Reinforcement Learning Tools for Two-Alternative Forced Choice Tasks


[Up] [Top]

Documentation for package ‘binaryRL’ version 0.8.0

Help Pages

add_NA Create NULL columns and the line 0
arrange_data Arrange Data based on Block and Trial
check_dependency Check Package Dependencies
decision_making Markov Decision Process
digits Round Digital
fit_p Fit parameters
func_epsilon Epsilon Greedy
func_eta Learning Rate
func_gamma Utility Function
func_tau Soft-Max Function
Mason_2024_Exp1 Experiment 1 from Mason et al. (2024)
Mason_2024_Exp2 Experiment 2 from Mason et al. (2024)
mode Pretend to be Raw Data
model_fit Calculate the Model Fit
optimize_para Fit Parameters
output Summary the Results
rcv_d Parameter and Model Recovery
recovery_data recovery_d
rev_e Review Experimental Effect
RSTD RSTD model for fit
run_m Building Reinforcement Learning Model
set_initial_value Set initial values for all options
simulate_list simulate_l
summary.binaryRL summary
TD TD model for fit
unique_choice Figure out how many options exist
Utility Utility model for fit