Type: | Package |
Version: | 0.4.0 |
Title: | Distributed Loading Estimation for General Factor Model |
Depends: | R (≥ 3.5.0) |
Suggests: | testthat (≥ 3.0.0) |
Description: | The load estimation method is based on a general factor model to solve the estimates of load and specific variance. The philosophy of the package is described in Guangbao Guo. (2022). <doi:10.1007/s00180-022-01270-z>. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
Imports: | elasticnet, stats |
LazyData: | true |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2024-02-21 12:42:58 UTC; 17993 |
Author: | Guangbao Guo [aut, cre, cph], Yaping Li [aut] |
Maintainer: | Guangbao Guo <ggb11111111@163.com> |
Repository: | CRAN |
Date/Publication: | 2024-02-22 21:00:07 UTC |
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
BlPC(data,m)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
Value
ABr |
estimation of load value |
ABc |
estimation of load value |
DBr |
estimation of error term |
DBc |
estimation of error term |
SigmaB1hat |
estimation of covariance |
SigmaB2hat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
BlPC(data=ISE,m=3)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DBlPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
ABr |
estimation of load value |
ABc |
estimation of load value |
DBr |
estimation of error term |
DBc |
estimation of error term |
SigmaB1hat |
estimation of covariance |
SigmaB2hat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DBlPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DFanPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
AF |
estimation of load value |
DF |
estimation of error term |
SigmahatF |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DFanPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DGaoPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
AG1 |
estimation of load value |
AG2 |
estimation of load value |
DG1 |
estimation of error term |
DG2 |
estimation of error term |
SigmahatG1 |
estimation of covariance |
SigmahatG2 |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DGaoPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DGulPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
AU1 |
estimation of load value |
AU2 |
estimation of load value |
DU3 |
estimation of error term |
S1hat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DGulPC(data=ISE,m=3,n1=107,K=5)
Dow Jones industrial average
Description
The Dow Jones industrial average (DJIA) data set.
Usage
data("DJIA")
Format
GAS.F
a numeric vector
Nikkei.F
a numeric vector
NZD
a numeric vector
silver.F
a numeric vector
RUSSELL.F
a numeric vector
S.P.F
a numeric vector
CHF
a numeric vector
Dollar.index.F
a numeric vector
Dollar.index
a numeric vector
wheat.F
a numeric vector
XAG
a numeric vector
XAU
a numeric vector
Details
The data set comes from the Dow Jones industrial average (PSA) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(DJIA)
## maybe str(DJIA) ; plot(DJIA) ...
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
Ahat |
estimation of load value |
Dhat |
estimation of error term |
Sigmahat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DPC(data=ISE,m=3,n1=107,K=5)
Distributed Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
DPPC(data,m,n1,K)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
n1 |
The n1 is the length of each data subset |
K |
The K is the number of nodes |
Value
Apro |
estimation of load value |
Dpro |
estimation of error term |
Sigmahatpro |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
DPPC(data=ISE,m=3,n1=107,K=5)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
FanPC(data,m)
Arguments
data |
The data is total data set |
m |
The m is the number of principal component |
Value
AF |
estimation of load value |
DF |
estimation of error term |
SigmahatF |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
FanPC(data=ISE,m=3)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
GaoPC(data,m)
Arguments
data |
The data is total data set |
m |
The m is the number of principal component |
Value
AG1 |
estimation of load value |
AG2 |
estimation of load value |
DG1 |
estimation of error term |
DG2 |
estimation of error term |
SigmahatG1 |
estimation of covariance |
SigmahatG2 |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
GaoPC(data=ISE,m=3)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
GulPC(data,m)
Arguments
data |
The data is total data set |
m |
The m is the number of first layer principal component |
Value
AU1 |
estimation of load value |
AU2 |
estimation of load value |
DU3 |
estimation of error term |
Shat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
GulPC(data=ISE,m=3)
Istanbul Stock Exchange
Description
The Istanbul Stock Exchange (ISE) data set.
Usage
data("ISE")
Format
ISE
a numeric vector
SP
a numeric vector
DAX
a numeric vector
FTSE
a numeric vector
NIKKEI
a numeric vector
BOVESPA
a numeric vector
EU
a numeric vector
EM
a numeric vector
Details
The data set comes from the Istanbul Stock Exchange (ISE) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(ISE)
## maybe str(ISE) ; plot(ISE) ...
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
PC(data,m)
Arguments
data |
The data is a highly correlated data set |
m |
The m is the number of principal component |
Value
Ahat |
estimation of load value |
Dhat |
estimation of error term |
Sigmahat |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
PC(data=ISE,m=3)
Loading Estimation for General Factor Model
Description
This function estimates the load and residual terms based on the general factor model and calculates the estimated values.
Usage
PPC(data,m)
Arguments
data |
The data is total data set |
m |
The m is the number of principal component |
Value
Apro |
estimation of load value |
Dpro |
estimation of error term |
Sigmahatpro |
estimation of covariance |
Author(s)
Guangbao Guo, Yaping Li
Examples
PPC(data=ISE,m=3)
New York Stock Exchange Composite Index
Description
The New York Stock Exchange Composite Index SECI(SECI) data set.
Usage
data("SECI")
Format
GBP
a numeric vector
JPY
a numeric vector
CAD
a numeric vector
AAPL
a numeric vector
AMZN
a numeric vector
GE
a numeric vector
JPM
a numeric vector
MSFT
a numeric vector
WFC
a numeric vector
XOM
a numeric vector
FCHI
a numeric vector
FTSE
a numeric vector
GDAXI
a numeric vector
Details
The data set comes from the prostate specific antigen (PSA) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(SECI)
## maybe str(SECI) ; plot(SECI) ...
Stock Portfolio Performance
Description
The Stock Portfolio Performance (SPP) data set.
Usage
data("SPP")
Format
X1
a numeric vector
X2
a numeric vector
X3
a numeric vector
X4
a numeric vector
X5
a numeric vector
X6
a numeric vector
X7
a numeric vector
X8
a numeric vector
X9
a numeric vector
X10
a numeric vector
Details
The data set comes from the Stock Portfolio Performance (SPP) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.
Source
The Stanford University Medical Center.
References
NA
Examples
data(SPP)
## maybe str(SPP) ; plot(SPP) ...