design_initial_self |
function to generate random initial design with design points and the approximate allocation |
discrete_rv_self |
function to generate discrete uniform random variables for initial random design points in ForLion |
dprime_func_self |
Function to calculate du/dx in the gradient of d(x, Xi), will be used in ForLion_MLM_func() function, details see Appendix C in Huang, Li, Mandal, Yang (2024) |
EW_design_initial_self |
function to generate random initial design with design points and the approximate allocation (For EW) |
EW_dprime_func_self |
Function to calculate dEu/dx in the gradient of d(x, Xi), will be used in EW_ForLion_MLM_func() function |
EW_Fi_MLM_func |
Function to generate the Expectation of fisher information at one design point xi for multinomial logit models |
EW_ForLion_GLM_Optimal |
EW ForLion for generalized linear models |
EW_ForLion_MLM_Optimal |
EW ForLion function for multinomial logit models |
EW_liftoneDoptimal_GLM_func |
EW Lift-one algorithm for D-optimal approximate design |
EW_liftoneDoptimal_log_GLM_func |
EW Lift-one algorithm for D-optimal approximate design in log scale |
EW_liftoneDoptimal_MLM_func |
function of EW liftone for multinomial logit model |
EW_Xw_maineffects_self |
function for calculating X=h(x) and E_w=E(nu(beta^T h(x))) give a design point x=(1,x1,...,xd)^T |
Fi_MLM_func |
Function to generate fisher information at one design point xi for multinomial logit models |
ForLion_GLM_Optimal |
ForLion for generalized linear models |
ForLion_MLM_Optimal |
ForLion function for multinomial logit models |
GLM_Exact_Design |
Approximation to exact design algorithm for generalized linear model |
liftoneDoptimal_GLM_func |
Lift-one algorithm for D-optimal approximate design |
liftoneDoptimal_log_GLM_func |
Lift-one algorithm for D-optimal approximate design in log scale |
liftoneDoptimal_MLM_func |
function of liftone for multinomial logit model |
MLM_Exact_Design |
Approximation to exact design algorithm for multinomial logit model |
nu1_cauchit_self |
Function to calculate first derivative of nu function given eta for cauchit link |
nu1_identity_self |
function to calculate first derivative of nu function given eta for identity link |
nu1_logit_self |
function to calculate the first derivative of nu function given eta for logit link |
nu1_loglog_self |
function to calculate the first derivative of nu function given eta for log-log link |
nu1_log_self |
function to calculate first derivative of nu function given eta for log link |
nu1_probit_self |
function to calculate the first derivative of nu function given eta for probit link |
nu2_cauchit_self |
function to calculate the second derivative of nu function given eta for cauchit link |
nu2_identity_self |
function to calculate the second derivative of nu function given eta for identity link |
nu2_logit_self |
function to calculate the second derivative of nu function given eta for logit link |
nu2_loglog_self |
function to calculate the second derivative of nu function given eta for loglog link |
nu2_log_self |
function to calculate the second derivative of nu function given eta for log link |
nu2_probit_self |
function to calculate the second derivative of nu function given eta for probit link |
nu_cauchit_self |
function to calculate w = nu(eta) given eta for cauchit link |
nu_identity_self |
Function to calculate w = nu(eta) given eta for identity link |
nu_logit_self |
function to calculate w = nu(eta) given eta for logit link |
nu_loglog_self |
function to calculate w = nu(eta) given eta for loglog link |
nu_log_self |
Function to calculate w = nu(eta) given eta for log link |
nu_probit_self |
function to calculate w = nu(eta) given eta for probit link |
print.design_output |
Print Method for Design Output from ForLion Algorithm |
print.list_output |
Print Method for list_output Objects |
svd_inverse |
SVD Inverse Of A Square Matrix This function returns the inverse of a matrix using singular value decomposition. If the matrix is a square matrix, this should be equivalent to using the solve function. If the matrix is not a square matrix, then the result is the Moore-Penrose pseudo inverse. |
xmat_discrete_self |
Generate GLM random initial designs within ForLion algorithm |
Xw_maineffects_self |
function for calculating X=h(x) and w=nu(beta^T h(x)) given a design point x = (x1,...,xd)^T |