The mice function is one of the most used functions to
apply multiple imputation. This page shows how functions in the
psfmi package can be easily used in combination with
mice. In this way multivariable models can easily be
developed in combination with mice.
You can install the released version of psfmi with:
install.packages("psfmi")And the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("mwheymans/psfmi")You can install the released version of mice with:
install.packages("mice")
library(psfmi)
library(mice)
#>
#> Attaching package: 'mice'
#> The following object is masked from 'package:stats':
#>
#> filter
#> The following objects are masked from 'package:base':
#>
#> cbind, rbind
imp <- mice(lbp_orig, m=5, maxit=5)
#>
#> iter imp variable
#> 1 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
data_comp <- complete(imp, action = "long", include = FALSE)
library(psfmi)
pool_lr <- psfmi_lr(data=data_comp, nimp=5, impvar=".imp",
formula=Chronic ~ Gender + Smoking + Function +
JobControl + JobDemands + SocialSupport, method="D1")
pool_lr$RR_model
#> $`Step 1 - no variables removed -`
#> term estimate std.error statistic df p.value
#> 1 (Intercept) 0.794535475 2.38901533 0.33257864 139.16705 0.739952808
#> 2 Gender -0.414112047 0.41671442 -0.99375502 142.22094 0.322029903
#> 3 Smoking 0.094381864 0.34012175 0.27749435 148.30951 0.781786970
#> 4 Function -0.134004029 0.04310015 -3.10913123 120.44903 0.002341997
#> 5 JobControl 0.001986044 0.01988292 0.09988693 127.63515 0.920590815
#> 6 JobDemands -0.005350054 0.04045574 -0.13224460 52.62727 0.895295148
#> 7 SocialSupport 0.030604837 0.05699086 0.53701307 123.98115 0.592221016
#> OR lower.EXP upper.EXP
#> 1 2.2134126 0.01966485 249.1346692
#> 2 0.6609269 0.29000222 1.5062794
#> 3 1.0989793 0.56117145 2.1522042
#> 4 0.8745865 0.80305177 0.9524935
#> 5 1.0019880 0.96333237 1.0421948
#> 6 0.9946642 0.91712875 1.0787547
#> 7 1.0310780 0.92109121 1.1541982Back to Examples
library(psfmi)
library(mice)
imp <- mice(lbp_orig, m=5, maxit=5)
#>
#> iter imp variable
#> 1 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 1 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 2 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 3 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 4 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 1 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 2 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 3 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 4 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
#> 5 5 Carrying Pain Tampascale Function Radiation Age Satisfaction JobControl JobDemands SocialSupport
data_comp <- complete(imp, action = "long", include = FALSE)
library(psfmi)
pool_lr <- psfmi_lr(data=data_comp, nimp=5, impvar=".imp",
formula=Chronic ~ Gender + Smoking + Function +
JobControl + JobDemands + SocialSupport,
p.crit = 0.157, method="D1", direction = "FW")
#> Entered at Step 1 is - Function
#>
#> Selection correctly terminated,
#> No new variables entered the model
pool_lr$RR_model_final
#> $`Final model`
#> term estimate std.error statistic df p.value OR
#> 1 (Intercept) 1.1728111 0.46254657 2.535552 141.1350 0.012316373 3.2310626
#> 2 Function -0.1343115 0.04116987 -3.262373 132.6166 0.001404953 0.8743177
#> lower.EXP upper.EXP
#> 1 1.2948512 8.0625217
#> 2 0.8059399 0.9484967Back to Examples