| checkClosedUnitBall | Domain check for closed unit ball \{\vec{x} \in R^n : \Vert x \Vert_2 <=q 1\} |
| checkClosedUnitCube | Domain check for closed unit hypercube [0,1]^n |
| checkRn | Domain check for R^n |
| checkStandardSimplex | Domain check for standard simplex \{\vec{x} \in R^n : x_i >=q 0, \Vert x \Vert_1 <=q 1 \} |
| checkUnitSphere | Domain check for unit sphere \{\vec{x} \in R^n : \Vert x \Vert_2 = 1\} |
| domainCheck | Check if node points are in the domain of a test function instance |
| domainCheck-method | Check if node points are in the domain of a test function instance |
| domainCheckP | Check if node points are in the domain of a test function instance ("overload" of domainCheck with additional parameter) |
| domainCheckP-method | Check if node points are in the domain of a test function instance ("overload" of domainCheck with additional parameter) |
| evaluate | Evaluate test function instance for a set of node points |
| evaluate-method | Evaluate test function instance for a set of node points |
| exactIntegral | Get exact integral for test function instance |
| exactIntegral-method | Get exact integral for test function instance |
| getIntegrationDomain | Get description of integration domain for test function instance |
| getIntegrationDomain-method | Get description of integration domain for test function instance |
| getReferences | Get references for test function instance |
| getReferences-method | Get references for test function instance |
| getTags | Get tags for test function instance |
| getTags-method | Get tags for test function instance |
| multIntTestFunc | multIntTestFunc: A package to define test functions for multivariate numerical integration. |
| Rn_floorNorm | An S4 class to represent the function \frac{Gamma(n/2+1)}{pi^{n/2}(1+\lfloor \Vert \vec{x} \Vert_2^n \rfloor)^s} on R^n |
| Rn_floorNorm-class | An S4 class to represent the function \frac{Gamma(n/2+1)}{pi^{n/2}(1+\lfloor \Vert \vec{x} \Vert_2^n \rfloor)^s} on R^n |
| Rn_Gauss | An S4 class to represent the function \exp(-\vec{x}\cdot\vec{x}) on R^n |
| Rn_Gauss-class | An S4 class to represent the function \exp(-\vec{x}\cdot\vec{x}) on R^n |
| standardSimplex_Dirichlet | An S4 class to represent the function prod_{i=1}^{n}x_i^{v_i-1}(1 - x_1 - ... - x_n)^{v_{n+1}-1} on T_n |
| standardSimplex_Dirichlet-class | An S4 class to represent the function prod_{i=1}^{n}x_i^{v_i-1}(1 - x_1 - ... - x_n)^{v_{n+1}-1} on T_n |
| standardSimplex_exp_sum | An S4 class to represent the function \exp(-c(x_1 + ... + x_n)) on T_n |
| standardSimplex_exp_sum-class | An S4 class to represent the function \exp(-c(x_1 + ... + x_n)) on T_n |
| unitBall_normGauss | An S4 class to represent the function \frac{1}{(2pi)^{n/2}}\exp(-\Vert\vec{x}\Vert_2^2/2) on B^{n} |
| unitBall_normGauss-class | An S4 class to represent the function \frac{1}{(2pi)^{n/2}}\exp(-\Vert\vec{x}\Vert_2^2/2) on B^{n} |
| unitBall_polynomial | An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on B_n |
| unitBall_polynomial-class | An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on B_n |
| unitCube_cos2 | An S4 class to represent the function (\cos(\vec{x}\cdot\vec{v}))^2 on [0,1]^n |
| unitCube_cos2-class | An S4 class to represent the function (\cos(\vec{x}\cdot\vec{v}))^2 on [0,1]^n |
| unitCube_floor | An S4 class to represent the function \lfloor x_1 + ... + x_n \rfloor on [0,1]^n |
| unitCube_floor-class | An S4 class to represent the function \lfloor x_1 + ... + x_n \rfloor on [0,1]^n |
| unitSphere_innerProduct1 | An S4 class to represent the function (\vec{x}\cdot\vec{a})(\vec{x}\cdot\vec{b}) on S^{n-1} |
| unitSphere_innerProduct1-class | An S4 class to represent the function (\vec{x}\cdot\vec{a})(\vec{x}\cdot\vec{b}) on S^{n-1} |
| unitSphere_polynomial | An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on S^{n-1} |
| unitSphere_polynomial-class | An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on S^{n-1} |