Piecewise Structural Equation Modelling


[Up] [Top]

Documentation for package ‘pwSEM’ version 1.0.0

Help Pages

basiSet.MAG basiSet.MAG
CI.algorithm The CI.algorithm function
DAG.to.MAG.in.pwSEM Title DAG.to.MAG.in.pwSEM
generalized.covariance Generalized covariance function
get.AIC Title get.AIC
MAG.to.DAG.in.pwSEM Title MAG.to.DAG.in.pwSEM
MCX2 Title Monte Carlo chi-square (MCX2)
nested_data nested_data:
perm.generalized.covariance perm.generalized.covariance
pwSEM The pwSEM function
sim_normal.no.nesting sim_normal.no.nesting Simulated data with correlated errors involving endogenous variables, normally-distributed data and without any grouping structure Data generated using this mixed acyclic graph: X1->X2->X3->X4 and X2<->X4
sim_normal.with.nesting sim_normal.with.nesting: Simulated data with correlated errors involving endogenous variables, normally-distributed data and without any grouping structure Data generated using this mixed acyclic graph: X1->X2->X3->X4 and X2<->X4
sim_poisson.no.nesting sim_poisson.no.nesting: Simulated data with correlated errors involving endogenous variables, Poisson-distributed data and without any grouping structure Data generated using this mixed acyclic graph: X1->X2->X3->X4 and X2<->X4
sim_tetrads sim_tetrads: Simulated data to be used with the vanishing.tetrads function Data generated using this directed acyclic graph, with L being latent: L->X1, L->X2, L->X3->X4
summary.pwSEM.class Summary Method for pwSEM Class
vanishing.tetrads The vanishing.tetrads function
view.paths view.paths