23 3
#24 4
#25 5

The Q-Q plot shown in Figure 15-4
clearly indicates that the Lognormal distribution

Here we will call the distChooseCensored function to determine
whether the data appear to come from a normal, gamma, or lognormal
distribution.

Well Manganese.Orig.ppb Manganese.ppb Censored

Well.
Well.
Well.

Well.
Well.
Well.

1
1
1

(]

<5
12.1
16.9

3.3
8.4
<2

longToWide(EPA.@9.Ex.15.1.manganese.df,
"Manganese.Orig.ppb”, "Sample"”, "Well",
paste.row.name = TRUE)

5.
12.
16.

N 00 W
S~ w

0
1
9

TRUE
FALSE
FALSE

FALSE
FALSE
TRUE

Note that using the Probability Plot Correlation Coefficient method
(equivalent to using the Shapiro-Francia method) yields a decision of
Lognormal, but using the ProUCL method yields a decision of Gamma.
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# Well.1 Well.2 Well.3 We
#Sample.1 <5 <5 <5
#Sample.2 12.1 7.7 5.3
#Sample.3 16.9 53.6 12.6
#Sample. 4 21.6 9.5 106.3
#Sample.5 <2 45.9 34.5

# Use distChooseCensored with the
# and for the gamma and lognormal
# mean and CV parameterization:

with(EPA.09.Ex.15.1.manganese.df,
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11.4 Well.5
6.3 17.9
1.9 22.7
10 3.3
<2 8.4
77.2 <2

probability plot correlation method,
distribution specify the

distChooseCensored(Manganese.ppb, Censored,

choices = c("norm”, "gamma",

#Results of Choosing Distribution

#Candidate Distributions:
#

#

#

#Choice Method:

#

#Type I Error per Test:
#

#Decision:

#

#Estimated Parameter(s):
#

#

#Estimation Method:

#

#Data:

#

#Sample Size:

#

#Censoring Side:

#

#Censoring Variable:

#

#Censoring Level(s):

#

#Percent Censored:

#

#Test Results:

Normal
Test Statistic:
P-value:

T

"lnormAlt"), method = "ppcc”))

Normal
Gamma
Lognormal
PPCC

0.05

Lognormal

23.003987
2.300772

mean
cv

MLE
Manganese. ppb
25

left

Censored

25

24%

r =0.9147686
0.004662658
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# Gamma

# Test Statistic: r = 0.9844875
# P-value: 0.6836625

#

# Lognormal

# Test Statistic: r =0.9931982
# P-value: 0.9767731

# ____________________

with(EPA.09.Ex.15.1.manganese.df,
distChooseCensored(Manganese.ppb, Censored, method = "proucl”))

#Results of Choosing Distribution

#Candidate Distributions:
#

#

#

#Choice Method:

#

#Type I Error per Test:
#

#Decision:

#

#Estimated Parameter(s):
#

#

#Estimation Method:

#

#Data:

#

#Sample Size:

#

#Censoring Side:

#

#Censoring Variable:

#

#Censoring Level(s):

#

#Percent Censored:

#

#ProUCL Sample Size:

#

#Test Results:

#

# Normal

# Shapiro-Wilk GOF
# Test Statistic:

Normal
Gamma
Lognormal
ProUCL
0.05

Gamma

shape = 1.284882
scale = 19.813413

MLE
Manganese. ppb
25

left

Censored

25

24%

19

W = 0.7423947

distChooseCensored
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# P-value: 0.0001862975

# Lilliefors (Kolmogorov-Smirnov) GOF

# Test Statistic: D = 0.2768771

# P-value: 0.0004771155

#

# Gamma

# ProUCL Anderson-Darling Gamma GOF

# Test Statistic: A = 0.6857121

# P-value: 0.05 <= p < 0.10

# ProUCL Kolmogorov-Smirnov Gamma GOF

# Test Statistic: D = 0.1830034

# P-value: >= 0.10

#

# Lognormal

# Shapiro-Wilk GOF

# Test Statistic: W = 0.969805

# P-value: 0.7725528

# Lilliefors (Kolmogorov-Smirnov) GOF

# Test Statistic: D = 0.138547

# P-value: 0.4385195

## Not run:

# 1) Simulate 1000 trials where for each trial you:

# a) Generate 30 observations from a Gamma distribution with
# parameters mean = 10 and CV = 1.

# b) Censor observations less than 5 (the 39th percentile).
# c) Use distChooseCensored with the Shapiro-Francia method.
# d) Use distChooseCensored with the ProUCL method.

#

# 2) Compare the proportion of times the

# Normal vs. Gamma vs. Lognormal vs. Nonparametric distribution
# is chosen for c¢) and d) above.

# __________________________________________________________________

set.seed(58)
N <- 1000

Choose. fac <- factor(rep("", N), levels = c("Normal”, "Gamma", "Lognormal”, "Nonparametric"))
Choose.df <- data.frame(SW = Choose.fac, ProUCL = Choose.fac)

for(i in 1:N) {

dat <- rgammaAlt(30, mean = 10, cv = 1)

censored <- dat < 5

dat[censored] <- 5

Choose.df[i, "SW"] <- distChooseCensored(dat, censored, method = "sw")$decision
Choose.df[i, "ProUCL"] <- distChooseCensored(dat, censored, method = "proucl”)$decision

}
summaryStats(Choose.df, digits = @)

# ProUCL(N) ProUCL(Pct) SW(N) SW(Pct)
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#Normal 520 52 398 40
#Gamma 336 34 375 38
#Lognormal 105 10 221 22
#Nonparametric 39 4 6 1
#Combined 1000 100 1000 100
# ____________________

# Repeat above example for the Lognormal Distribution with mean=10 and CV = 1.
# In this case, 5 is the 34th percentile.

set.seed(297)

N <- 1000

Choose.fac <- factor(rep(""”, N), levels = c(”"Normal”, "Gamma"”, "Lognormal”, "Nonparametric”))
Choose.df <- data.frame(SW = Choose.fac, ProUCL = Choose.fac)

for(i in 1:N) {

dat <- rlnormAlt(30, mean = 10, cv = 1)

censored <- dat < 5

dat[censored] <- 5

Choose.df[i, "SW"] <- distChooseCensored(dat, censored, method = "sf")$decision
Choose.df[i, "ProUCL"] <- distChooseCensored(dat, censored, method = "proucl”)$decision

3

summaryStats(Choose.df, digits = @)

# ProUCL(N) ProUCL(Pct) SW(N) SW(Pct)
#Normal 277 28 92 9
#Gamma 393 39 231 23
#Lognormal 190 19 624 62
#Nonparametric 140 14 53 5
#Combined 1000 100 1000 100
# ____________________

# Clean up

# _________

rm(N, Choose.fac, Choose.df, i, dat, censored)

## End(Not run)

distChooseCensored.object
S3 Class "distChooseCensored"
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Description

Objects of S3 class "distChooseCensored” are returned by the EnvStats function distChooseCensored.

Details

Objects of S3 class "distChooseCensored” are lists that contain information about the candi-
date distributions, the estimated distribution parameters for each candidate distribution, and the test
statistics and p-values associated with each candidate distribution.

Value

Required Components
The following components must be included in a legitimate list of class "distChooseCensored”.

choices a character vector containing the full names of the candidate distributions. (see
Distribution.df).

method a character string denoting which method was used.

decision a character vector containing the full name of the chosen distribution.

alpha a numeric scalar between 0 and 1 specifying the Type I error associated with

each goodness-of-fit test.
distribution.parameters
a numeric vector containing the estimated parameters associated with the chosen

distribution.

estimation.method
a character string indicating the method used to compute the estimated param-
eters associated with the chosen distribution. The value of this component will
depend on the available estimation methods (see Distribution.df).

sample.size a numeric scalar containing the number of non-missing observations in the sam-
ple used for the goodness-of-fit tests.

censoring.side character string indicating whether the data are left- or right-censored.
censoring.levels

numeric scalar or vector indicating the censoring level(s).
percent.censored

numeric scalar indicating the percent of non-missing observations that are cen-
sored.

test.results a list with the same number of components as the number of elements in the
component choices. The names of the list are the distribution abbreviations of
the candidate distributions. (See the help file for Distribution.df for a list
of distributions and their abbreviations.) Each component is an object of class
gofCensored containing the results of the goodness-of-fit test for that particular
hypothesized distribution.

data.name character string indicating the name of the data object used for the goodness-of-
fit tests.

censoring.name character string indicating the name of the data object used to identify which
values are censored.
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Optional Components
The following components are included in the result of calling distChooseCensored when the
argument keep.data=TRUE:

data numeric vector containing the data actually used for the goodness-of-fit tests
(i.e., the original data without any missing or infinite values).

censored logical vector containing the censoring status for the data actually used for the
goodness-of-fit tests (i.e., the original data without any missing or infinite val-
ues).

The following component is included in the result of calling distChooseCensored when missing
(NA), undefined (NaN) and/or infinite (Inf, -Inf) values are present:

bad.obs numeric scalar indicating the number of missing (NA), undefined (NaN) and/or in-
finite (Inf, -Inf) values that were removed from the data object prior to choos-
ing a distribution.
Methods
Generic functions that have methods for objects of class "distChooseCensored” include:
print.
Note
Since objects of class "distChooseCensored” are lists, you may extract their components with the
$ and [[ operators.
Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

distChooseCensored, print.distChooseCensored, Censored Data, Goodness-of-Fit Tests, Distribution.df.

Examples

# Create an object of class "distChooseCensored”, then print it out.
# (Note: the call to set.seed simply allows you to reproduce
# this example.)

set.seed(598)
dat <- rgammaAlt (30, mean = 10, cv = 1)
censored <- dat < 5

dat[censored] <- 5

distChooseCensored.obj <- distChooseCensored(dat, censored,
method = "sw”, choices = c("norm”, "gammaAlt”, "lnormAlt"))
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mode (distChooseCensored.obj)
#[1] "list”

class(distChooseCensored.obj)
#[1] "distChooseCensored”

names (distChooseCensored.obj)

# [1] "choices”

# [3] "decision”

# [5] "distribution.parameters”
# [7] "sample.size"

# [9] "censoring.levels”

#[11] "test.results”

#[13] "censored”

#[15] "censoring.name”

distChooseCensored.obj
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"method”

"alpha”
"estimation.method”
"censoring.side"
"percent.censored”
"data”

"data.name"”

#Results of Choosing Distribution

#Candidate Distributions:
#

#

#

#Choice Method:

#

#Type I Error per Test:
#

#Decision:

#

#Estimated Parameter(s):
#

#

#Estimation Method:
#

#Data:

#

#Sample Size:

#

#Censoring Side:

#

#Censoring Variable:
#

#Censoring Level(s):
#

#Percent Censored:

#

#Test Results:

#

# Normal

# Test Statistic:
# P-value:

Normal
Gamma
Lognormal

Shapiro-Wilk

0.05

Gamma

mean = 12.4911448
cVv = 0.7617343
MLE

dat.censored

30

left

censored

23.33333%

W =0.9372741
0.1704876
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#

# Gamma

# Test Statistic: W =20.9613711
# P-value: 0.522329

#

# Lognormal

# Test Statistic: W = 0.9292406
# P-value: 0.114511
f==========

distChooseCensored.obj$choices

#[1] "Normal” "Gamma" "Lognormal”
f#==========

# Clean up

# _________

rm(dat, censored, distChooseCensored.obj)

Distribution.df Data Frame Summarizing Available Probability Distributions and Es-
timation Methods

Description

Data frame summarizing information about available probability distributions in R and the EnvS-
tats package, and which distributions have associated functions for estimating distribution parame-
ters.

Usage

Distribution.df

Format

A data frame with 35 rows corresponding to 35 different available probability distributions, and 25
columns containing information associated with these probability distributions.

Name a character vector containing the name of the probability distribution (see the column labeled
Name in the table below).

Type a character vector indicating the type of distribution (see the column labeled Type in the table
below). Possible values are "Finite Discrete”, "Discrete”, "Continuous”, and "Mixed".
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Support.Min a character vector indicating the minimum value the random variable can assume
(see the column labeled Range in the table below). The reason this is a character vector
instead of a numeric vector is because some distributions have a lower bound that depends
on the value of a distribution parameter. For example, the minimum value for a Uniform
distribution is given by the value of the parameter min.

Support.Max a character vector indicating the maximum value the random variable can assume
(see the column labeled Range in the table below). The reason this is a character vector
instead of a numeric vector is because some distributions have an upper bound that depends
on the value of a distribution parameter. For example, the maximum value for a Uniform
distribution is given by the value of the parameter max.

Estimation.Method(s) a character vector indicating the names of the methods available to esti-
mate the distribution parameter(s) (see the column labeled Estimation Method(s) in the table
below). Possible values include "mle” (maximum likelihood), "mme"” (method of moments),
"mmue” (method of moments based on the unbiased estimate of variance), "mvue” (minimum
variance unbiased), "gmle” (quasi-mle), etc., or some combination of these. In cases where
an estimator is more than one kind, a slash (/) is used to denote all methods covered by the
single estimator. For example, for the Binomial distribution, the sample proportion is the
maximum likelihood, method of moments, and minimum variance unbiased estimator, so this
method is denoted as "mle/mme/mvue”. See the help files for the specific function listed under
Estimating Distribution Parameters for an explanation of each of these estimation methods.

Quantile.Estimation.Method(s) a character vector indicating the names of the methods avail-
able to estimate the distribution quantiles. For many distributions, these are the same as
Estimation.Method(s). See the help files for the specific function listed under Estimating
Distribution Quantiles for an explanation of each of these estimation methods.

Prediction.Interval.Method(s) a character vector indicating the names of the methods avail-
able to create prediction intervals. See the help files for the specific function listed under
Prediction Intervals for an explanation of each of these estimation methods.

Singly.Censored.Estimation.Method(s) a character vector indicating the names of the meth-
ods available to estimate the distribution parameter(s) for Type I singly-censored data. See the
help files for the specific function listed under Estimating Distribution Parameters in the help
file for Censored Data for an explanation of each of these estimation methods.

Multiply.Censored.Estimation.Method(s) acharacter vector indicating the names of the meth-
ods available to estimate the distribution parameter(s) for Type I multiply-censored data. See
the help files for the specific function listed under Estimating Distribution Parameters in the
help file for Censored Data for an explanation of each of these estimation methods.

Number.parameters a numeric vector indicating the number of parameters associated with the
distribution (see the column labeled Parameters in the table below).

Parameter.1 the columns labeled Parameter.1, Parameter.2, ..., Parameter.5 are character
vectors containing the names of the distribution parameters (see the column labeled Parame-
ters in the table below). If a distribution has n parameters and n < 5, then the columns labeled
Parameter.n+1, ..., Parameter.5 are empty. For example, the Normal distribution has only
two parameters associated with it (mean and sd), so the fields in Parameter. 3, Parameter.4,
and Parameter.5 are empty.

Parameter.2 see Parameter.1

Parameter.3 see Parameter.1
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Parameter.4 see Parameter.1

Parameter.5 see Parameter.1

Parameter.1.Min the columns labeled Parameter.1.Min, Parameter.2.Min, ...,

Parameter.5.Min are character vectors containing the minimum values that can be assumed
by the distribution parameters (see the column labeled Parameter Range(s) in the table be-
low).

The reason these are character vectors instead of numeric vectors is because some parameters
have a lower bound of @ but must be strictly bigger than @ (e.g., the parameter sd for the
Normal distribution), in which case the lower bound is .Machine$double.eps, which may
vary from machine to machine. Also, some parameters have a lower bound that depends on
the value of another parameter. For example, the parameter max for a Uniform distribution is
bounded below by the value of the parameter min.

If a distribution has n parameters and n < 5, then the columns labeled Parameter.n+1.Min,
..., Parameter.5.Min have the missing value code (NA). For example, the Normal distribution
has only two parameters associated with it (mean and sd) so the fields in

Parameter.3.Min, Parameter.4.Min, and Parameter.5.Min have NAs in them.

Parameter.2.Min see Parameter.1.Min

Parameter.3.Min see Parameter.1.Min

Parameter.4.Min see Parameter.1.Min

Parameter.5.Min see Parameter.1.Min

Parameter.1.Max the columns labeled Parameter.1.Max, Parameter.2.Max, ...,

Parameter.5.Max are character vectors containing the maximum values that can be assumed
by the distribution parameters (see the column labeled Parameter Range(s) in the table be-
low).

The reason these are character vectors instead of numeric vectors is because some parame-
ters have an upper bound that depends on the value of another parameter. For example, the
parameter min for a Uniform distribution is bounded above by the value of the parameter max.

If a distribution has n parameters and n < 5, then the columns labeled Parameter.n+1.Max,
..., Parameter.5.Max have the missing value code (NA). For example, the Normal distribution
has only two parameters associated with it (mean and sd) so the fields in

Parameter.3.Max, Parameter.4.Max, and Parameter.5.Max have NAs in them.

Parameter.2.Max see Parameter.1.Max

Parameter.3.Max see Parameter.1.Max

Parameter.4.Max see Parameter.1.Max

Parameter.5.Max see Parameter.1.Max

Details

The table below summarizes the probability distributions available in R and EnvStats. For each
distribution, there are four associated functions for computing density values, percentiles, quan-
tiles, and random numbers. The form of the names of these functions are dabb, pabb, qabb, and
rabb, where abb is the abbreviated name of the distribution (see table below). These functions are
described in the help file with the name of the distribution (see the first column of the table below).
For example, the help file for Beta describes the behavior of dbeta, pbeta, gbeta, and rbeta.
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For most distributions, there is also an associated function for estimating the distribution parameters,
and the form of the names of these functions is eabb, where abb is the abbreviated name of the
distribution (see table below). All of these functions are listed in the help file Estimating Distribution
Parameters. For example, the function ebeta estimates the shape parameters of a Beta distribution
based on a random sample of observations from this distribution.

For some distributions, there are functions to estimate distribution parameters based on Type I cen-
sored data. The form of the names of these functions is eabbSinglyCensored for singly censored
data and eabbMultiplyCensored for multiply censored data. All of these functions are listed under
the heading Estimating Distribution Parameters in the help file Censored Data.

Table 1a. Available Distributions: Name, Abbreviation, Type, and Range

Name
Beta

Binomial

Cauchy

Chi
Chi-square
Exponential

Extreme
Value

F
Gamma

Gamma
(Alternative)

Generalized
Extreme
Value

Geometric

Hypergeometric

Abbreviation
beta

binom

cauchy
chi
chisq
exp

evd

gamma

gammaAlt

gevd

geom

hyper

Type
Continuous

Finite
Discrete

Continuous
Continuous
Continuous
Continuous

Continuous

Continuous
Continuous

Continuous

Continuous

Discrete

Finite

Range
[0,1]

[0, size]
(integer)

(=00, 00)
[0,00)
[0,00)
[0,00)

(_007 OO)

(_007 OO)
for shape =0

scale ]

(=00, location + o=

for shape > 0
[location + ;gg;fe,
for shape < 0

00)

[0, 00)
(integer)

[0, min(k, m)]
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Logistic
Lognormal

Lognormal
(Alternative)

Lognormal
Mixture

Lognormal
Mixture
(Alternative)
Three-
Parameter

Lognormal

Truncated
Lognormal

Truncated
Lognormal

(Alternative)

Negative
Binomial

Normal

Normal
Mixture

Truncated
Normal

Pareto

Poisson

Student’s t
Triangular

Uniform

logis
lnorm

InormAlt

1normMix

lnormMixAlt

Inorm3

lnormTrunc

InormTruncAlt

nbinom

norm

normMix

normTrunc

pareto

pois

tri

unif

Discrete

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Continuous

Discrete

Continuous

Continuous

Continuous

Continuous

Discrete

Continuous

Continuous

Continuous

Distribution.df

(integer)

[threshold, 0o)

[min, maz]

[min, max]

[0, 00)
(integer)

(—OO, OO)

(_007 OO)

[min, mazx]

[location, 00)

[0, 00)
(integer)

(_007 OO)
[min, max]

[min, mazx]
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Weibull weibull Continuous [0, 00)
Wilcoxon wilcox Finite [0, mn)
Rank Sum Discrete (integer)
Zero-Modified ~ zmlnorm Mixed [0, 00)
Lognormal

(Delta)

Zero-Modified ~ zmlnormAlt Mixed [0, 00)
Lognormal

(Delta)

(Alternative)

Zero-Modified ~ zmnorm Mixed (—00, 00)
Normal

Table 1b. Available Distributions: Name, Parameters, Parameter Default Values, Parameter
Ranges, Estimation Method(s)

Default Parameter  Estimation
Name Parameter(s) Value(s) Range(s) Method(s)
Beta shapel (O, 00) mle, mme, mmue
shape?2 (0, 00)
ncp 0 (0, 00)
Binomial size [0, 00) mle/mme/mvue
prob [0,1]
Cauchy location 0 (—00, 00)
scale 1 (0, 00)
Chi df (0, 00)
Chi-square df (0, 00)
ncp 0 (—00,00)
Exponential rate 1 (0, 00) mle/mme
Extreme location 0 (—00,00) mle, mme, mmue, pwme
Value scale 1 (0, 00)
F df1 (0, 00)
df2 0, 00)

(
ncp 0 (0,00)



172

Gamma
Gamma
(Alternative)
Generalized
Extreme

Value

Geometric

Hypergeometric

Logistic

Lognormal

Lognormal

(Alternative)

Lognormal
Mixture

Lognormal
Mixture
(Alternative)

Three-
Parameter
Lognormal

Truncated
Lognormal

Truncated

shape
scale

mean
Ccv

location
scale

shape

prob

>

location
scale

meanlog
sdlog

mean
Ccv

meanlog]
sdlogl
meanlog?2
sdlog2
p.mix

meanl
cvl
mean?2
cv2
p.mix

meanlog
sdlog
threshold

meanlog
sdlog
min

max

mean

—_

exp(1/2)
sgrt(exp(1)-1)

(SIS

exp(1/2)
sqrt(exp(1)-1)
exp(1/2)
sgrt(exp(1)-1)
0.5

—_

H O — o

exp(1/2)

Distribution.df

mle, bcmle, mme, mmue

mle, bcmle, mme, mmue

mle, pwme, tsoe

mle/mme, mvue

mle, mvue

mle, mme, mmue

mle/mme, mvue

mle, mme, mmue,
mvue, qmle

Imle, mme,
mmue, mmme,
royston.skew,
zero.skew
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Lognormal cv sgrt(exp(1)-1) (0,00)
(Alternative) min 0 [0, mazx)
max Inf (min, c0)
Negative size [1,00) mle/mme, mvue
Binomial prob (0,1]
mu (0, 00)
Normal mean 0 (=00, 00) mle/mme, mvue
sd 1 (0, 00)
Normal mean 0 (—00,00)
Mixture sd1 1 (0, 00)
mean?2 0 (=00, 00)
sd2 1 (0, 00)
p.mix 0.5 [0,1
Truncated mean 0 (—00, 00)
Normal sd 1 (0, 00)
min -Inf (—o0, max)
max Inf (min, o)
Pareto location (0, 00) Ise, mle
shape 1 (0, 00)
Poisson lambda (0, 00) mle/mme/mvue
Student’s t df (0, 00)
ncp 0 (—00,00)
Triangular min 0 (—o0, max)
max 1 (min, 0o)
mode 0.5 (min, max)
Uniform min 0 (—oo0,mazr) mle, mme, mmue
max 1 (min, o)
Weibull shape (0, 00) mle, mme, mmue
scale 1 (0, 00)
Wilcoxon m [1,00)
Rank Sum n [1,00)
Zero-Modified  meanlog 0 (—00,00) mvue
Lognormal sdlog 1 (0, 00)
(Delta) p.zero 0.5 [0,1]

Zero-Modified  mean exp(1/2) (0, 00) mvue
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Lognormal cv sgrt(exp(1)-1) (0,00)
(Delta) p.zero 0.5 [0,1]
(Alternative)
Zero-Modified ~ mean 0 (=00, 00) mvue
Normal sd 1 (0, 00)
p.zero 0.5 [0,1]
Source
The EnvStats package.
References

Millard, S.P. (2013). EnvStats: An R Package for Environmental Statistics. Springer, New York.
https://1link.springer.com/book/10.1007/978-1-4614-8456-1.

ebeta Estimate Parameters of a Beta Distribution

Description

Estimate the shape parameters of a beta distribution.

Usage

ebeta(x, method = "mle")

Arguments
X numeric vector of observations. All observations must be between greater than
0 and less than 1.
method character string specifying the method of estimation. The possible values are
"mle" (maximum likelihood; the default), "mme"” (method of moments), and
"mmue” (method of moments based on the unbiased estimator of variance). See
the DETAILS section for more information on these estimation methods.
Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1,29,...,%,) be a vector of n observations from a beta distribution with parameters
shapel=v and shape2=w.


https://link.springer.com/book/10.1007/978-1-4614-8456-1
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Maximum Likelihood Estimation (method="mle")
The maximum likelihood estimators (mle’s) of the shape parameters v and w are the solutions of
the simultaneous equations:

V(o) — WD +a) = (1/n) Y _log(l — ;)

i=1
where ¥ () is the digamma function (Forbes et al., 2011).

Method of Moments Estimators (method="mme")

The method of moments estimators (mme’s) of the shape parameters v and w are given by (Forbes
etal., 2011):

v =z{[z(1 - 7)/s7,] - 1}
w=Q1-z){z01-1)/s7] -1}

where

Method of Moments Estimators Based on the Unbiased Estimator of Variance (method="mmue")
These estimators are the same as the method of moments estimators except that the method of
moments estimator of variance is replaced with the unbiased estimator of variance:

1
2 _ 2: =2
ST (i =)

Value
a list of class "estimate” containing the estimated parameters and other information. See
estimate.object for details.

Note

The beta distribution takes real values between 0 and 1. Special cases of the beta are the Uni-
form[0,1] when shape1=1 and shape2=1, and the arcsin distribution when shape1=0.5 and
shape2=0.5. The arcsin distribution appears in the theory of random walks. The beta distribution
is used in Bayesian analyses as a conjugate to the binomial distribution.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.
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See Also

Beta.

Examples

# Generate 20 observations from a beta distribution with parameters
# shapel=2 and shape2=4, then estimate the parameters via

# maximum likelihood.

# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

dat <- rbeta(20, shapel = 2, shape2 = 4)

ebeta(dat)

#Results of Distribution Parameter Estimation

#Assumed Distribution:
#

#Estimated Parameter(s):
#

#

#Estimation Method:

#

#Data:

#

#Sample Size:

# Repeat the above, but use the method of moments estimators:

ebeta(dat, method = "mme")

Beta

shapel
shape?2

mle
dat

20

5.392221
11.823233

#Results of Distribution Parameter Estimation

#Assumed Distribution:
#

#Estimated Parameter(s):
#

#

#Estimation Method:

#

#Data:

#

#Sample Size:

Beta

shapel
shape?

mme
dat

20

5.216311
11.461341

ebeta
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rm(dat)

177

ebinom

Estimate Parameter of a Binomial Distribution

Description

Estimate p (the probability of “success”) for a binomial distribution, and optionally construct a
confidence interval for p.

Usage

ebinom(x, size = NULL, method = "mle/mme/mvue”, ci = FALSE,
ci.type = "two-sided”, ci.method = "score", correct = TRUE,

var.denom =

Arguments

X

size

method

ci

ci.type

ci.method

correct

var.denom

n.n

n”, conf.level = 0.95, warn = TRUE)

numeric or logical vector of observations. When size is not supplied, x must
be a numeric vector of Os (“failures”) and 1s (“successes”), or else a logical
vector of FALSE values (“failures”) and TRUE values (“successes”). When sizeis
supplied, x must be a non-negative integer containing the number of “successes”
out of the number of trials indicated by size. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are allowed but will be removed.

positive integer indicating the of number of trials; size must be at least as large
as the value of x.

character string specifying the method of estimation. The only possible value
is "mle/mme/mvue” (maximum likelihood, method of moments, and minimum
variance unbiased). See the DETAILS section for more information.

logical scalar indicating whether to compute a confidence interval for the mean.
The default value is ci=FALSE.

character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower"”, and "upper”. This
argument is ignored if ci=FALSE.

character string indicating which method to use to construct the confidence in-
terval. Possible values are "score” (the default), "exact”, "adjusted Wald",
and "Wald". This argument is ignored if ci=FALSE.

logical scalar indicating whether to use the continuity correction when
ci.method="score"” or ci.method="Wald".
The default value is correct=TRUE.

character string indicating what value to use in the denominator of the variance
estimator when ci.method="Wald". Possible values are "n" (the default) and
"n-1". This argument is ignored if ci=FALSE.
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conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

warn a logical scalar indicating whether to issue a waning in the case when ci=TRUE,

ci.method="Wald", and any of the following conditions is true: the estimated
proportion is less than 0.2, the estimated proportion is greater than 0.8, the num-
ber of successes or failures is less than 5. The default value is warn=TRUE.

Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

If x is a vector of n observations from a binomial distribution with parameters size=1 and prob=p,
then the sum of all the values in z is an observation from a binomial distribution with parameters
size=n and prob=p.

If = is an observation from a binomial distribution with parameters size=n and prob=p, the max-
imum likelihood estimator (mle), method of moments estimator (mme), and minimum variance
unbiased estimator (mvue) of p is simply z/n.

Confidence Intervals.

ci.method="score"” The confidence interval for p based on the score method was developed by
Wilson (1927) and is discussed by Newcombe (1998a), Agresti and Coull (1998), and Agresti
and Caffo (2000). When ci=TRUE and ci.method="score", the function ebinom calls the
R function prop.test to compute the confidence interval. This method has been shown to
provide the best performance (in terms of actual coverage matching assumed coverage) of all
the methods provided here, although unlike the exact method, the actual coverage can fall
below the assumed coverage.

ci.method="exact" The confidence interval for p based on the exact (Clopper-Pearson) method is
discussed by Newcombe (1998a), Agresti and Coull (1998), and Zar (2010, pp.543-547). This
is the method used in the R function binom. test. This method ensures the actual coverage is
greater than or equal to the assumed coverage.

ci.method="Wald"” The confidence interval for p based on the Wald method (with or without a
correction for continuity) is the usual “normal approximation” method and is discussed by
Newcombe (1998a), Agresti and Coull (1998), Agresti and Caffo (2000), and Zar (2010,
pp-543-547). This method is never recommended but is included for historical purposes.

ci.method="adjusted Wald” The confidence interval for p based on the adjusted Wald method is
discussed by Agresti and Coull (1998), Agresti and Caffo (2000), and Zar (2010, pp.543-547).
This is a simple modification of the Wald method and performs surpringly well.

Value
alist of class "estimate” containing the estimated parameters and other information. See
estimate.object for details.

Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
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trial, and that the probability of “success”, p, is the same on each trial. A binomial discrete random
variable X is the number of “successes” in n independent trials. A special case of the binomial
distribution occurs when n = 1, in which case X is also called a Bernoulli random variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,
Gilbert, 1987, p.143). The binomial distribution is also used to compute an upper bound on the
overall Type I error rate for deciding whether a facility or location is in compliance with some set
standard. Assume the null hypothesis is that the facility is in compliance. If a test of hypothesis is
conducted periodically over time to test compliance and/or several tests are performed during each
time period, and the facility or location is always in compliance, and each single test has a Type |
error rate of ¢, and the result of each test is independent of the result of any other test (usually not
a reasonable assumption), then the number of times the facility is declared out of compliance when
in fact it is in compliance is a binomial random variable with probability of “success” p = « being
the probability of being declared out of compliance (see USEPA, 2009).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
Agresti, A., and B.A. Coull. (1998). Approximate is Better than "Exact" for Interval Estimation of
Binomial Proportions. The American Statistician, 52(2), 119-126.

Agresti, A., and B. Caffo. (2000). Simple and Effective Confidence Intervals for Proportions and
Differences of Proportions Result from Adding Two Successes and Two Failures. The American
Statistician, 54(4), 280-288.

Berthouex, PM., and L.C. Brown. (1994). Statistics for Environmental Engineers. Lewis Publish-
ers, Boca Raton, FL, Chapters 2 and 15.

Cochran, W.G. (1977). Sampling Techniques. John Wiley and Sons, New York, Chapter 3.

Fisher, R.A., and F. Yates. (1963). Statistical Tables for Biological, Agricultural, and Medical
Research. 6th edition. Hafner, New York, 146pp.

Fleiss, J. L. (1981). Statistical Methods for Rates and Proportions. Second Edition. John Wiley
and Sons, New York, Chapters 1-2.

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY, Chapter 11.

Johnson, N. L., S. Kotz, and A.-W. Kemp. (1992). Univariate Discrete Distributions. Second
Edition. John Wiley and Sons, New York, Chapter 3.

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

Newcombe, R.G. (1998a). Two-Sided Confidence Intervals for the Single Proportion: Comparison
of Seven Methods. Statistics in Medicine, 17, 857-872.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL,
Chapter 4.
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USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.6-38.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapter 24.

See Also

Binomial, prop. test, binom. test, ciBinomHalfWidth, ciBinomN, plotCiBinomDesign.

Examples

# Generate 20 observations from a binomial distribution with
parameters size=1 and prob=0.2, then estimate the 'prob' parameter.
(Note: the call to set.seed simply allows you to reproduce this
example. Also, the only parameter estimated is 'prob'; 'size' is
specified in the call to ebinom. The parameter 'size' is printed
inorder to show all of the parameters associated with the
distribution.)

Hod o B

set.seed(251)
dat <- rbinom(20, size = 1, prob = 0.2)
ebinom(dat)

#Results of Distribution Parameter Estimation

# ____________________________________________

#

#Assumed Distribution: Binomial

#

#Estimated Parameter(s): size = 20.0

# prob = 0.1

#

#Estimation Method: mle/mme/mvue for 'prob'
#

#Data: dat

#

#Sample Size: 20

# ________________________________________________________________

# Generate one observation from a binomial distribution with
# parameters size=20 and prob=0.2, then estimate the "prob”
# parameter and compute a confidence interval:

set.seed(763)
dat <- rbinom(1, size=20, prob=0.2)
ebinom(dat, size = 20, ci = TRUE)
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#Results of Distribution Parameter Estimation

# ____________________________________________

#

#Assumed Distribution: Binomial

#

#Estimated Parameter(s): size = 20.00

# prob = 0.35

#

#Estimation Method: mle/mme/mvue for 'prob'

#

#Data: dat

#

#Sample Size: 20

#

#Confidence Interval for: prob

#

#Confidence Interval Method: Score normal approximation
# (With continuity correction)
#

#Confidence Interval Type: two-sided

#

#Confidence Level: 95%

#

#Confidence Interval: LCL = 90.1630867

# UCL = 0.5905104

# ________________________________________________________________

# Using the data from the last example, compare confidence
# intervals based on the various methods

ebinom(dat, size = 20, ci = TRUE,

ci.method = "score”, correct = TRUE)$interval$limits
# LCL ucL
#0.1630867 0.5905104

ebinom(dat, size = 20, ci = TRUE,

ci.method = "score”, correct = FALSE)$interval$limits
# LCL ucL
#0.1811918 0.5671457

ebinom(dat, size = 20, ci = TRUE,
ci.method = "exact”")$interval$limits

# LCL ucL

#0.1539092 0.5921885

ebinom(dat, size = 20, ci = TRUE,

ci.method = "adjusted Wald”)$interval$limits
# LCL ucL
#0.1799264 0.5684112
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ebinom(dat, size = 20, ci = TRUE,

ci.method = "Wald"”, correct = TRUE)$interval$limits
# LCL UcCL
#0.1159627 0.5840373

ebinom(dat, size = 20, ci = TRUE,

ci.method = "Wald"”, correct = FALSE)$interval$limits
# LCL ucL
#0.1409627 0.5590373

# Use the cadmium data on page 8-6 of USEPA (1989b) to compute
# two-sided 95% confidence intervals for the probability of

# detection at background and compliance wells. The data are
# stored in EPA.89b.cadmium.df.

EPA.89b.cadmium.df
#  Cadmium.orig Cadmium Censored Well.type

#1 0.1 0.100 FALSE Background
#2 0.12 0.120 FALSE Background
#3 BDL 0.000 TRUE Background
#...

#86 BDL 0.000 TRUE Compliance
#87 BDL 0.000 TRUE Compliance
#88 BDL 0.000 TRUE Compliance

attach(EPA.89b.cadmium.df)

# Probability of detection at Background well:

ebinom(!Censored[Well. type=="Background”], ci=TRUE)

#Results of Distribution Parameter Estimation

# ____________________________________________

#

#Assumed Distribution: Binomial

#

#Estimated Parameter(s): size = 24.0000000

# prob = ©.3333333

#

#Estimation Method: mle/mme/mvue for 'prob'
#

#Data: ICensored[Well.type == "Background”]
#

#Sample Size: 24

#

#Confidence Interval for: prob
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#

#Confidence Interval Method: Score normal approximation
# (With continuity correction)
#

#Confidence Interval Type: two-sided

#

#Confidence Level: 95%

#

#Confidence Interval: LCL = 0.1642654

# UCL = 0.5530745

# Probability of detection at Compliance well:

ebinom(!Censored[Well.type=="Compliance”], ci=TRUE)

#Results of Distribution Parameter Estimation

# ____________________________________________

#

#Assumed Distribution: Binomial

#

#Estimated Parameter(s): size = 64.000

# prob = 0.375

#

#Estimation Method: mle/mme/mvue for 'prob'

#

#Data: ICensored[Well.type == "Compliance"]
#

#Sample Size: 64

#

#Confidence Interval for: prob

#

#Confidence Interval Method: Score normal approximation
# (With continuity correction)
#

#Confidence Interval Type: two-sided

#

#Confidence Level: 95%

#

#Confidence Interval: LCL = @.2597567

# UCL = 0.5053034

# ________________________________________________________________
# Clean up

rm(dat)

detach("EPA.89b.cadmium.df")

ecdfPlot Empirical Cumulative Distribution Function Plot




184

Description

ecdfPlot

Produce an empirical cumulative distribution function plot.

Usage

ecdfPlot(x, discrete = FALSE,
prob.method = ifelse(discrete, "emp.probs”, "plot.pos”),
plot.pos.con = 0.375, plot.it = TRUE, add = FALSE, ecdf.col = "black”,
ecdf.lwd = 3 * par("cex"), ecdf.lty = 1, curve.fill = FALSE,
curve.fill.col = "cyan", ..., type = ifelse(discrete, "s", "1"),
main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL)

Arguments

X

discrete

prob.method

plot.pos.con

plot.it

add

ecdf.col

ecdf. lwd

ecdf.1lty

curve.fill

curve.fill.col

numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE; the default).

character string indicating what method to use to compute the plotting positions
(empirical probabilities). Possible values are plot.pos (plotting positions, the
default if discrete=FALSE) and emp.probs (empirical probabilities, the default
if discrete=TRUE). See the DETAILS section for more explanation.

numeric scalar between 0 and 1 containing the value of the plotting position
constant. The default value is plot.pos.con=0.375. See the DETAILS section
for more information. This argument is ignored if prob.method="emp.probs”.

logical scalar indicating whether to produce a plot or add to the current plot (see
add) on the current graphics device. The default value is plot. it=TRUE.

logical scalar indicating whether to add the empirical cdf to the current plot
(add=TRUE) or generate a new plot (add=FALSE; the default). This argument is
ignored if plot.it=FALSE.

a numeric scalar or character string determining the color of the empirical cdf
line or points. The default value is ecdf.col=1. See the entry for col in the
help file for par for more information.

a numeric scalar determining the width of the empirical cdf line. The default
value is ecdf . lwd=3*par(”cex"). See the entry for 1wd in the help file for par
for more information.

a numeric scalar determining the line type of the empirical cdf line. The default
value is ecdf.1ty=1. See the entry for 1ty in the help file for par for more
information.

a logical scalar indicating whether to fill in the area below the empirical cdf
curve with the color specified by curve.fill.col. The default value is
curve.fill=FALSE.

a numeric scalar or character string indicating what color to use to fill in the area
below the empirical cdf curve. The default value is curve.fill.col=5. This
argument is ignored if curve.fill=FALSE.
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type, main, xlab, ylab, x1im, ylim, ...
additional graphical parameters (see 1ines and par). In particular, the argument
type specifies the kind of line type. By default, the function ecdfPlot plots a
step function (type="s") when discrete=TRUE, and plots a straight line be-
tween points (type="1") when discrete=FALSE. The user may override these
defaults by supplying the graphics parameter type (type="s" for a step func-
tion, type="1" for linear interpolation, type="p" for points only, etc.).

Details
The cumulative distribution function (cdf) of a random variable X is the function F' such that
Fl)=Pr(X<z) (1)

for all values of x. That is, if p = F(x), then p is the proportion of the population that is less than
or equal to x, and x is called the p’th quantile, or the 100p’th percentile. A plot of quantiles on
the z-axis (i.e., the possible value for the random variable X) vs. the fraction of the population less
than or equal to that number on the y-axis is called the cumulative distribution function plot, and
the y-axis is usually labeled as the “cumulative probability” or “cumulative frequency”.

When we have a sample of data from some population, we usually do not know what percentiles our
observations correspond to because we do not know the form of the cumulative distribution function
F, so we have to use the sample data to estimate the cdf F'. An emprical cumulative distribution
Junction (ecdf) plot, also called a quantile plot, is a plot of the observed quantiles (i.e., the ordered
observations) on the z-axis vs. the estimated cumulative probabilities on the y-axis (Chambers et
al., 1983, pp. 11-19; Cleveland, 1993, pp. 17-20; Cleveland, 1994, pp. 136-139; Helsel and Hirsch,
1992, pp. 21-24).

(Note: Some authors (e.g., Chambers et al., 1983, pp.11-16; Cleveland, 1993, pp.17-20) reverse the
axes on a quantile plot, i.e., the observed order statistics from the random sample are on the y-axis
and the estimated cumulative probabilities are on the x-axis.)

The empirical cumulative distribution function (ecdf) is an estimate of the cdf based on a random
sample of n observations from the distribution. Let x1, x3, ..., x, denote the n observations, and
let z(1), T (2), - . ., T(n) denote the ordered observations (i.e., the order statistics). The cdf is usually
estimated by either the empirical probabilities estimator or the plotting-position estimator. The
empirical probabilities estimator is given by:

. L Hxy <z

Flog) =pi= =25 (2)

n

where #[z; < x(;)] denotes the number of observations less than or equal to x(;). The plotting-
position estimator is given by:

i —a
_ 3
n—2a+1 (3)
where 0 < a < 1 (Cleveland, 1993, p. 18; D’ Agostino, 1986a, pp. 8,25).

For any value = such that z(;) < x < x(y), the ecdf is usually defined as either a step function:

F[l“(i)} =p; =

F(z) = Flz), Ty S < T(ip1) (4)
(e.g., D’ Agostino, 1986a), or linear interpolation between order statistics is used:

Flz)=(1- T)F[x(i)] + rﬁ[x(H_l)], ri) <w <Gy (5)
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where
T — X
r=—0"0_ (g
Li+1) = ()

(e.g., Chambers et al., 1983). For the step function version, the ecdf stays flat until it hits a value
on the z-axis corresponding to one of the order statistics, then it makes a jump. For the linear
interpolation version, the ecdf plot looks like lines connecting the points. By default, the function
ecdfPlot uses the step function version when discrete=TRUE, and the linear interpolation version
when discrete=FALSE. The user may override these defaults by supplying the graphics parameter
type (type="s" for a step function, type="1" for linear interpolation, type="p" for points only,
etc.).

The empirical probabilities estimator is intuitively appealing. This is the estimator used when
prob.method="emp.probs"”. The disadvantage of this estimator is that it implies the largest ob-
served value is the maximum possible value of the distribution (i.e., the 100’th percentile). This
may be satisfactory if the underlying distribution is known to be discrete, but it is usually not satis-
factory if the underlying distribution is known to be continuous.

The plotting-position estimator with various values of a is often used when the goal is to produce a
probability plot (see qqPlot) rather than an empirical cdf plot. It is used to compute the estimated
expected values or medians of the order statistics for a probability plot. This is the estimator used
when prob.method="plot.pos". The argument plot.pos.con refers to the variable a. Based on
certain principles from statistical theory, certain values of the constant ¢ make sense for specific
underlying distributions (see the help file for qgPlot for more information).

Because x is a random sample, the emprical cdf changes from sample to sample and the variability
in these estimates can be dramatic for small sample sizes.

Value
ecdfPlot invisibly returns a list with the following components:

Order.Statistics

numeric vector of the ordered observations.
Cumulative.Probabilities

numeric vector of the associated plotting positions.

Note

An empirical cumulative distribution function (ecdf) plot is a graphical tool that can be used in
conjunction with other graphical tools such as histograms, strip charts, and boxplots to assess the
characteristics of a set of data. It is easy to determine quartiles and the minimum and maximum
values from such a plot. Also, ecdf plots allow you to assess local density: a higher density of
observations occurs where the slope is steep.

Chambers et al. (1983, pp.11-16) plot the observed order statistics on the y-axis vs. the ecdf on the
z-axis and call this a quantile plot.

Empirical cumulative distribution function (ecdf) plots are often plotted with theoretical cdf plots
(see cdfPlot and cdfCompare) to graphically assess whether a sample of observations comes from
a particular distribution. The Kolmogorov-Smirnov goodness-of-fit test (see gofTest) is the statis-
tical companion of this kind of comparison; it is based on the maximum vertical distance between
the empirical cdf plot and the theoretical cdf plot. More often, however, quantile-quantile (Q-Q)
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plots are used instead of ecdf plots to graphically assess departures from an assumed distribution
(see qqPlot).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chambers, J.M., W.S. Cleveland, B. Kleiner, and P.A. Tukey. (1983). Graphical Methods for Data
Analysis. Duxbury Press, Boston, MA, pp.11-16.
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See Also

ppoints, cdfPlot, cdfCompare, qgPlot, ecdfPlotCensored.

Examples

# Generate 20 observations from a normal distribution with
# mean=0 and sd=1 and create an ecdf plot.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
X <= rnorm(20)

dev.new()
ecdfPlot(x)

# Repeat the above example, but fill in the area under the
# empirical cdf curve.

dev.new()
ecdfPlot(x, curve.fill = TRUE)

# Repeat the above example, but plot only the points.

dev.new()
ecdfPlot(x, type = "p")

# Repeat the above example, but force a step function.

dev.new()
ecdfPlot(x, type = "s")



188 ecdfPlotCensored

# __________
# Clean up
rm(x)
# _____________________________________________________________________________________
# The guidance document USEPA (1994b, pp. 6.22--6.25)
# contains measures of 1,2,3,4-Tetrachlorobenzene (TcCB)
# concentrations (in parts per billion) from soil samples
# at a Reference area and a Cleanup area. These data are strored
# in the data frame EPA.94b.tccb.df.
#
# Create an empirical CDF plot for the reference area data.
dev.new()
with(EPA.94b.tccb.df,
ecdfPlot(TcCB[Area == "Reference"], xlab = "TcCB (ppb)"))
f#==========
# Clean up
# _________

graphics.off ()

ecdfPlotCensored Empirical Cumulative Distribution Function Plot Based on Type I
Censored Data

Description

Produce an empirical cumulative distribution function plot for Type I left-censored or right-censored
data.

Usage

ecdfPlotCensored(x, censored, censoring.side = "left", discrete = FALSE,
prob.method = "michael-schucany"”, plot.pos.con = 0.375, plot.it = TRUE,
add = FALSE, ecdf.col = 1, ecdf.lwd = 3 *x par("cex"), ecdf.lty =1,
include.cen = FALSE, cen.pch = ifelse(censoring.side == "left"”, 6, 2),
cen.cex = par("cex"), cen.col = 4, ...,
type = ifelse(discrete, "s", "1"), main = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL)

Arguments

X numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.
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numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical”, TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric”,
it must contain only 1’s and @’s; 1 corresponds to TRUE and @ corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

character string indicating on which side the censoring occurs. The possible
values are "left” (the default) and "right".

logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE; the default).

character string indicating what method to use to compute the plotting posi-
tions (empirical probabilities). Possible values are "kaplan-meier” (product-
limit method of Kaplan and Meier (1958)), "nelson” (hazard plotting method
of Nelson (1972)), "michael-schucany” (generalization of the product-limit
method due to Michael and Schucany (1986)), and "hirsch-stedinger"” (gen-
eralization of the product-limit method due to Hirsch and Stedinger (1987)). The
default value is prob.method="michael-schucany"”.

The "nelson” method is only available for censoring.side="right". See the
DETAILS section for more explanation.

numeric scalar between 0 and 1 containing the value of the plotting position
constant. The default value is plot.pos.con=0.375. See the DETAILS section
for more information. This argument is used only if prob.method is equal to
"michael-schucany” or "hirsch-stedinger”.

logical scalar indicating whether to produce a plot or add to the current plot (see
add) on the current graphics device. The default value is plot.it=TRUE.

logical scalar indicating whether to add the empirical cdf to the current plot
(add=TRUE) or generate a new plot (add=FALSE; the default). This argument is
ignored if plot.it=FALSE.

a numeric scalar or character string determining the color of the empirical cdf
line or points. The default value is ecdf.col=1. See the entry for col in the
help file for par for more information.

a numeric scalar determining the width of the empirical cdf line. The default
value is ecdf. lwd=3#*par("”cex"). See the entry for lwd in the help file for par
for more information.

a numeric scalar determining the line type of the empirical cdf line. The default
value is ecdf.1lty=1. See the entry for 1ty in the help file for par for more
information.

logical scalar indicating whether to include censored values in the plot. The
default value is include.cen=FALSE. If include.cen=TRUE, censored values
are plotted using the plotting character indicated by the argument cen.pch (see
below).

numeric scalar or character string indicating the plotting character to use to
plot censored values. The default value is cen.pch=2 (hollow triangle pointing
up) when censoring.side="right", and cen.pch=6 (hollow triangle pointing
down) when censoring.side="1eft". See the help file for points for a list of
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other possible plotting characters. This argument is ignored if
include.cen=FALSE.

cen.cex numeric scalar that determines the size of the plotting character used to plot
censored values. The default value is the current value of the cex graphics pa-
rameter. See the entry for cex in the help file for par for more information. This
argument is ignored if include.cen=FALSE.

cen.col numeric scalar or character string that determines the color of the plotting char-
acter used to plot censored values. The default value is cen.col=4. See the
entry for col in the help file for par for more information. This argument is
ignored if include.cen=FALSE.

type, main, xlab, ylab, x1lim, ylim, ...
additional graphical parameters (see 1ines and par). In particular, the argument
type specifies the kind of line type. By default, the function ecdfPlotCensored
plots a step function (type="s") when discrete=TRUE, and plots a straight
line between points (type="1") when discrete=FALSE. The user may over-
ride these defaults by supplying the graphics parameter type (type="s" for a
step function, type="1" for linear interpolation, type="p" for points only, etc.).

Details

The function ecdfPlotCensored does exactly the same thing as ecdfPlot, except it calls the func-
tion ppointsCensored to compute the plotting positions (estimated cumulative probabilities) for
the uncensored observations.

If plot.it=TRUE, the estimated cumulative probabilities for the uncensored observations are plot-
ted against the uncensored observations. By default, the function ecdfPlotCensored plots a step
function when discrete=TRUE, and plots a straight line between points when discrete=FALSE.
The user may override these defaults by supplying the graphics parameter type (type="s" for a
step function, type="1" for linear interpolation, type="p" for points only, etc.).

If include.cen=TRUE, censored observations are included on the plot as points. The arguments
cen.pch, cen.cex, and cen.col control the appearance of these points.

In cases where x is a random sample, the emprical cdf will change from sample to sample and
the variability in these estimates can be dramatic for small sample sizes. Caution must be used in
interpreting the empirical cdf when a large percentage of the observations are censored.

Value
ecdfPlotCensored returns a list with the following components:

Order.Statistics

numeric vector of the “ordered” observations.
Cumulative.Probabilities

numeric vector of the associated plotting positions.
Censored logical vector indicating which of the ordered observations are censored.

Censoring.Side character string indicating whether the data are left- or right-censored. This is
same value as the argument censoring.side.

Prob.Method character string indicating what method was used to compute the plotting posi-
tions. This is the same value as the argument prob.method.
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Optional Component (only present when prob.method="michael-schucany” or
prob.method="hirsch-stedinger"):

Plot.Pos.Con  numeric scalar containing the value of the plotting position constant that was
used. This is the same as the argument plot.pos.con.

Note

An empirical cumulative distribution function (ecdf) plot is a graphical tool that can be used in
conjunction with other graphical tools such as histograms, strip charts, and boxplots to assess the
characteristics of a set of data.

Censored observations complicate the procedures used to graphically explore data. Techniques from
survival analysis and life testing have been developed to generalize the procedures for constructing
plotting positions, empirical cdf plots, and g-q plots to data sets with censored observations (see
ppointsCensored).

Empirical cumulative distribution function (ecdf) plots are often plotted with theoretical cdf plots
(see cdfPlot and cdfCompareCensored) to graphically assess whether a sample of observations
comes from a particular distribution. More often, however, quantile-quantile (Q-Q) plots are used
instead (see qgPlot and qqPlotCensored).
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See Also

ppoints, ppointsCensored, ecdfPlot, ggPlot, ggPlotCensored, cdfPlot, cdfCompareCensored.

Examples

# Generate 20 observations from a normal distribution with mean=20 and sd=5,
censor all observations less than 18, then generate an empirical cdf plot

for the complete data set and the censored data set. Note that the empirical
cdf plot for the censored data set starts at the first ordered uncensored
observation, and that for values of x > 18 the two emprical cdf plots are
exactly the same. This is because there is only one censoring level and

no uncensored observations fall below the censored observations.

(Note: the call to set.seed simply allows you to reproduce this example.)

H oH H ¥ B B H

set.seed(333)
X <= rnorm(20, mean=20, sd=5)
censored <- x < 18

sum(censored)
#[1] 7

new.x <- x
new.x[censored] <- 18

dev.new()
ecdfPlot(x, xlim = range(pretty(x)),
main = "Empirical CDF Plot for\nComplete Data Set")

dev.new()
ecdfPlotCensored(new.x, censored, xlim = range(pretty(x)),

main="Empirical CDF Plot for\nCensored Data Set")

# Clean up
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wells.

EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#4 4 Well.1 21.6 21.6 FALSE
#5 5 Well.1 <2 2.0 TRUE
#...
#21 1 Well.5 17.9 17.9 FALSE
#22 2 Well.5 22.7 22.7 FALSE
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE
dev.new()
with(EPA.09.Ex.15.1.manganese.df,
ecdfPlotCensored(Manganese.ppb, Censored,

prob.method = "kaplan-meier"”, ecdf.col = "blue”,

main = "Empirical CDF of Manganese Data\nBased on Kaplan-Meier"))
#==========
# Clean up
# _________

graphics.off ()

Example 15-1 of USEPA (2009, page 15-10) gives an example of
computing plotting positions based on censored manganese
concentrations (ppb) in groundwater collected at 5 monitoring
The data for this example are stored in
EPA.09.Ex.15.1.manganese.df.
CDF plot based on the Kaplan-Meier method.

Here we will create an empirical

eevd

Estimate Parameters of an Extreme Value (Gumbel) Distribution

Description

Estimate the location and scale parameters of an extreme value distribution, and optionally construct
a confidence interval for one of the parameters.

Usage

eevd(x, method = "mle”, pwme.method = "unbiased”,

plot.pos.cons

ci.parameter

= c(a =0.35 b =10), ci = FALSE,
= "two-sided"”,
ci.method = "normal.approx”, conf.level = 0.95)

"location”, ci.type
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Arguments

X numeric vector of observations.

method character string specifying the method of estimation. Possible values are "mle”
(maximum likelihood; the default), "mme"” (methods of moments), "mmue” (method
of moments based on the unbiased estimator of variance), and "pwme" (probability-
weighted moments). See the DETAILS section for more information on these
estimation methods.

pwme .method character string specifying what method to use to compute the probability-weighted

moments when method="pwme". The possible values are "ubiased” (method
based on the U-statistic; the default), or "plotting.position” (method based
on the plotting position formula). See the DETAILS section in this help file and
the help file for pwMoment for more information. This argument is ignored if
method is not equal to "pwme".

plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="pwme" and
pwme .method="plotting.position”. The default value is
plot.pos.cons=c(a=0.35, b=0). If this vector has a names attribute with the
value c("a","b") or c("b","a"), then the elements will be matched by name
in the formula for computing the plotting positions. Otherwise, the first ele-
ment is mapped to the name "a” and the second element to the name "b". See
the DETAILS section in this help file and the help file for pwMoment for more
information. This argument is ignored if method is not equal to "pwme” or if
pwme . method="ubiased".

ci logical scalar indicating whether to compute a confidence interval for the loca-
tion or scale parameter. The default value is FALSE.

ci.parameter  character string indicating the parameter for which the confidence interval is
desired. The possible values are "location” (the default) and "scale”. This
argument is ignored if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower”, and "upper”. This
argument is ignored if ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the location or scale parameter. Currently, the only possible value is
"normal.approx"” (the default). See the DETAILS section for more informa-
tion. This argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.
Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = (x1,®2,...,x,) be a vector of n observations from an extreme value distribution with
parameters location=7 and scale=6.



eevd 195

Estimation

Maximum Likelihood Estimation (method="mle")
The maximum likelihood estimators (mle’s) of 7 and € are the solutions of the simultaneous equa-
tions (Forbes et al., 2011):
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where

Method of Moments Estimation (method="mme")
The method of moments estimators (mme’s) of 77 and 6 are given by (Johnson et al., 1995, p.27):

Nmme = T — 6amme

N

amme = Sm

where € denotes Euler’s constant and s,,, denotes the square root of the method of moments estima-
tor of variance:
1 n
2 —\2
i=

Method of Moments Estimators Based on the Unbiased Estimator of Variance (method="mmue")
These estimators are the same as the method of moments estimators except that the method of
moments estimator of variance is replaced with the unbiased estimator of variance:

n

1
2 _ a2
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i=1

Probability-Weighted Moments Estimation (method="pwme")
Greenwood et al. (1979) show that the relationship between the distribution parameters 7 and 6 and
the probability-weighted moments is given by:

n=M(1,0,0) — €0

5 M(1,0,0) — 2M(1,0,1)
a log(2)

where M (i, 7, k) denotes the ijk’th probability-weighted moment and € denotes Euler’s constant.
The probability-weighted moment estimators (pwme’s) of 17 and 6 are computed by simply replacing
the M (4, j, k)’s in the above two equations with estimates of the M (4, 7, k)’s (and for the estimate
of n, replacing 6 with its estimated value). See the help file for pwMoment for more information on
how to estimate the M (i, j, k)’s. Also, see Landwehr et al. (1979) for an example of this method of
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estimation using the unbiased (U-statistic type) probability-weighted moment estimators. Hosking
et al. (1985) note that this method of estimation using the U-statistic type probability-weighted
moments is equivalent to Downton’s (1966) linear estimates with linear coefficients.

Confidence Intervals

When ci=TRUE, an approximate (1 — «)100% confidence intervals for 7 can be constructed as-
suming the distribution of the estimator of 7 is approximately normally distributed. A two-sided
confidence interval is constructed as:

—tn—1,1—a/2)64, N+t(n—1,1—a/2)5;]

where ¢(v, p) is the p’th quantile of Student’s t-distribution with v degrees of freedom, and the
quantity

97
denotes the estimated asymptotic standard deviation of the estimator of 7.

Similarly, a two-sided confidence interval for 6 is constructed as:

[0 —t(n—1,1—a/2)d; 0 +t(n—1,1 - a/2)5]

One-sided confidence intervals for 77 and 6 are computed in a similar fashion.

Maximum Likelihood (method="mle")
Downton (1966) shows that the estimated asymptotic variances of the mle’s of ) and 6 are given by:
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where € denotes Euler’s constant.

Method of Moments (method="mme" or method="mmue")
Tiago de Oliveira (1963) and Johnson et al. (1995, p.27) show that the estimated asymptotic vari-
ance of the mme’s of 7 and 6 are given by:
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denote the skew and kurtosis of the distribution, and ¢ denotes Euler’s constant.

where the quantities

The estimated asymptotic variances of the mmue’s of 7 and 6 are the same, except replace the mme
of  in the above equations with the mmue of 6.

Probability-Weighted Moments (method="pwme")
As stated above, Hosking et al. (1985) note that this method of estimation using the U-statistic
type probability-weighted moments is equivalent to Downton’s (1966) linear estimates with linear
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coefficients. Downton (1966) provides exact values of the variances of the estimates of location
and scale parameters for the smallest extreme value distribution. For the largest extreme value
distribution, the formula for the estimate of scale is the same, but the formula for the estimate of
location must be modified. Thus, Downton’s (1966) equation (3.4) is modified to:

(n—1)log(2) + (n+ 1)€U B 2¢e w
n(n — 1)log(2) n(n — 1)log(2)

pwme =

where e denotes Euler’s constant, and v and w are defined in Downton (1966, p.8). Using Downton’s
(1966) equations (3.9)-(3.12), the exact variance of the pwme of 7 can be derived. Note that when
method="pwme" and pwme.method="plotting.position”, these are only the asymptotically cor-
rect variances.

Value

a list of class "estimate” containing the estimated parameters and other information. See
estimate.object for details.

Note

There are three families of extreme value distributions. The one described here is the Type I, also
called the Gumbel extreme value distribution or simply Gumbel distribution. The name “extreme
value” comes from the fact that this distribution is the limiting distribution (as n approaches infinity)
of the greatest value among n independent random variables each having the same continuous
distribution.

The Gumbel extreme value distribution is related to the exponential distribution as follows. Let Y
be an exponential random variable with parameter rate=A. Then X = n — log(Y) has an extreme
value distribution with parameters location=n and scale=1/\.

The distribution described above and assumed by eevd is the largest extreme value distribution.
The smallest extreme value distribution is the limiting distribution (as n approaches infinity) of the
smallest value among n independent random variables each having the same continuous distribu-
tion. If X has a largest extreme value distribution with parameters location=7 and scale=6, then
Y = —X has a smallest extreme value distribution with parameters location=—n and scale=6.
The smallest extreme value distribution is related to the Weibull distribution as follows. Let Y be a
Weibull random variable with parameters shape=;3 and scale=«. Then X = log(Y") has a smallest
extreme value distribution with parameters location=log(«) and scale=1/p.

The extreme value distribution has been used extensively to model the distribution of streamflow,
flooding, rainfall, temperature, wind speed, and other meteorological variables, as well as material
strength and life data.
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See Also

Extreme Value Distribution, Euler’s Constant.

Examples

# Generate 20 observations from an extreme value distribution with

# parameters location=2 and scale=1, then estimate the parameters

# and construct a 90% confidence interval for the location parameter.

# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- revd(20, location = 2)
eevd(dat, ci = TRUE, conf.level = 0.9)

#Results of Distribution Parameter Estimation

# ____________________________________________

#

#Assumed Distribution: Extreme Value

#

#Estimated Parameter(s): location = 1.9684093
# scale = 0.7481955
#

#Estimation Method: mle

#

#Data: dat

#

#Sample Size: 20

#

#Confidence Interval for: location

#

#Confidence Interval Method: Normal Approximation
# (t Distribution)

#

#Confidence Interval Type: two-sided
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#

#Confidence Level: 90%

#

#Confidence Interval: LCL = 1.663809
# UCL = 2.273009
# __________

#Compare the values of the different types of estimators:

eevd(dat, method = "mle")$parameters
# location scale
#1.9684093 0.7481955

eevd(dat, method = "mme")$parameters
# location scale
#1.9575980 0.8339256

eevd(dat, method = "mmue")$parameters
# location scale
#1.9450932 0.8555896

eevd(dat, method = "pwme")$parameters

# location scale
#1.9434922 0.8583633

rm(dat)
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eexp

Estimate Rate Parameter of an Exponential Distribution

Description

Estimate the rate parameter of an exponential distribution, and optionally construct a confidence
interval for the rate parameter.

Usage
eexp(x, method = "mle/mme", ci = FALSE, ci.type = "two-sided”,
ci.method = "exact”, conf.level = 0.95)
Arguments

X

numeric vector of observations.
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method character string specifying the method of estimation. Currently the only possible
value is "mle/mme"” (maximum likelihood/method of moments; the default). See
the DETAILS section for more information.

ci logical scalar indicating whether to compute a confidence interval for the loca-
tion or scale parameter. The default value is FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower"”, and "upper”. This
argument is ignored if ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the location or scale parameter. Currently, the only possible value is
"exact” (the default). See the DETAILS section for more information. This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.
Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let z = (x1,%2,...,%,) be a vector of n observations from an exponential distribution with pa-
rameter rate=\.
Estimation
The maximum likelihood estimator (mle) of A is given by:
. 1
>\mle -
z
where
1 n
= — x;
n

(Forbes et al., 2011). That is, the mle is the reciprocal of the sample mean.

Sometimes the exponential distribution is parameterized with a scale parameter instead of a rate
parameter. The scale parameter is the reciprocal of the rate parameter, and the sample mean is both
the mle and the minimum variance unbiased estimator (mvue) of the scale parameter.

Confidence Interval

When ci=TRUE, an exact (1 — «)100% confidence intervals for A can be constructed based on
the relationship between the exponential distribution, the gamma distribution, and the chi-square
distribution. An exponential distribution with parameter rate=X\ is equivalent to a gamma distri-
bution with parameters shape=1 and scale=1/\. The sum of n iid gamma random variables with
parameters shape=1 and scale=1/) is a gamma random variable with parameters shape=n and
scale=1/\. Finally, a gamma distribution with parameters shape=n and scale=1/\ is equivalent
to 0.5 times a chi-square distribution with degrees of freedom df=2n. Thus, the quantity 2nZ has a
chi-square distribution with degrees of freedom df=2n.

A two-sided (1 — «)100% confidence interval for A is therefore constructed as:

[X2(2n, a/2) chi*(2n,1 — a/2)

)

]

2nx 2nT
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where x?(v, p) is the p’th quantile of a chi-square distribution with v degrees of freedom.

One-sided confidence intervals are computed in a similar fashion.

Value

a list of class "estimate” containing the estimated parameters and other information. See
estimate.object for details.

Note

The exponential distribution is a special case of the gamma distribution, and takes on positive real
values. A major use of the exponential distribution is in life testing where it is used to model the
lifetime of a product, part, person, etc.

The exponential distribution is the only continuous distribution with a “lack of memory” property.
That is, if the lifetime of a part follows the exponential distribution, then the distribution of the time
until failure is the same as the distribution of the time until failure given that the part has survived
to time ¢.

The exponential distribution is related to the double exponential (also called Laplace) distribution,
and to the extreme value distribution.

Author(s)
Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

See Also

Exponential.

Examples

# Generate 20 observations from an exponential distribution with parameter
# rate=2, then estimate the parameter and construct a 90% confidence interval.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

dat <- rexp(20, rate = 2)

eexp(dat, ci=TRUE, conf = 0.9)

#Results of Distribution Parameter Estimation

#Assumed Distribution: Exponential
#
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#Estimated Parameter(s):
#

#Estimation Method:

#

#Data:

#

#Sample Size:

#

#Confidence Interval for:
#

#Confidence Interval Method:

#

#Confidence Interval Type:
#

#Confidence Level:

#

#Confidence Interval:

rm(dat)

rate = 2.260587

mle/mme

dat

20

rate

Exact

two-sided

90%

LCL
ucCL

1.498165
3.151173

egamma

egamma

Estimate Parameters of Gamma Distribution

Description

Estimate the shape and scale parameters (or the mean and coefficient of variation) of a Gamma

distribution.
Usage
egamma(x, method = "mle", ci = FALSE,
ci.type = "two-sided”, ci.method = "normal.approx”,
normal.approx.transform = "kulkarni.powar”, conf.level

ci.type = "two-sided”, ci.method = "normal.approx”,
normal.approx.transform = "kulkarni.powar”, conf.level
Arguments

X

egammaAlt(x, method = "mle"”, ci = FALSE,

0.95)

0.95)

numeric vector of non-negative observations. Missing (NA), undefined (NaN),

and infinite (Inf, -Inf) values are allowed but will be removed.
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method character string specifying the method of estimation. The possible values are:
"mle" (maximum likelihood; the default),
"bcmle” (bias-corrected mle),
"mme” (method of moments), and
"mmue"” (method of moments based on the unbiased estimator of variance).
See the DETAILS section for more information.

ci logical scalar indicating whether to compute a confidence interval for the mean.
The default value is ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower"”, and "upper”. This
argument is ignored if ci=FALSE.

ci.method character string indicating which method to use to construct the confidence inter-
val. Possible values are "normal . approx” (the default), "profile.likelihood”,
"chisq.approx”, and "chisq.adj". This argument is ignored if ci=FALSE.

normal.approx.transform
character string indicating which power transformation to use when
ci.method="normal.approx”. Possible values are
"kulkarni.powar" (the default), "cube.root”, and "fourth.root”. See the
DETAILS section for more informaiton. This argument is ignored if ci=FALSE
or ci.method="chisq.approx".

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.
Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let x = x1,x3,...,x, denote a random sample of n observations from a gamma distribution
with parameters shape=x and scale=f. The relationship between these parameters and the mean
(mean=p) and coefficient of variation (cv=T) of this distribution is given by:

k=172 (1)
o0=n/n  (2)
p=r6 (3)

=k Y2 (4)

The function egamma returns estimates of the shape and scale parameters. The function egammaAlt
returns estimates of the mean (u) and coefficient of variation (cv) based on the estimates of the
shape and scale parameters.

Estimation

Maximum Likelihood Estimation (method="mle")
The maximum likelihood estimators (mle’s) of the shape and scale parameters x and 6 are solutions
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of the simultaneous equations:

’%mle - % Z log(xl) - lOg(j) = w(’%mle) - log(/%mle) (5)
=1
émle - j//%mle (6)

where 1) denotes the digamma function, and z denotes the sample mean:

(Forbes et al., 2011, chapter 22; Johnson et al., 1994, chapter 17).

Bias-Corrected Maximum Likelihood Estimation (method="bcmle")

The “bias-corrected” maximum likelihood estimator of the shape parameter is based on the sug-
gestion of Anderson and Ray (1975; see also Johnon et al., 1994, p.366 and Singh et al., 2010b,
p.48), who noted that the bias of the maximum likelihood estimator of the shape parameter can be
considerable when the sample size is small. This estimator is given by:

n—3 2
AcmeziAme ° 8
Kbemi o Pmi +3n (8)

When method="bcmle"”, Equation (6) above is modified so that the estimate of the scale paramter
is based on the “bias-corrected” maximum likelihood estimator of the shape parameter:

ébcmle = f/"%bcmle (9)

Method of Moments Estimation (method="mme")
The method of moments estimators (mme’s) of the shape and scale parameters « and 6 are:

l%mme = (‘f/sm)Q (10)

Omme = s,/Z  (11)
where 52, denotes the method of moments estimator of variance:

n

B= 3w (1)

i=1

Method of Moments Estimation Based on the Unbiased Estimator of Variance (method="mmue")
The method of moments estimators based on the unbiased estimator of variance are exactly the same
as the method of moments estimators, except that the method of moments estimator of variance is
replaced with the unbiased estimator of variance:

Rmmue = ("f/s)2 (13)
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Ommue = $2/Z  (14)

where s2 denotes the unbiased estimator of variance:

Confidence Intervals
This section discusses how confidence intervals for the mean p are computed.

Normal Approximation (ci.method="normal.approx”)

The normal approximation method is based on the method of Kulkarni and Powar (2010), who use
a power transformation of the the original data to approximate a sample from a normal distribuiton,
compute the confidence interval for the mean on the transformed scale using the usual formula for
a confidence interval for the mean of a normal distribuiton, and then tranform the limits back to the
original space using equations based on the expected value of a gamma random variable raised to a
power.

The particular power used for the normal approximation is defined by the argument
normal.approx.transform. The value normal.approx.transform="cube.root"” uses the cube
root transformation suggested by Wilson and Hilferty (1931), and the value

"fourth.root” uses the fourth root transformation suggested by Hawkins and Wixley (1986). The
default value "kulkarni.powar” uses the “Optimum Power Normal Approximation Method” of
Kulkarni and Powar (2010), who show this method performs the best in terms of maintining cov-
erage and minimizing confidence interval width compared to eight other methods. The “optimum”
power p is determined by:

p=—0.0705—0.178% + 0.475v& ifk < 1.5
p = 0.246 ifi>15 (16)

where < denotes the estimate of the shape parameter. Kulkarni and Powar (2010) derived this equa-
tion by determining what power transformation yields a skew closest to 0 and a kurtosis closest to 3
for a gamma random variable with a given shape parameter. Although Kulkarni and Powar (2010)
use the maximum likelihood estimate of shape to determine the power to use to induce approximate
normality, for the functions egamma and egammaAlt the power is based on whatever estimate of
shape is used (e.g., method="mle", method="bcmle", etc.).

Likelihood Profile (ci.method="profile.likelihood")

This method was proposed by Cox (1970, p.88), and Venzon and Moolgavkar (1988) introduced an
efficient method of computation. This method is also discussed by Stryhn and Christensen (2003)
and Royston (2007). The idea behind this method is to invert the likelihood-ratio test to obtain
a confidence interval for the mean p while treating the coefficient of variation 7 as a nuisance
parameter.

The likelihood function is given by:

nok=1l,—x;/0
xX; e
Lp,lz) = H W (17)
i=1
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where &, 6, i1, and 7 are defined in Equations (1)-(4) above, and I'(¢) denotes the Gamma function
evaluated at ¢.

Following Stryhn and Christensen (2003), denote the maximum likelihood estimates of the mean
and coefficient of variation by (u*,7*). The likelihood ratio test statistic (G?) of the hypothesis
Hy : = po (where i is a fixed value) equals the drop in 2log(L) between the “full” model and
the reduced model with y fixed at o, i.e.,

G? = 2{log[L(p*,7")] — log[L(po, 7)1} (18)

where 7 is the maximum likelihood estimate of 7 for the reduced model (i.e., when 1 = pyg).
Under the null hypothesis, the test statistic G2 follows a chi-squared distribution with 1 degree of
freedom.

Alternatively, we may express the test statistic in terms of the profile likelihood function L, for the
mean g, which is obtained from the usual likelihood function by maximizing over the parameter 7,
i.e.,

Ly(p) = maz-L(p,7)  (19)

Then we have
G = 2{log[L (")) — log[L1 (o))} (20)

A two-sided (1 — a))100% confidence interval for the mean p consists of all values of po for which
the test is not significant at level alpha:

po:G*<xiia  (21)

where Xz,p denotes the p’th quantile of the chi-squared distribution with v degrees of freedom. One-
sided lower and one-sided upper confidence intervals are computed in a similar fashion, except that
the quantity 1 — « in Equation (21) is replaced with 1 — 2a.

Chi-Square Approximation (ci.method="chisq.approx")
This method is based on the relationship between the sample mean of the gamma distribution and
the chi-squared distribution (Grice and Bain, 1980):

2nx

Therefore, an exact one-sided upper (1 — &/)100% confidence interval for the mean ( is given by:

TR (93)

)
X2m~c,o¢

0

an exact one-sided lower (1 — «)100% confidence interval is given by:

2nTK

[ oo (24)

X%nﬁ,l—a
and a two-sided (1 — «)100% confidence interval is given by:

2nTkK 2nTkK

[ I (25

2 72
Xan-c,l—(x/Z X2m¢,,o¢/2
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Because this method is exact only when the shape parameter x is known, the method used here is
called the “chi-square approximation” method because the estimate of the shape parameter, &, is
used in place of « in Equations (23)-(25) above. The Chi-Square Approximation method is not the
method proposed by Grice and Bain (1980) in which the confidence interval is adjusted based on
adjusting for the fact that the shape parameter « is estimated (see the explanation of the Chi-Square
Adjusted method below). The Chi-Square Approximation method used by egamma and egammaAlt
is equivalent to the “approximate gamma” method of ProUCL (USEPA, 2015, equation (2-34),
p-62).

Chi-Square Adjusted (ci.method="chisq.adj")

This is the same method as the Chi-Square Approximation method discussed above, execpt that the
value of « is adjusted to account for the fact that the shape parameter « is estimated rather than
known. Grice and Bain (1980) performed Monte Carlo simulations to determine how to adjust «
and the values in their Table 2 are given in the matrix Grice.Bain.8@.mat. This method requires
that the sample size n is at least 5 and the confidence level is between 75% and 99.5% (except when
n = b, in which case the confidence level must be less than 99%). For values of the sample size
n and/or « that are not listed in the table, linear interpolation is used (when the sample size n is
greater than 40, linear interpolation on 1/n is used, as recommended by Grice and Bain (1980)).
The Chi-Square Adjusted method used by egamma and egammaAlt is equivalent to the “adjusted
gamma” method of ProUCL (USEPA, 2015, equation (2-35), p.63).

Value

a list of class "estimate” containing the estimated parameters and other information. See
estimate.object for details.

Warning

When ci=TRUE and ci.method="normal.approx”, it is possible for the lower confidence limit
based on the transformed data to be less than 0. In this case, the lower confidence limit on the
original scale is set to 0 and a warning is issued stating that the normal approximation is not accurate
in this case.

Note

The gamma distribution takes values on the positive real line. Special cases of the gamma are the
exponential distribution and the chi-square distributions. Applications of the gamma include life
testing, statistical ecology, queuing theory, inventory control, and precipitation processes. A gamma
distribution starts to resemble a normal distribution as the shape parameter a tends to infinity.

Some EPA guidance documents (e.g., Singh et al., 2002; Singh et al., 2010a,b) strongly recom-
mend against using a lognormal model for environmental data and recommend trying a gamma
distribuiton instead.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

GammaDist, estimate.object, eqgamma, predIntGamma, tolIntGamma.

Examples

# Generate 20 observations from a gamma distribution with parameters
# shape=3 and scale=2, then estimate the parameters.

# (Note: the call to set.seed simply allows you to reproduce this

# example.)

set.seed(250)
dat <- rgamma(20, shape = 3, scale = 2)
egamma(dat, ci = TRUE)

#Results of Distribution Parameter Estimation

# ____________________________________________

#

#Assumed Distribution: Gamma

#

#Estimated Parameter(s): shape = 2.203862
# scale = 2.174928
#

#Estimation Method: mle

#
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#Data:

#

#Sample Size:

#

#Confidence Interval for:
#

#Confidence Interval Method:
#

#

#

#Normal Transform Power:

#

#Confidence Interval Type:
#

#Confidence Level:

#

#Confidence Interval:

#

# Clean up
rm(dat)
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dat

20

mean

Optimum Power Normal Approximation
of Kulkarni & Powar (2010)

using mle of 'shape'

Q.246

two-sided

95%

LCL
ucCL

3.361652
6.746794

# Using the reference area TcCB data in EPA.94b.tccb.df, assume a
# gamma distribution, estimate the parameters based on the

# bias-corrected mle of shape, and compute a one-sided upper 90%
# confidence interval for the mean.

# First test to see whether the data appear to follow a gamma

# distribution.

with(EPA.94b. tccb.df,

gofTest(TcCB[Area == "Reference”], dist =

est.arg.list =

)

#Results of Goodness-of-Fit Test

# _______________________________

#

#Test Method:

#

#

#Hypothesized Distribution:

#

#Estimated Parameter(s):

#

#

#Estimation Method:

#

#Data:

#

”gamma n ,

list(method = "bcmle"))

Shapiro-Wilk GOF Based on
Chen & Balakrisnan (1995)

Gamma

shape = 4.5695247

scale = 0.1309788

bcmle

TcCB[Area == "Reference"]



210

#Sample Size:

#

#Test Statistic:

#

#Test Statistic Parameter:
#

#P-value:

#

#Alternative Hypothesis:

egamma

47
W = 0.9703827
n = 47
0.2739512

True cdf does not equal the
Gamma Distribution.

# Now estimate the paramters and compute the upper confidence limit.

with(EPA.94b.tccb.df,

egamma(TcCB[Area == "Reference"”], method = "bcmle”, ci = TRUE,
ci.type = "upper"”, conf.level = 0.9)

)

#Results of Distribution Parameter Estimation

#Assumed Distribution:

#

#Estimated Parameter(s):
#

#

#Estimation Method:

#

#Data:

#

#Sample Size:

#

#Confidence Interval for:
#

#Confidence Interval Method:

#

#

#

#Normal Transform Power:

#

#Confidence Interval Type:
#

#Confidence Level:

#

#Confidence Interval:

Gamma

shape = 4.5695247

scale = 0.1309788

bcmle

TcCB[Area == "Reference"]
47

mean

Optimum Power Normal Approximation
of Kulkarni & Powar (2010)

using bcmle of 'shape'

0.246

upper

90%

LCL
ucCL

0.0000000
0.6561838

# Repeat the above example but use the alternative parameterization.

with(EPA.94b. tccb. df,
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egammaAlt (TcCB[Area == "Reference”], method = "bcmle”, ci = TRUE,
ci.type = "upper”, conf.level = 0.9)
)
#Results of Distribution Parameter Estimation
# ____________________________________________
#
#Assumed Distribution: Gamma
#
#Estimated Parameter(s): mean = 0.5985106
# cv = 0.4678046
#
#Estimation Method: bcmle of 'shape'
#
#Data: TcCB[Area == "Reference"]
#
#Sample Size: 47
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Optimum Power Normal Approximation
# of Kulkarni & Powar (2010)
# using bcmle of 'shape'
#
#Normal Transform Power: Q.246
#
#Confidence Interval Type: upper
#
#Confidence Level: 90%
#
#Confidence Interval: LCL = 0.0000000
# UCL = 0.6561838
# __________________________________________________________________

# Compare the upper confidence limit based on

# 1) the default method:

# normal approximation method based on Kulkarni and Powar (2010)
# 2) Profile Likelihood

# 3) Chi-Square Approximation

# 4) Chi-Square Adjusted

# Default Method

# _______________
with(EPA.94b. tcch.df,
egamma(TcCB[Area == "Reference”], method = "bcmle", ci = TRUE,
ci.type = "upper”, conf.level = 0.9)$interval$limits["UCL"]
)
# ucL
#0.6561838

# Profile Likelihood

211
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# ___________________
with(EPA.94b.tccb.df,
egamma(TcCB[Area == "Reference”"], method = "mle”, ci = TRUE,
ci.type = "upper”, conf.level = 0.9,
ci.method = "profile.likelihood”)$interval$limits["UCL"]
)
# ucL
#0.6527009
# Chi-Square Approximation
# _________________________
with(EPA.94b.tccb.df,
egamma(TcCB[Area == "Reference”"], method = "mle”, ci = TRUE,
ci.type = "upper”, conf.level = 0.9,
ci.method = "chisq.approx”)$interval$limits["UCL"]
)
# ucL
#0.6532188
# Chi-Square Adjusted
# ____________________
with(EPA.94b.tccb.df,
egamma(TcCB[Area == "Reference”], method = "mle”, ci = TRUE,
ci.type = "upper”, conf.level = 0.9,
ci.method = "chisq.adj")$interval$limits["UCL"]
)
# ucL
#0.65467
egammaAltCensored Estimate Mean and Coefficient of Variation for a Gamma Distribution
Based on Type I Censored Data
Description

Usage

Estimate the mean and coefficient of variation of a gamma distribution given a sample of data that
has been subjected to Type I censoring, and optionally construct a confidence interval for the mean.

egammaAltCensored(x, censored, method = "mle”, censoring.side = "left"”,
ci = FALSE, ci.method = "profile.likelihood”, ci.type = "two-sided”,

conf.level = 0.95, n.bootstraps = 1000, pivot.statistic = "z",
ci.sample.size = sum(!censored))
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Arguments

X numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

censored numeric or logical vector indicating which values of x are censored. This must
be the same length as x. If the mode of censored is "logical”, TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric”,
it must contain only 1’s and @’s; 1 corresponds to TRUE and @ corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

method character string specifying the method of estimation. Currently, the only avail-
able method is maximum likelihood (method="mle").

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left” (the default) and "right".

ci logical scalar indicating whether to compute a confidence interval for the mean.
The default value is ci=FALSE.

ci.method character string indicating what method to use to construct the confidence in-
terval for the mean. The possible values are "profile.likelihood"” (pro-
file likelihood; the default), "normal.approx” (normal approximation), and
"bootstrap” (based on bootstrapping). See the DETAILS section for more
information. This argument is ignored if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower”, and "upper”. This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

n.bootstraps  numeric scalar indicating how many bootstraps to use to construct the confi-
dence interval for the mean when ci.type="bootstrap”. This argument is
ignored if ci=FALSE and/or ci.method does not equal "bootstrap”.

pivot.statistic
character string indicating which pivot statistic to use in the construction of
the confidence interval for the mean when ci.method="normal.approx” or
ci.method="normal.approx.w.cov"” (see the DETAILS section). The possi-
ble values are pivot.statistic="z" (the default) and pivot.statistic="t".
When pivot.statistic="t" you may supply the argument ci.sample size
(see below). The argument pivot.statistic isignored if ci=FALSE.

ci.sample.size numeric scalar indicating what sample size to assume to construct the confidence
interval for the mean if pivot.statistic="t" and
ci.method="normal.approx”. The default value is the number of uncensored
observations.

Details

If x or censored contain any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will
be removed prior to performing the estimation.
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Let z denote a vector of NV observations from a gamma distribution with parameters shape=x and
scale=0. The relationship between these parameters and the mean p and coefficient of variation 7
of this distribution is given by:

k=72 (1)
b=u/n ()
p=r6 (3)

r=r"Y% (4

Assume n (0 < n < N) of these observations are known and ¢ (¢ = N — n) of these observations
are all censored below (left-censored) or all censored above (right-censored) at k fixed censoring
levels

T, Ts,..., T kE>1 (5)

For the case when k > 2, the data are said to be Type [ multiply censored. For the case when k = 1,
set T' = T7. If the data are left-censored and all n known observations are greater than or equal to
T, or if the data are right-censored and all n known observations are less than or equal to 7, then
the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are considered to
be Type I multiply censored.

Let ¢; denote the number of observations censored below or above censoring level T} for j =
1,2,...,k, sothat

k
ch =c (6)

Let z (1), T(2), - - - , T(v) denote the “ordered” observations, where now “observation” means either
the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity ;) does not necessarily represent the ¢’th “largest” observation
from the (unknown) complete sample.

Finally, let €2 (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations.

Estimation

Maximum Likelihood Estimation (method="mle")
For Type I left censored data, the likelihood function is given by:

N k .
surln = (" ) ira@r o) @

where f and F' denote the probability density function (pdf) and cumulative distribution function
(cdf) of the population (Cohen, 1963; Cohen, 1991, pp.6, 50). That is,

tn—le—t/e

ft) = TORT () (8)
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(Johnson et al., 1994, p.343), where « and 6 are defined in terms of p and 7 by Equations (1) and
(2) above.

For left singly censored data, Equation (7) simplifies to:

n

Ll = (3 ) IT flew) O

i=c+1
Similarly, for Type I right censored data, the likelihood function is given by:

k
L(u,Tlx)—< N )H[l—F(Tj)]CJ’Hf[%)] (10)

C1C2...CgN
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and for right singly censored data this simplifies to:

n

) 10— PP fle] (1)

=1

N
c

L) = (
The maximum likelihood estimators are computed by minimizing the negative log-likelihood func-
tion.

Confidence Intervals
This section explains how confidence intervals for the mean g are computed.

Likelihood Profile (ci.method="profile.likelihood")

This method was proposed by Cox (1970, p.88), and Venzon and Moolgavkar (1988) introduced an
efficient method of computation. This method is also discussed by Stryhn and Christensen (2003)
and Royston (2007). The idea behind this method is to invert the likelihood-ratio test to obtain
a confidence interval for the mean p while treating the coefficient of variation 7 as a nuisance
parameter. Equation (7) above shows the form of the likelihood function L(u, 7|2) for multiply
left-censored data, where p and 7 are defined by Equations (3) and (4), and Equation (10) shows
the function for multiply right-censored data.

Following Stryhn and Christensen (2003), denote the maximum likelihood estimates of the mean
and coefficient of variation by (u*, 7*). The likelihood ratio test statistic (G?2) of the hypothesis
Hy : = po (where p is a fixed value) equals the drop in 2log(L) between the “full” model and
the reduced model with y fixed at o, i.e.,

G? = 2{log[L(p*, )] = log[L(po, )]}~ (12)

where 7 is the maximum likelihood estimate of 7 for the reduced model (i.e., when p = ).
Under the null hypothesis, the test statistic G follows a chi-squared distribution with 1 degree of
freedom.

Alternatively, we may express the test statistic in terms of the profile likelihood function L, for the
mean u, which is obtained from the usual likelihood function by maximizing over the parameter 7,
ie.,

Ly(p) = maz, L(p,7)  (13)

Then we have
G?* = 2{log[L ()] — log[L1 (o))} (14)
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A two-sided (1 — a))100% confidence interval for the mean p consists of all values of 1y for which
the test is not significant at level alpha:

oGP <xi . (15)

where x?,’p denotes the p’th quantile of the chi-squared distribution with v degrees of freedom. One-
sided lower and one-sided upper confidence intervals are computed in a similar fashion, except that
the quantity 1 — « in Equation (15) is replaced with 1 — 2q.

Normal Approximation (ci.method="normal.approx")

This method constructs approximate (1 — a)100% confidence intervals for 1 based on the assump-
tion that the estimator of 1 is approximately normally distributed. That is, a two-sided (1 — a)100%
confidence interval for y is constructed as:

[t —ti—a/2,m—104, B+ti—a/2m-10a] (16)

where [i denotes the estimate of i, 5, denotes the estimated asymptotic standard deviation of the
estimator of x, m denotes the assumed sample size for the confidence interval, and ¢,, ,, denotes the
p’th quantile of Student’s t-distribuiton with v degrees of freedom. One-sided confidence intervals
are computed in a similar fashion.

The argument ci.sample.size determines the value of m and by default is equal to the number of
uncensored observations. This is simply an ad-hoc method of constructing confidence intervals and
is not based on any published theoretical results.

When pivot.statistic="z", the p’th quantile from the standard normal distribution is used in
place of the p’th quantile from Student’s t-distribution.

The standard deviation of the mle of u is estimated based on the inverse of the Fisher Information
matrix.

Bootstrap and Bias-Corrected Bootstrap Approximation (ci.method="bootstrap")

The bootstrap is a nonparametric method of estimating the distribution (and associated distribution
parameters and quantiles) of a sample statistic, regardless of the distribution of the population from
which the sample was drawn. The bootstrap was introduced by Efron (1979) and a general reference
is Efron and Tibshirani (1993).

In the context of deriving an approximate (1 — «)100% confidence interval for the population mean
1, the bootstrap can be broken down into the following steps:

1. Create a bootstrap sample by taking a random sample of size N from the observations in z,
where sampling is done with replacement. Note that because sampling is done with replace-
ment, the same element of x can appear more than once in the bootstrap sample. Thus, the
bootstrap sample will usually not look exactly like the original sample (e.g., the number of
censored observations in the bootstrap sample will often differ from the number of censored
observations in the original sample).

2. Estimate p based on the bootstrap sample created in Step 1, using the same method that was
used to estimate g using the original observations in z. Because the bootstrap sample usually
does not match the original sample, the estimate of y based on the bootstrap sample will
usually differ from the original estimate based on z.

3. Repeat Steps 1 and 2 B times, where B is some large number. For the function
egammaAltCensored, the number of bootstraps B is determined by the argument n.bootstraps
(see the section ARGUMENTS above). The default value of n.bootstraps is 1000.
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4. Use the B estimated values of 1 to compute the empirical cumulative distribution function of
this estimator of y (see ecdfPlot), and then create a confidence interval for i based on this
estimated cdf.

The two-sided percentile interval (Efron and Tibshirani, 1993, p.170) is computed as:
!

e -5 an

(el .

where G(t) denotes the empirical cdf evaluated at ¢ and thus G~*(p) denotes the p’th empirical
quantile, that is, the p’th quantile associated with the empirical cdf. Similarly, a one-sided lower
confidence interval is computed as:

(G (a), o0 (18)
and a one-sided upper confidence interval is computed as:
0, G 1-a)] (19)

The function egammaAltCensored calls the R function quantile to compute the empirical quan-
tiles used in Equations (17)-(19).

The percentile method bootstrap confidence interval is only first-order accurate (Efron and Tibshi-
rani, 1993, pp.187-188), meaning that the probability that the confidence interval will contain the
true value of 1 can be off by &/ V/N, where kis some constant. Efron and Tibshirani (1993, pp.184-
188) proposed a bias-corrected and accelerated interval that is second-order accurate, meaning that
the probability that the confidence interval will contain the true value of u may be off by k/N
instead of k/v/N. The two-sided bias-corrected and accelerated confidence interval is computed

as:
[GTHen), GTHaz)]  (20)
where -
o 20 T Ra/2
(e5] [ZO + 1— (AL(Z() + ZQ/Z)] ( )
g = Dz + e ) (g

1 —a(z0 + 21-a/2)
Z =07 G()]  (23)

G = ZfV:l(/i(-) — f@)? o
6[25\;1(,@(‘) — [L(i))2]3/2 ( )

where the quantity fi(;y denotes the estimate of . using all the values in x except the ¢’th one, and

1 N
A() =5 Dy (25)
i=1

A one-sided lower confidence interval is given by:

[G™ (o), oo]  (26)

and a one-sided upper confidence interval is given by:

[0, G (a2)]  (27)
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where o and o5 are computed as for a two-sided confidence interval, except «/2 is replaced with
« in Equations (21) and (22).

The constant 2y incorporates the bias correction, and the constant a is the acceleration constant. The
term “acceleration” refers to the rate of change of the standard error of the estimate of 1 with respect
to the true value of u (Efron and Tibshirani, 1993, p.186). For a normal (Gaussian) distribution,
the standard error of the estimate of © does not depend on the value of i, hence the acceleration
constant is not really necessary.

When ci.method="bootstrap”, the function egammaAltCensored computes both the percentile
method and bias-corrected and accelerated method bootstrap confidence intervals.

Value

a list of class "estimateCensored” containing the estimated parameters and other information.
See estimateCensored.object for details.

Note

A sample of data contains censored observations if some of the observations are reported only as
being below or above some censoring level. In environmental data analysis, Type I left-censored
data sets are common, with values being reported as “less than the detection limit” (e.g., Helsel,
2012). Data sets with only one censoring level are called singly censored; data sets with multiple
censoring levels are called multiply or progressively censored.

Statistical methods for dealing with censored data sets have a long history in the field of survival
analysis and life testing. More recently, researchers in the environmental field have proposed al-
ternative methods of computing estimates and confidence intervals in addition to the classical ones
such as maximum likelihood estimation. Helsel (2012, Chapter 6) gives an excellent review of past
studies of the properties of various estimators for parameters of a normal or lognormal distribution
based on censored environmental data.

In practice, it is better to use a confidence interval for the mean or a joint confidence region for the
mean and standard deviation (or coefficient of variation), rather than rely on a single point-estimate
of the mean. Few studies have been done to evaluate the performance of methods for construct-
ing confidence intervals for the mean or joint confidence regions for the mean and coefficient of
variation of a gamma distribution when data are subjected to single or multiple censoring. See, for
example, Singh et al. (2006).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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Examples

# Chapter 15 of USEPA (2009) gives several examples of estimating the mean
and standard deviation of a lognormal distribution on the log-scale using
manganese concentrations (ppb) in groundwater at five background wells.
In EnvStats these data are stored in the data frame

#
#
#
# EPA.@9.Ex.15.1.manganese.df.

++

Here we will estimate the mean and coefficient of variation
ON THE ORIGINAL SCALE using the MLE and
# assuming a gamma distribution.

++

# First look at the data:

EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored
#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE


https://gilvanguedes.com/wp-content/uploads/2019/05/Profile-Likelihood-CI.pdf

220

egammaAltCensored

#3 3 Well.1 16.9 16.9 FALSE
#...

#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb”, "Sample"”, "Well",
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.?2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4  21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

# Now estimate the mean and coefficient of variation
# using the MLE, and compute a confidence interval
# for the mean using the profile-likelihood method.

with(EPA.09.Ex.15.1.manganese.df,
egammaAltCensored(Manganese.ppb, Censored, ci = TRUE))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data

# ____________________________________________

#

#Assumed Distribution: Gamma

#

#Censoring Side: left

#

#Censoring Level(s): 25

#

#Estimated Parameter(s): mean = 19.664797
# cv = 1.252936
#

#Estimation Method: MLE

#

#Data: Manganese. ppb

#

#Censoring Variable: Censored

#

#Sample Size: 25

#

#Percent Censored: 24%

#

#Confidence Interval for: mean

#

#Confidence Interval Method: Profile Likelihood

#
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#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = 12.25151
# UCL = 34.35332
# __________

# Compare the confidence interval for the mean
# based on assuming a lognormal distribution versus
# assuming a gamma distribution.

with(EPA.09.Ex.15.1.manganese.df,
elnormAltCensored(Manganese.ppb, Censored,
ci = TRUE))$interval$limits
# LCL UcL
#12.37629 69.87694

with(EPA.09.Ex.15.1.manganese.df,
egammaAltCensored(Manganese.ppb, Censored,
ci = TRUE))S$interval$limits
# LCL UcL
#12.25151 34.35332
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Based on Type I Censored Data

Estimate Shape and Scale Parameters for a Gamma Distribution

Description

Estimate the shape and scale parameters of a gamma distribution given a sample of data that has
been subjected to Type I censoring, and optionally construct a confidence interval for the mean.

Usage
egammaCensored(x, censored, method = "mle"”, censoring.side = "left”,
ci = FALSE, ci.method = "profile.likelihood”, ci.type = "two-sided"”,
conf.level = 0.95, n.bootstraps = 1000, pivot.statistic = "z",
ci.sample.size = sum(!censored))
Arguments
X numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.
censored numeric or logical vector indicating which values of x are censored. This must

be the same length as x. If the mode of censored is "logical”, TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric”,
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method

censoring.side

ci

ci.method

ci.type

conf.level

n.bootstraps

pivot.statistic

ci.sample.size

Details

egammaCensored

it must contain only 1’s and @’s; 1 corresponds to TRUE and @ corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

character string specifying the method of estimation. Currently, the only avail-
able method is maximum likelihood (method="mle").

character string indicating on which side the censoring occurs. The possible
values are "left” (the default) and "right".

logical scalar indicating whether to compute a confidence interval for the mean.
The default value is ci=FALSE.

character string indicating what method to use to construct the confidence in-
terval for the mean. The possible values are "profile.likelihood” (pro-
file likelihood; the default), "normal.approx” (normal approximation), and
"bootstrap” (based on bootstrapping). See the DETAILS section for more
information. This argument is ignored if ci=FALSE.

character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower”, and "upper”. This
argument is ignored if ci=FALSE.

a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

numeric scalar indicating how many bootstraps to use to construct the confi-
dence interval for the mean when ci.type="bootstrap”. This argument is
ignored if ci=FALSE and/or ci.method does not equal "bootstrap”.

character string indicating which pivot statistic to use in the construction of
the confidence interval for the mean when ci.method="normal.approx” or
ci.method="normal.approx.w.cov"” (see the DETAILS section). The possi-
ble values are pivot.statistic="z" (the default) and pivot.statistic="t".
When pivot.statistic="t" you may supply the argument ci.sample size
(see below). The argument pivot.statistic isignored if ci=FALSE.

numeric scalar indicating what sample size to assume to construct the confidence
interval for the mean if pivot.statistic="t" and
ci.method="normal.approx”. The default value is the number of uncensored
observations.

If x or censored contain any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will
be removed prior to performing the estimation.

Let z denote a vector of NV observations from a gamma distribution with parameters shape=x and
scale=0. The relationship between these parameters and the mean p and coefficient of variation 7
of this distribution is given by:

0=p/k (2)
p=r0 (3)
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r=r12 (4)

Assume n (0 < n < N) of these observations are known and ¢ (¢ = N — n) of these observations
are all censored below (left-censored) or all censored above (right-censored) at k£ fixed censoring
levels

Tl,TQ,...,Tk;kZ]. (5)

For the case when k > 2, the data are said to be Type | multiply censored. For the case when k = 1,
set T' = T7. If the data are left-censored and all n known observations are greater than or equal to
T, or if the data are right-censored and all n known observations are less than or equal to 7, then
the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are considered to
be Type I multiply censored.

Let c; denote the number of observations censored below or above censoring level T for j =
1,2,...,k, sothat

k
Z c;=c (6)
i=1
Let (1), T(2), - - - , T(v) denote the “ordered” observations, where now “observation” means either

the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity ;) does not necessarily represent the ¢’th “largest” observation
from the (unknown) complete sample.

Finally, let 2 (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations.

Estimation

Maximum Likelihood Estimation (method="mle")
For Type I left censored data, the likelihood function is given by:

N £ cj ;
vt =(, ") IiF@r I leo) @

where f and F' denote the probability density function (pdf) and cumulative distribution function
(cdf) of the population (Cohen, 1963; Cohen, 1991, pp.6, 50). That is,

tlﬂ*left/e

ft) = TO°T(r) (8)

(Johnson et al., 1994, p.343). For left singly censored data, Equation (7) simplifies to:

N . n
v olo) = (Y )iror I sl ©)
1=c+1
Similarly, for Type I right censored data, the likelihood function is given by:

k
L<n,a|x>=( N )H[l—F(TJ-)]%wa (10)
j=1
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and for right singly censored data this simplifies to:

L(s,0lz) = (N) - PO flew] (1)

C X
=1

The maximum likelihood estimators are computed by minimizing the negative log-likelihood func-
tion.

Confidence Intervals
This section explains how confidence intervals for the mean p are computed.

Likelihood Profile (ci.method="profile.likelihood")

This method was proposed by Cox (1970, p.88), and Venzon and Moolgavkar (1988) introduced an
efficient method of computation. This method is also discussed by Stryhn and Christensen (2003)
and Royston (2007). The idea behind this method is to invert the likelihood-ratio test to obtain
a confidence interval for the mean p while treating the coefficient of variation 7 as a nuisance
parameter. Equation (7) above shows the form of the likelihood function L(y,7|z) for multiply
left-censored data and Equation (10) shows the function for multiply right-censored data, where y
and 7 are defined by Equations (3) and (4).

Following Stryhn and Christensen (2003), denote the maximum likelihood estimates of the mean
and coefficient of variation by (1*,7*). The likelihood ratio test statistic (G?) of the hypothesis
Hy : 1= po (where i is a fixed value) equals the drop in 2log(L) between the “full” model and
the reduced model with p fixed at o, i.e.,

G? = 2{log[L(u*, 7)) = log[L(po, )]} (12)

where 7 is the maximum likelihood estimate of 7 for the reduced model (i.e., when p = ).
Under the null hypothesis, the test statistic G follows a chi-squared distribution with 1 degree of
freedom.

Alternatively, we may express the test statistic in terms of the profile likelihood function L, for the
mean 4, which is obtained from the usual likelihood function by maximizing over the parameter 7,
ie.,

Ly(n) = maz, Lip,7) (1)

Then we have
G? = 2{log[L1 (")) — log[L1(ko)]}  (14)

A two-sided (1 — a)100% confidence interval for the mean p consists of all values of 1y for which
the test is not significant at level alpha:

bGP <xd, . (19)

where X,%,p denotes the p’th quantile of the chi-squared distribution with v degrees of freedom. One-
sided lower and one-sided upper confidence intervals are computed in a similar fashion, except that
the quantity 1 — « in Equation (15) is replaced with 1 — 2q..

Normal Approximation (ci.method="normal.approx”)
This method constructs approximate (1 — «/)100% confidence intervals for ;1 based on the assump-
tion that the estimator of 1 is approximately normally distributed. That is, a two-sided (1 — a)100%
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confidence interval for y is constructed as:

[ﬂ - tl—a/Q,m—la—ﬂv ,[L + tl—a/Q,m—l&ﬂ} (16)

where [i denotes the estimate of u, 6 denotes the estimated asymptotic standard deviation of the
estimator of u, m denotes the assumed sample size for the confidence interval, and ¢,, , denotes the
p’th quantile of Student’s t-distribuiton with v degrees of freedom. One-sided confidence intervals
are computed in a similar fashion.

The argument ci.sample.size determines the value of m and by default is equal to the number of
uncensored observations. This is simply an ad-hoc method of constructing confidence intervals and
is not based on any published theoretical results.

When pivot.statistic="z", the p’th quantile from the standard normal distribution is used in
place of the p’th quantile from Student’s t-distribution.

The standard deviation of the mle of x is estimated based on the inverse of the Fisher Information
matrix.

Bootstrap and Bias-Corrected Bootstrap Approximation (ci.method="bootstrap")

The bootstrap is a nonparametric method of estimating the distribution (and associated distribution
parameters and quantiles) of a sample statistic, regardless of the distribution of the population from
which the sample was drawn. The bootstrap was introduced by Efron (1979) and a general reference
is Efron and Tibshirani (1993).

In the context of deriving an approximate (1 — «)100% confidence interval for the population mean
1, the bootstrap can be broken down into the following steps:

1. Create a bootstrap sample by taking a random sample of size N from the observations in z,
where sampling is done with replacement. Note that because sampling is done with replace-
ment, the same element of x can appear more than once in the bootstrap sample. Thus, the
bootstrap sample will usually not look exactly like the original sample (e.g., the number of
censored observations in the bootstrap sample will often differ from the number of censored
observations in the original sample).

2. Estimate p based on the bootstrap sample created in Step 1, using the same method that was
used to estimate g using the original observations in z. Because the bootstrap sample usually
does not match the original sample, the estimate of y based on the bootstrap sample will
usually differ from the original estimate based on z.

3. Repeat Steps 1 and 2 B times, where B is some large number. For the function egammaCensored,
the number of bootstraps B is determined by the argument n.bootstraps (see the section
ARGUMENTS above). The default value of n.bootstraps is 1000.

4. Use the B estimated values of 1 to compute the empirical cumulative distribution function of
this estimator of y (see ecdfPlot), and then create a confidence interval for p based on this
estimated cdf.

The two-sided percentile interval (Efron and Tibshirani, 1993, p.170) is computed as:

GG, A=) (D)

i
2

where G(t) denotes the empirical cdf evaluated at ¢ and thus G~ (p) denotes the p’th empirical
quantile, that is, the p’th quantile associated with the empirical cdf. Similarly, a one-sided lower
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confidence interval is computed as:

[G7Ha), 0] (18)
and a one-sided upper confidence interval is computed as:
0, G —a)]  (19)

The function egammaCensored calls the R function quantile to compute the empirical quantiles
used in Equations (17)-(19).

The percentile method bootstrap confidence interval is only first-order accurate (Efron and Tibshi-
rani, 1993, pp.187-188), meaning that the probability that the confidence interval will contain the
true value of  can be off by k/+/N, where kis some constant. Efron and Tibshirani (1993, pp.184-
188) proposed a bias-corrected and accelerated interval that is second-order accurate, meaning that
the probability that the confidence interval will contain the true value of y may be off by k/N
instead of k/ \/N . The two-sided bias-corrected and accelerated confidence interval is computed
as:

[G7 (), G (a2)]  (20)

where -
~ 20 Za/2
=@+ ————— 21
a1 [Zo 1— a(Zo n Za/z) ( )
. 20 + 21—a/2
= ®&[2) + — 22
@ =0+ ypr ] (22)
2 =o' G(p)]  (23)
N ~ A3
6= iz () = fii)) (24)

N - N
60 5= () — Ay )12
where the quantity fi(;) denotes the estimate of 1 using all the values in x except the ¢’th one, and

1N
A() =5 Dy (25)
i=1

A one-sided lower confidence interval is given by:

(G} (), o] (26)
and a one-sided upper confidence interval is given by:

0, G (a2)]  (27)
where o and a4 are computed as for a two-sided confidence interval, except «/2 is replaced with

« in Equations (21) and (22).

The constant Zy incorporates the bias correction, and the constant a is the acceleration constant. The
term “acceleration” refers to the rate of change of the standard error of the estimate of 1 with respect
to the true value of p (Efron and Tibshirani, 1993, p.186). For a normal (Gaussian) distribution,
the standard error of the estimate of p does not depend on the value of i, hence the acceleration
constant is not really necessary.

When ci.method="bootstrap”, the function egammaCensored computes both the percentile method
and bias-corrected and accelerated method bootstrap confidence intervals.
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Value

a list of class "estimateCensored” containing the estimated parameters and other information.
See estimateCensored.object for details.

Note

A sample of data contains censored observations if some of the observations are reported only as
being below or above some censoring level. In environmental data analysis, Type I left-censored
data sets are common, with values being reported as “less than the detection limit” (e.g., Helsel,
2012). Data sets with only one censoring level are called singly censored; data sets with multiple
censoring levels are called multiply or progressively censored.

Statistical methods for dealing with censored data sets have a long history in the field of survival
analysis and life testing. More recently, researchers in the environmental field have proposed al-
ternative methods of computing estimates and confidence intervals in addition to the classical ones
such as maximum likelihood estimation. Helsel (2012, Chapter 6) gives an excellent review of past
studies of the properties of various estimators for parameters of a normal or lognormal distribution
based on censored environmental data.

In practice, it is better to use a confidence interval for the mean or a joint confidence region for the
mean and standard deviation (or coefficient of variation), rather than rely on a single point-estimate
of the mean. Few studies have been done to evaluate the performance of methods for construct-
ing confidence intervals for the mean or joint confidence regions for the mean and coefficient of
variation of a gamma distribution when data are subjected to single or multiple censoring. See, for
example, Singh et al. (2006).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

egammaAltCensored, GammabDist, egamma, estimateCensored.object.

Examples

# Chapter 15 of USEPA (2009) gives several examples of estimating the mean
and standard deviation of a lognormal distribution on the log-scale using
manganese concentrations (ppb) in groundwater at five background wells.
In EnvStats these data are stored in the data frame

#
#
#
# EPA.09.Ex.15.1.manganese.df.

++

Here we will estimate the shape and scale parameters using
the data ON THE ORIGINAL SCALE, using the MLE and
# assuming a gamma distribution.

++

# First look at the data:

EPA.09.Ex.15.1.manganese.df

# Sample Well Manganese.Orig.ppb Manganese.ppb Censored

#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#...

#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.09.Ex.15.1.manganese.df,
"Manganese.Orig.ppb"”, "Sample”, "Well”,
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
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#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4  21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

# Now estimate the shape and scale parameters
# using the MLE, and compute a confidence interval
# for the mean using the profile-likelihood method.

with(EPA.99.Ex.15.1.manganese.df,
egammaCensored(Manganese.ppb, Censored, ci = TRUE))

#Results of Distribution Parameter Estimation
#Based on Type I Censored Data

# ____________________________________________

#

#Assumed Distribution: Gamma

#

#Censoring Side: left

#

#Censoring Level(s): 25

#

#Estimated Parameter(s): shape = 0.6370043
# scale = 30.8707533
#

#Estimation Method: MLE

#

#Data: Manganese. ppb
#

#Censoring Variable: Censored

#

#Sample Size: 25

#

#Percent Censored: 24%

#

#Confidence Interval for: mean

#

#Confidence Interval Method: Profile Likelihood
#

#Confidence Interval Type: two-sided

#

#Confidence Level: 95%

#

#Confidence Interval: LCL = 12.25151
# UCL = 34.35332
# __________

# Compare the confidence interval for the mean
# based on assuming a lognormal distribution versus
# assuming a gamma distribution.
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with(EPA.09.Ex.15.1.manganese.df,
elnormAltCensored(Manganese.ppb, Censored,

ci

#

TRUE))$interval$limits
UcCL

#12.37629 69.87694

with(EPA.09.Ex.15.1.manganese.df,
egammaCensored(Manganese.ppb, Censored,

ci

#

TRUE))$interval$limits
UcCL

#12.25151 34.35332

egeom

Estimate Probability Parameter of a Geometric Distribution

Description

Estimate the probability parameter of a geometric distribution.

Usage

egeom(x, method = "mle/mme")

Arguments

X

method

Details

vector of non-negative integers indicating the number of trials that took place
before the first “success” occurred. (The total number of trials that took place is
x+1). Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are allowed
but will be removed. If length(x)=n and n is greater than 1, it is assumed that
X represents observations from n separate geometric experiments that all had the
same probability of success (prob).

character string specifying the method of estimation. Possible values are
"mle/mme"” (maximum likelihood and method of moments; the default) and
"mvue” (minimum variance unbiased). You cannot use method="mvue" if
length(x)=1. See the DETAILS section for more information on these estima-
tion methods.

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Letz = (21,9, ..

., Ty) be a vector of n independent observations from a geometric distribution

with parameter prob=p.
It can be shown (e.g., Forbes et al., 2011) that if X is defined as:

X:zn:l‘i
i=1



egeom 231

then X is an observation from a negative binomial distribution with parameters prob=p and size=n.

Estimation
The maximum likelihood and method of moments estimator (mle/mme) of p is given by:

n
X+n

ﬁm,le =

and the minimum variance unbiased estimator (mvue) of p is given by:

R _ n—1
meUE_X+n_1

(Forbes et al., 2011). Note that the mvue of p is not defined for n = 1.

Value

a list of class "estimate” containing the estimated parameters and other information. See
estimate.object for details.

Note

The geometric distribution with parameter prob=p is a special case of the negative binomial distri-
bution with parameters size=1 and prob=p.

The negative binomial distribution has its roots in a gambling game where participants would bet on
the number of tosses of a coin necessary to achieve a fixed number of heads. The negative binomial
distribution has been applied in a wide variety of fields, including accident statistics, birth-and-death
processes, and modeling spatial distributions of biological organisms.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and A. Kemp. (1992). Univariate Discrete Distributions. Second Edition.
John Wiley and Sons, New York, Chapter 5.
See Also

Geometric, enbinom, NegBinomial.

Examples

# Generate an observation from a geometric distribution with parameter
# prob=0.2, then estimate the parameter prob.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rgeom(1, prob = 0.2)
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dat
#[1] 4

egeom(dat)
#Results of Distribution Parameter Estimation

#

#Assumed Distribution: Geometric
#

#Estimated Parameter(s): prob = 0.2
#

#Estimation Method: mle/mme

#

#Data: dat

#

#Sample Size: 1

# __________

# Generate 3 observations from a geometric distribution with parameter
# prob=0.2, then estimate the parameter prob with the mvue.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(200)

dat <- rgeom(3, prob = 0.2)
dat

#1101 2

egeom(dat, method = "mvue”)
#Results of Distribution Parameter Estimation

#Assumed Distribution: Geometric
#

#Estimated Parameter(s): prob = 0.4
#

#Estimation Method: mvue

#

#Data: dat

#

#Sample Size: 3

rm(dat)

egevd

egevd

Estimate Parameters of a Generalized Extreme Value Distribution
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Description

Estimate the location, scale and shape parameters of a generalized extreme value distribution, and
optionally construct a confidence interval for one of the parameters.

Usage

egevd(x, method = "mle", pwme.method = "unbiased”, tsoe.method = "med”,
plot.pos.cons = c(a = 0.35, b = @), ci = FALSE, ci.parameter = "location”,
ci.type = "two-sided”, ci.method = "normal.approx”, information = "observed”,
conf.level = 0.95)

Arguments

X numeric vector of observations.

method character string specifying the method of estimation. Possible values are "mle”
(maximum likelihood; the default), "pwme” (probability-weighted moments),
and "tsoe"” (two-stage order-statistics estimator of Castillo and Hadi (1994)).
See the DETAILS section for more information on these estimation methods.

pwme . method character string specifying what method to use to compute the probability-weighted
moments when method="pwme". The possible values are "ubiased” (method
based on the U-statistic; the default), or "plotting.position” (method based
on the plotting position formula). See the DETAILS section in this help file and
the help file for pwMoment for more information. This argument is ignored if
method is not equal to "pwme”.

tsoe.method character string specifying the robust function to apply in the second stage of
the two-stage order-statistics estimator when method="tsoe". Possible values
are "med” (median; the default), and "1ms” (least median of squares). See the
DETAILS section for more information on these estimation methods. This ar-
gument is ignored if method is not equal to "tsoe”.

plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="pwme" and
pwme.method="plotting.position”. The default value is
plot.pos.cons=c(a=0.35, b=0). If this vector has a names attribute with the
value c("a","b") or c("b","a"), then the elements will be matched by name
in the formula for computing the plotting positions. Otherwise, the first element
is mapped to the name "a" and the second element to the name "b". See the DE-
TAILS section in this help file and the help file for pwMoment for more informa-
tion. This argument is used only if method="tsoe", or if both method="pwme"
and pwme.method="plotting.position”.

ci logical scalar indicating whether to compute a confidence interval for the loca-
tion, scale, or shape parameter. The default value is FALSE.

ci.parameter character string indicating the parameter for which the confidence interval is de-
sired. The possible values are "location” (the default), "scale”, or "shape”.
This argument is ignored if ci=FALSE.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower"”, and "upper”. This
argument is ignored if ci=FALSE.



234

ci.method

information

conf.level

Details

egevd

character string indicating what method to use to construct the confidence in-
terval for the location or scale parameter. Currently, the only possible value is
"normal.approx"” (the default). See the DETAILS section for more informa-
tion. This argument is ignored if ci=FALSE.

character string indicating which kind of Fisher information to use when com-
puting the variance-covariance matrix of the maximum likelihood estimators.
The possible values are "observed” (the default) and "expected”. See the
DETAILS section for more information. This argument is used only when
method="mle"” and ci=TRUE.

a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let z = (z1, 2o, . .

., Zp) be a vector of n observations from a generalized extreme value distribu-

tion with parameters location=7, scale=6, and shape=k.

Estimation

Maximum Likelihood Estimation (method="mle")
The log likelihood function is given by:

where

L(naea’%) = —nlog(@) - (1 - K) Zyz - Zeyi
i=1 i=1

1 — k(= —77)]

1
Y - og[ 7

(see, for example, Jenkinson, 1969; Prescott and Walden, 1980; Prescott and Walden, 1983; Hosk-
ing, 1985; MacLeod, 1989). The maximum likelihood estimators (MLE’s) of 7, 6, and « are those
values that maximize the likelihood function, subject to the following constraints:

0>0
k<1

0
xi<77+;if/<a>0

0
Z‘i>77+gifli<0

Although in theory the value of x may lie anywhere in the interval (—oo, c0) (see GEVD), the
constraint £ < 1 is imposed because when x > 1 the likelihood can be made infinite and thus
the MLE does not exist (Castillo and Hadi, 1994). Hence, this method of estimation is not valid
when the true value of « is larger than 1. Hosking (1985) and Hosking et al. (1985) note that in
practice the value of & tends to lie in the interval —1/2 < k < 1/2.

The value of —L is minimized using the R function nlminb. Prescott and Walden (1983) give
formulas for the gradient and Hessian. Only the gradient is supplied in the call to nlminb. The
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values of the PWME (see below) are used as the starting values. If the starting value of « is less
than 0.001 in absolute value, it is reset to sign(k) * 0.001, as suggested by Hosking (1985).

Probability-Weighted Moments Estimation (method="pwme")

The idea of probability-weighted moments was introduced by Greenwood et al. (1979). Landwehr
et al. (1979) derived probability-weighted moment estimators (PWME’s) for the parameters of the
Type I (Gumbel) extreme value distribution. Hosking et al. (1985) extended these results to the
generalized extreme value distribution. See the abstract for Hosking et al. (1985) for details on how
these estimators are computed.

Two-Stage Order Statistics Estimation (method="tsoe")

The two-stage order statistics estimator (TSOE) was introduced by Castillo and Hadi (1994) as an
alternative to the MLE and PWME. Unlike the MLE and PWME, the TSOE of « exists for all
combinations of sample values and possible values of . See the abstract for Castillo and Hadi
(1994) for details on how these estimators are computed. In the second stage, Castillo and Hadi
(1984) suggest using either the median or the least median of squares as the robust function. The
function egevd allows three options for the robust function: median (tsoe.method="med"; see
the R help file for median), least median of squares (tsoe.method="1ms"; see the help file for
Imsreg in the package MASS), and least trimmed squares (tsoe.method="1ts"; see the help file
for 1tsreg in the package MASS).

Confidence Intervals

When ci=TRUE, an approximate (1 — «)100% confidence intervals for 7 can be constructed as-
suming the distribution of the estimator of 7 is approximately normally distributed. A two-sided
confidence interval is constructed as:

[H—tn—1,1—-0a/2)64 H+tn—1,1—a/2)64]

where ¢(v,p) is the p’th quantile of Student’s t-distribution with v degrees of freedom, and the
quantity

i
denotes the estimated asymptotic standard deviation of the estimator of 7.

Similarly, a two-sided confidence interval for 6 is constructed as:
[0 —t(n—1,1—a/2)d;, 0 +tn—1,1—a/2)6,]
and a two-sided confidence interval for x is constructed as:

[h—tn—1,1— a/2)ds, & +tn—1,1— a/2)55]

One-sided confidence intervals for 7, 6, and « are computed in a similar fashion.

Maximum Likelihood Estimator (method="mle")

Prescott and Walden (1980) derive the elements of the Fisher information matrix (the expected infor-
mation). The inverse of this matrix, evaluated at the values of the MLE, is the estimated asymptotic
variance-covariance matrix of the MLE. This method is used to estimate the standard deviations of
the estimated distribution parameters when information="expected”. The necessary regularity
conditions hold for x < 1/2. Thus, this method of constructing confidence intervals is not valid
when the true value of « is greater than or equal to 1/2.

Prescott and Walden (1983) derive expressions for the observed information matrix (i.e., the Hes-
sian). This matrix is used to compute the estimated asymptotic variance-covariance matrix of the
MLE when information="observed".
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In computer simulations, Prescott and Walden (1983) found that the variance-covariance matrix
based on the observed information gave slightly more accurate estimates of the variance of MLE of
+ compared to the estimated variance based on the expected information.

Probability-Weighted Moments Estimator (method="pwme")

Hosking et al. (1985) show that these estimators are asymptotically multivariate normal and derive
the asymptotic variance-covariance matrix. See the abstract for Hosking et al. (1985) for details on
how this matrix is computed.

Two-Stage Order Statistics Estimator (method="tsoe")
Currently there is no built-in method in EnvStats for computing confidence intervals when
method="tsoe". Castillo and Hadi (1994) suggest using the bootstrap or jackknife method.

Value

a list of class "estimate” containing the estimated parameters and other information. See
estimate.object for details.

Note

Two-parameter extreme value distributions (EVD) have been applied extensively since the 1930’s
to several fields of study, including the distributions of hydrological and meteorological variables,
human lifetimes, and strength of materials. The three-parameter generalized extreme value dis-
tribution (GEVD) was introduced by Jenkinson (1955) to model annual maximum and minimum
values of meteorological events. Since then, it has been used extensively in the hydological and
meteorological fields.

The three families of EVDs are all special kinds of GEVDs. When the shape parameter x = 0, the
GEVD reduces to the Type I extreme value (Gumbel) distribution. (The function zTestGevdShape
allows you to test the null hypothesis Hy : « = 0.) When x > 0, the GEVD is the same as the
Type II extreme value distribution, and when £ < 0 it is the same as the Type III extreme value
distribution.

Hosking et al. (1985) compare the asymptotic and small-sample statistical properties of the PWME
with the MLE and Jenkinson’s (1969) method of sextiles. Castillo and Hadi (1994) compare the
small-sample statistical properties of the MLE, PWME, and TSOE. Hosking and Wallis (1995)
compare the small-sample properties of unbaised L-moment estimators vs. plotting-position L-
moment estimators. (PWMESs can be written as linear combinations of L-moments and thus have
equivalent statistical properties.) Hosking and Wallis (1995) conclude that unbiased estimators
should be used for almost all applications.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

Generalized Extreme Value Distribution, zTestGevdShape, Extreme Value Distribution, eevd.

Examples

# Generate 20 observations from a generalized extreme value distribution

# with parameters location=2, scale=1, and shape=0.2, then compute the

# MLE and construct a 90% confidence interval for the location parameter.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(498)
dat <- rgevd(20, location = 2, scale = 1, shape = 0.2)
egevd(dat, ci = TRUE, conf.level = 0.9)

#Results of Distribution Parameter Estimation

# ____________________________________________

#

#Assumed Distribution: Generalized Extreme Value
#

#Estimated Parameter(s): location = 1.6144631

# scale = 0.9867007
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# shape = 0.2632493
#

#Estimation Method: mle

#

#Data: dat

#

#Sample Size: 20

#

#Confidence Interval for: location

#

#Confidence Interval Method: Normal Approximation
# (t Distribution) based on
# observed information
#

#Confidence Interval Type: two-sided

#

#Confidence Level: 90%

#

#Confidence Interval: LCL = 1.225249

# UCL = 2.003677

# __________

# Compare the values of the different types of estimators:

egevd(dat, method = "mle”)$parameters
# location scale shape
#1.6144631 0.9867007 0.2632493

egevd(dat, method = "pwme")$parameters
# location scale shape
#1.5785779 1.0187880 0.2257948

egevd(dat, method = "pwme"”, pwme.method = "plotting.position”)$parameters
# location scale shape
#1.5509183 0.9804992 0.1657040

egevd(dat, method = "tsoe")$parameters
# location scale shape
#1.5372694 1.0876041 0.2927272

egevd(dat, method = "tsoe", tsoe.method = "lms")$parameters
#location scale shape
#1.519469 1.081149 0.284863

egevd(dat, method = "tsoe”, tsoe.method = "lts")$parameters
# location scale shape
#1.4840198 1.0679549 0.2691914
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ehyper

Estimate Parameter of a Hypergeometric Distribution

Description

Estimate m, the number of white balls in the urn, or m + n, the total number of balls in the urn, for
a hypergeometric distribution.

Usage

ehyper(x, m = NULL, total = NULL, k, method = "mle")

Arguments

X

total

method

Details

non-negative integer indicating the number of white balls out of a sample of size
k drawn without replacement from the urn. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

non-negative integer indicating the number of white balls in the urn. You must
supply m or total, but not both. Missing values (NAs) are not allowed.

positive integer indicating the total number of balls in the urn (i.e., m+n). You
must supply m or total, but not both. Missing values (NAs) are not allowed.

positive integer indicating the number of balls drawn without replacement from
the urn. Missing values (NAs) are not allowed.

character string specifying the method of estimation. Possible values are "mle"
(maximum likelihood; the default) and "mvue” (minimum variance unbiased).
The mvue method is only available when you are estimating m (i.e., when you
supply the argument total). See the DETAILS section for more information on
these estimation methods.

Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

Let x be an observation from a hypergeometric distribution with parameters m=M, n=N, and k=K.
In R nomenclature, x represents the number of white balls drawn out of a sample of K balls drawn
without replacement from an urn containing M white balls and /N black balls. The total number of
balls in the urn is thus M 4 N. Denote the total number of balls by 7' = M + N.

Estimation

Estimating M, Given T and K are known
When T and K are known, the maximum likelihood estimator (mle) of M is given by (Forbes et

al., 2011):

Mo = floor[(T+1)z/K] (1)
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where floor() represents the floor function. That is, floor(y) is the largest integer less than or
equal to y.

If the quantity floor[(T + 1)x/K] is an integer, then the mle of M is also given by (Johnson et al.,
1992, p.263):
Mpie =[(T+1)z/K] -1 (2)

which is what the function ehyper uses for this case.

The minimum variance unbiased estimator (mvue) of M is given by (Forbes et al., 2011):

Mpoue = (Tz/K)  (3)

Estimating T, given M and K are known
When M and K are known, the maximum likelihood estimator (mle) of 7" is given by (Forbes et
al., 2011):

Tomie = floor(KM/z) (4)

Value

alist of class "estimate” containing the estimated parameters and other information. See
estimate.object for details.

Note

The hypergeometric distribution can be described by an urn model with A white balls and N black
balls. If K balls are drawn with replacement, then the number of white balls in the sample of size
K follows a binomial distribution with parameters size=K and prob=M /(M + N). If K balls
are drawn without replacement, then the number of white balls in the sample of size K follows a
hypergeometric distribution with parameters m=M, n=N, and k=K.

The name “hypergeometric” comes from the fact that the probabilities associated with this distribu-
tion can be written as successive terms in the expansion of a function of a Gaussian hypergeometric
series.

The hypergeometric distribution is applied in a variety of fields, including quality control and es-
timation of animal population size. It is also the distribution used to compute probabilities for
Fishers’s exact test for a 2x2 contingency table.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and A. Kemp. (1992). Univariate Discrete Distributions. Second Edition.
John Wiley and Sons, New York, Chapter 6.



ehyper 241

See Also

Hypergeometric.

Examples

# Generate an observation from a hypergeometric distribution with
parameters m=10, n=30, and k=5, then estimate the parameter m.

Note: the call to set.seed simply allows you to reproduce this example.
Also, the only parameter actually estimated is m; once m is estimated,

n is computed by subtracting the estimated value of m (8 in this example)
from the given of value of m+n (40 in this example). The parameters

n and k are shown in the output in order to provide information on

all of the parameters associated with the hypergeometric distribution.

T N

set.seed(250)

dat <- rhyper(nn =1, m =10, n = 30, k = 5)
dat

#[1]1 1

ehyper(dat, total = 40, k = 5)

#Results of Distribution Parameter Estimation

# ____________________________________________
#

#Assumed Distribution: Hypergeometric
#

#Estimated Parameter(s): m= 8

# n = 32

# k=5

#

#Estimation Method: mle for 'm'
#

#Data: dat

#

#Sample Size: 1

# __________

# Use the same data as in the previous example, but estimate m+n instead.
# Note: The only parameter estimated is m+n. Once this is estimated,

# n is computed by subtracting the given value of m (10 in this case)

# from the estimated value of m+n (50 in this example).

ehyper(dat, m = 10, k = 5)

#Results of Distribution Parameter Estimation

# ____________________________________________

#

#Assumed Distribution: Hypergeometric
#

#Estimated Parameter(s): m=10

# n

40
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# k=5

#

#Estimation Method: mle for 'm+n'
#

#Data: dat

#

#Sample Size:

rm(dat)

elnorm

Estimate Parameters of a Lognormal Distribution (Log-Scale)

Description

Estimate the mean and standard deviation parameters of the logarithm of a lognormal distribution,
and optionally construct a confidence interval for the mean.

Usage
elnorm(x, method = "mvue”, ci = FALSE, ci.type = "two-sided”,
ci.method = "exact”, conf.level = 0.95)
Arguments
X numeric vector of observations.
method character string specifying the method of estimation. Possible values are "mvue”
(minimum variance unbiased; the default), and "mle/mme"” (maximum likeli-
hood/method of moments). See the DETAILS section for more information on
these estimation methods.
ci logical scalar indicating whether to compute a confidence interval for the mean.
The default value is FALSE.
ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower”, and "upper”. This
argument is ignored if ci=FALSE.
ci.method character string indicating what method to use to construct the confidence inter-
val for the mean or variance. The only possible value is "exact” (the default).
See the DETAILS section for more information. This argument is ignored if
ci=FALSE.
conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-

terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.
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Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let X denote a random variable with a lognormal distribution with parameters meanlog=y and
sdlog=0. Then Y = log(X) has a normal (Gaussian) distribution with parameters mean=g and

sd=o. Thus, the function elnorm simply calls the function enorm using the log-transformed values
of x.

Value

a list of class "estimate” containing the estimated parameters and other information. See
estimate.object for details.

Note

The normal and lognormal distribution are probably the two most frequently used distributions to
model environmental data. In order to make any kind of probability statement about a normally-
distributed population (of chemical concentrations for example), you have to first estimate the mean
and standard deviation (the population parameters) of the distribution. Once you estimate these
parameters, it is often useful to characterize the uncertainty in the estimate of the mean or variance.
This is done with confidence intervals.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Aitchison, J., and J.A.C. Brown (1957). The Lognormal Distribution (with special references to its
uses in economics). Cambridge University Press, London, Chapter 5.

Crow, E.L., and K. Shimizu. (1988). Lognormal Distributions: Theory and Applications. Marcel
Dekker, New York, Chapter 2.

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

Limpert, E., W.A. Stahel, and M. Abbt. (2001). Log-Normal Distributions Across the Sciences:
Keys and Clues. BioScience 51, 341-352.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.
USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery

Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C.
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See Also

Lognormal, LognormalAlt, Normal.

Examples

elnorm3

# Using the Reference area TcCB data in the data frame EPA.94b.tccb.df,
# estimate the mean and standard deviation of the log-transformed distribution,
# and construct a 95% confidence interval for the mean.

with(EPA.94b.tccb.df, elnorm(TcCB[Area == "Reference”], ci = TRUE))

#Results of Distribution Parameter Estimation

#Assumed Distribution: Lognormal
#
#Estimated Parameter(s): meanlog = -0.6195712
# sdlog = 0.4679530
#
#Estimation Method: mvue
#
#Data: TcCB[Area == "Reference"]
#
#Sample Size: 47
#
#Confidence Interval for: mean
#
#Confidence Interval Method: Exact
#
#Confidence Interval Type: two-sided
#
#Confidence Level: 95%
#
#Confidence Interval: LCL = -0.7569673
# UCL = -0.4821751
elnorm3 Estimate Parameters of a Three-Parameter Lognormal Distribution
(Log-Scale)
Description

Estimate the mean, standard deviation, and threshold parameters for a three-parameter lognormal
distribution, and optionally construct a confidence interval for the threshold or the median of the

distribution.
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Usage

elnorm3(x, method = "1lmle"”, ci = FALSE, ci.parameter = "threshold”,
ci.method = "avar”, ci.type = "two-sided”, conf.level = 0.95,
threshold.lb.sd = 100, evNormOrdStats.method = "royston”)

Arguments

X numeric vector of observations.
method character string specifying the method of estimation. Possible values are:
e "Imle"” (local maximum likelihood; the default)
e "mme" (method of moments)
e "mmue” (method of moments using an unbaised estimate of variance)
e "mmme” (modified method of moments due to Cohen and Whitten (1980))
e "zero.skew" (zero-skewness estimator due to Griffiths (1980))
* "royston.skew" (estimator based on Royston’s (1992b) index of skew-
ness).
See the DETAILS section for more information.
ci logical scalar indicating whether to compute a confidence interval for either the
threshold or median of the distribution. The default value is FALSE.
ci.parameter  character string indicating the parameter for which the confidence interval is
desired. The possible values are "threshold"” (the default) and "median”. This
argument is ignored if ci=FALSE.
ci.method character string indicating the method to use to construct the confidence inter-
val. The possible values are "avar” (asymptotic variance; the default),
"likelihood.profile”, and "skewness"” (method suggested by Royston (1992b)
for method="zero.skew"). This argument is ignored if ci=FALSE.
ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower”, and "upper”. This
argument is ignored if ci=FALSE.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence in-
terval. The default value is conf.level=0.95. This argument is ignored if
ci=FALSE.

threshold.1lb.sd

a positive numeric scalar specifying the range over which to look for the local
maximum likelihood (method="1mle") or zero-skewness
(method="zero.skewness") estimator of threshold. The range is set to

[ mean(x) - threshold.1lb.sd * sd(x), min(x) ]. If you receive a warning
message that elnorm3 is unable to find an acceptable estimate of threshold in
this range, it may be because of convergence problems specific to the data in
x. When this occurs, try changing the value of threshold.1lb.sd. This same
range is used in constructing confidence intervals for the threshold parameter.
The default value is threshold.1lb.sd=100. This argument is relevant only if
method="1mle", method="zero.skew", ci.method="1ikelihood.profile”,

and/or ci.method="skewness".
evNormOrdStats.method

character string indicating which method to use in the call to 1ink{evNormOrdStatsScalar}
when method="mmme". See the DETAILS section for more information.
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Details

If x contains any missing (NA), undefined (NaN) or infinite (Inf, -Inf) values, they will be removed
prior to performing the estimation.

Let X denote a random variable from a three-parameter lognormal distribution with parameters
meanlog=pu, sdlog=c, and threshold=y. Let z denote a vector of n observations from this distri-
bution. Furthermore, let z(;) denote the ¢’th order statistic in the sample, so that z(;y denotes the
smallest value and x(,,) denote the largest value in z. Finally, denote the sample mean and variance

by:
I
x:foi (1)
ni:l
2= LS
n—ll:1 ¢

Note that the sample variance is the unbiased version. Denote the method of moments estimator of
variance by:

Estimation

Local Maximum Likelihood Estimation (nethod="1mle")

Hill (1963) showed that the likelihood function approaches infinity as - approaches z(y), so that
the global maximum likelihood estimators of (1, 0, ) are (—o0, 00, (1)), which are inadmissible,
since v must be smaller than ;). Cohen (1951) suggested using local maximum likelihood esti-
mators (Imle’s), derived by equating partial derivatives of the log-likelihood function to zero. These
estimators were studied by Harter and Moore (1966), Calitz (1973), Cohen and Whitten (1980), and
Griffiths (1980), and appear to possess most of the desirable properties ordinarily associated with
maximum likelihood estimators.

Cohen (1951) showed that the Imle of y is given by the solution to the following equation:

n

DOEST) SIS ST L) S SR SE S INE)
=1 i=1 i=1 =1 i

i=1

where
w; =z; —4 (5)

yi = log(w; — 7) = log(w;) (6)

and that the Imle’s of © and o then follow as:

ﬂ:

Zyi =y (7)

S

1 n
A2 —\2
P (vi—9)° (8)
Unfortunately, while equation (4) simplifies the task of computing the Imle’s, for certain data sets
there still may be convergence problems (Calitz, 1973), and occasionally multiple roots of equation
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(4) may exist. When multiple roots to equation (4) exisit, Cohen and Whitten (1980) recommend
using the one that results in closest agreement between the mle of p (equation (7)) and the sample
mean (equation (1)).

On the other hand, Griffiths (1980) showed that for a given value of the threshold parameter ~, the
maximized value of the log-likelihood (the “profile likelihood” for «) is given by:

log[L(7)] = [ +log(2m) + 24 + log(6%)]  (9)

where the estimates of p and o are defined in equations (7) and (8), so the Imle of v reduces to
an iterative search over the values of . Griffiths (1980) noted that the distribution of the Imle of
~v is far from normal and that log[L(~y)] is not quadratic near the Imle of . He suggested a better
parameterization based on

n=—log(xay—~) (10)
Thus, once the Imle of 7 is found using equations (9) and (10), the Imle of  is given by:

y =z —exp(—n) (11)

‘When method="1mle", the function elnorm3 uses the function nlminb to search for the minimum
of —2log|[L(n)], using the modified method of moments estimator (method="mmme"; see below) as
the starting value for . Equation (11) is then used to solve for the Imle of ~, and equation (4)
is used to “fine tune” the estimated value of . The Imle’s of x4 and o are then computed using
equations (6)-(8).

Method of Moments Estimation (method="mme")
Denote the r’th sample central moment by:

and note that
s2 =my (13)

Equating the sample first moment (the sample mean) with its population value (the population
mean), and equating the second and third sample central moments with their population values
yields (Johnson et al., 1994, p.228):

T=y+pVw (14)
my = 82, = frw(w —1) (15)
ms = w3 ?(w—1)}(w+2) (16)
where
B =exp(u) (17)
w=exp(c?) (18)

Combining equations (15) and (16) yields:

ms
2
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The quantity on the left-hand side of equation (19) is the usual estimator of skewness. Solving
equation (19) for w yields:

O=(d+n2+d-nY2=1 (20)

where b
d=1+ 51 (21)

h = sqrtd*> —1 (22)

Using equation (18), the method of moments estimator of ¢ is then computed as:
6% =log(&) (23)

Combining equations (15) and (17), the method of moments estimator of 1 is computed as:

m ) (aa)

1
V= Logl— Sm
a Og[om?aga(d) -1)

2

Finally, using equations (14), (17), and (18), the method of moments estimator of v is computed as:

6’2
T — exp(mu + 7) (25)
There are two major problems with using method of moments estimators for the three-parameter
lognormal distribution. First, they are subject to very large sampling error due to the use of sec-
ond and third sample moments (Cohen, 1988, p.121; Johnson et al., 1994, p.228). Second, Heyde
(1963) showed that the lognormal distribution is not uniquely determined by its moments.

Method of Moments Estimators Using an Unbiased Estimate of Variance (method="mmue")

This method of estimation is exactly the same as the method of moments (method="mme"), except
that the unbiased estimator of variance (equation (3)) is used in place of the method of moments
one (equation (4)). This modification is given in Cohen (1988, pp.119-120).

Modified Method of Moments Estimation (method="mmme")

This method of estimation is described by Cohen (1988, pp.125-132). It was introduced by Cohen
and Whitten (1980; their MME-II with r=1) and was further investigated by Cohen et al. (1985). It
is motivated by the fact that the first order statistic in the sample, z (1), contains more information
about the threshold parameter ~ than any other observation and often more information than all of
the other observations combined (Cohen, 1988, p.125).

The first two sets of equations are the same as for the modified method of moments estimators
(method="mmme"), i.e., equations (14) and (15) with the unbiased estimator of variance (equation
(3)) used in place of the method of moments one (equation (4)). The third equation replaces equation
(16) by equating a function of the first order statistic with its expected value:

log(x(y —7) = p+oE[Zn ] (26)

where E[Z; )] denotes the expected value of the 7’th order statistic in a random sample of 1 obser-
vations from a standard normal distribution. (See the help file for evNormOrdStats for information
on how E[Z(; )] is computed.) Using equations (17) and (18), equation (26) can be rewritten as:

x1) = v + Pexp{\/log(w) E[Z; ]}  (27)
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Combining equations (14), (15), (17), (18), and (27) yields the following equation for the estimate
of w: )
o(w—1

_ s I w(w ) (28)

[T — 2] [\@ — exp{~/log(w) E[Z; ] }]?
After equation (28) is solved for w, the estimate of o is again computed using equation (23), and
the estimate of u is computed using equation (24), where the unbiased estimate of variaince is used
in place of the biased one (just as for method="mmue").

Zero-Skewness Estimation (method="zero.skew")
This method of estimation was introduced by Griffiths (1980), and elaborated upon by Royston
(1992b). The idea is that if the threshold parameter v were known, then the distribution of:

Y =log