
Translating the Ding dictionary to
FreeDict TEI

Bachelor’s Thesis

Einhard Leichtfuß

Christian-Albrecht University of Kiel
Programming Languages and Compiler Construction

Group

Advised by: Priv.-Doz. Dr. Frank Huch

2020-10-14

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, daß ich die vorliegende Arbeit selbstständig verfaßt und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel, den 14 Oktober 2020

iii

Abstract

The Ding dictionary is the largest known digital German-English dictionary that is free as in
Free Software. The FreeDict project publishes various free digital bilingual dictionaries in a
custom dialect of the TEI format, together with tools to derive dictionaries in other formats.
Included in the set of FreeDict dictionaries is a German-English dictionary that is based off a
notably outdated version of the Ding dictionary. The original program used to translate the
Ding dictionary is unfortunately lost. A prior attempt at rewriting such a translating program
was made by Sebastian Humenda, member of the FreeDict project.

This thesis presents a new translating program targeted at the currently latest stable version
of the Ding dictionary, 1.8.1, thereby explicitly representing most of the information present in
the Ding dictionary and inferring some further information that is not explicitly represented in
the Ding dictionary.

v

Contents

1 Introduction 1
1.1 The FreeDict project . 1
1.2 The Ding dictionary . 1

1.2.1 Incorporation into FreeDict . 2
1.2.2 Comparison with on-line dictionaries . 3

1.3 TEI . 4
1.3.1 FreeDict TEI . 4

1.4 Goals . 6
1.4.1 Validity of the output . 6
1.4.2 Quality of the translation . 7
1.4.3 Quality of the Code . 7
1.4.4 Further optional goals . 8

2 Syntax overview and analysis 9
2.1 Preliminary definitions . 9
2.2 Dictionary structure . 9

2.2.1 Relational dictionary . 10
2.2.2 Traditional dictionary (~ TEI) . 10
2.2.3 Semantic dictionary (~ Ding) . 11

2.3 Syntax analysis . 12
2.3.1 Ding . 12
2.3.2 TEI . 13

2.4 Syntax overview . 14
2.4.1 Ding . 14
2.4.2 TEI . 17

2.5 Annotations . 20

3 Implementation 23
3.1 Structure of the Program . 23

3.1.1 Module & folder structure . 23
3.2 Preprocessing . 24
3.3 Lexing and Parsing . 25

3.3.1 Lexing . 26
3.3.2 Parsing . 32

3.4 Translation . 36
3.5 TEI XML generation . 40
3.6 Enrichment . 40

vii

viii CONTENTS

3.6.1 Grammar . 40
3.6.2 Examples . 41

4 Conclusion 45
4.1 Reflection on the goals . 45

4.1.1 Validity of the output . 45
4.1.2 Quality of the translation . 45
4.1.3 Quality of the Code . 46
4.1.4 Further optional goals . 47

4.2 Reflection on choices made . 47
4.3 Future work . 48

Acknowledgements 51

Bibliography 53

Chapter 1

Introduction

Human interaction largely depends on the use of natural language. In today’s world, there
are numerous different natural languages, where most people only are capable of conversing in
very few of them. At the same time, the world is growing more and more interconnected, with
people of many different native tongues desiring to interact with one another. Therefore, people
often need to resort to using a second, non-native language, most frequently English, which has
emerged as the primary international language during the 20th century [47].

Bilingual dictionaries are among the most useful tools to facilitate intercourse between humans
without a common native language. This thesis aims to make one particular free1 German-
English dictionary—the Ding dictionary—more easily accessible, by incorporating it into the
FreeDict project, that is, translating it to the FreeDict TEI format.

1.1 The FreeDict project
“The FreeDict project strives to be the most comprehensive source of truly free bilin-
gual dictionaries. They are not just free of charge, but they give you the right to
study, change and modify them, as long as you guarantee others these freedoms, too.
Founded in 2000, FreeDict nowadays provides over 140 dictionaries in about 45 lan-
guages and thanks to its members, grows continuously.” [16]

The FreeDict project publishes these dictionaries in a custom variant of the TEI format,
as described by the TEI Guidelines [38] (see section 1.3). Some of the dictionaries are hand-
written, others are imported from other free dictionary sources by means of automated translation
from the respective other format. Furthermore, the FreeDict project notably provides tools [14]
to automatically convert its dictionaries into other formats2 readily to be used by dictionary
programs. In particular, the resulting dictionaries in the respective target format are also made
freely available.

1.2 The Ding dictionary
The Ding Dictionary is a free digital German-English dictionary that is primarily promoted
as part of the equally free Ding program. Composed of 197,771 lines, where a single line may

1free as in Free Software
2As of now, the DICT [44] and Slob [40] formats are supported.

1

2 CHAPTER 1. INTRODUCTION

contain more than one entry3, it is most likely the largest free digital German-English dictionary.
Both the program and the dictionary are principally written by Frank Richter [35] and made
available under the terms of the GPL4. Additionally to the Ding program, there is also a web
site5 providing similar access to the Ding dictionary.

The Ding dictionary is provided in a custom format, which is meant to be processed by
(variants of) grep6. In fact, Ding is an acronym for DI ctionary N ice Grep [35]. The mentioned
Ding front-ends essentially are front-ends to grep that add some Ding specific formatting to the
matched lines. Therefore, the Ding format is not required to follow a very strict syntax, which
generally makes parsing difficult. While there exists a syntax specification [34], it leaves out
many details and seems in general outdated. The syntax of the Ding dictionary is actually quite
rich; however, most of it is expected to be parsed by a human reader—when using one of the
Ding front-ends.

A simple, but nontrivial line from the Ding dictionary might look as follows:
Ding {n} ; Sache {f} | Dings {n} [ugs.] : : thing | thingy ; dingus

It expresses a relation between German and English words, precisely that

• “Ding” and “Dings” are neuter nouns in singular form,

• “Sache” is a feminine noun in singular form,

• “Dings” is used colloquially (German abbrev.: “ugs.”),

• “Ding” and “Sache” are translation equivalents to “thing”,

• “Dings” is a translation equivalent to “thingy” and “dingus”.

Note how in this example, annotations are only present on the German side. This is not the
case with all lines in the Ding dictionary; however, the German side is generally much richer
annotated.

Note further that the Ding dictionary is naturally bidirectional: The above line may be found
equally by grep’ing for any of “Ding” and “thing”.

In the Ding program, the result of such a query would look as follows:
Ding {n}; Sache {f} thing
Dings {n} [ugs.] thingy; dingus

See subsection 1.3.1 on how the corresponding TEI looks like.

1.2.1 Incorporation into FreeDict
The current German-English dictionary of the FreeDict project is based on an old version of
the Ding dictionary; for which the corresponding translation program is unfortunately lost. One
of the FreeDict project’s members, Sebastian Humenda, attempted to write a new translation
program7, starting in 2017. Due to a lack of time, he suggested on 2020-05-08 to instead replace
the dictionary with another one for that a translation program was already available [24] (see
also subsection 1.2.2).

3The Ding website claims a count of “approximately 326,000 entries” [35]. The resulting TEI dictionaries
(German-English and English-German) each contain more than 400,000 entries

4GNU General Public License: A copyleft Free Software license. [43]
5https://dict.tu-chemnitz.de/
6A common command-line regex-matching program. [11]
7The program’s code is available in the importers/ding2tei folder of FreeDict’s tools git repository [14]

https://dict.tu-chemnitz.de/

1.2. THE DING DICTIONARY 3

After some superficial investigation, I offered to try writing a new translation program myself,
which would be using the Haskell language and likely the Alex lexical analyser generator and the
Happy parser generator. The result is this thesis and the associated ding2tei-haskell 8 program.

1.2.2 Comparison with on-line dictionaries
The likely most common way to access dictionary data today is by use of an on-line dictionary.

There exist several commercial dictionary websites, the most notable German-English dictio-
naries likely being those on leo.org and dict.cc.

While these two will show to be larger in size, the Ding dictionary has the notable advantage
to be provided under a free license. It can hence be used off-line, by any program, and with any
modifications applied. I personally consider dictionaries critical infrastructure and believe that
such should ideally be free.

LEO

As of 2013-01-229, the English-German dictionary on leo.org—which likely is bidirectional10—
contains 787,419 entries [27]. It thereby had roughly twice11 the size of the Ding dictionary at
that time.

Entries on leo.org may relate either single words, composed expressions or examples, where
the latter are separated. Searching for a word seems to cause an infix search. The LEO dictionary
is therefore quite similar to the Ding dictionary, even though the infix search likely does not allow
searching for potentially hidden syntactic elements such as the language separator (::) in the
Ding dictionary. However, the LEO dictionary also encompasses at least some syntax that is not
machine-processed, and can therefore explicitly be searched for [26].

Dict.cc

The dict.cc web site essentially provides the infrastructure for its users to collaboratively build
a dictionary.

As of 2020-08-29, the bidirectional German-English dictionary on dict.cc contains 1,213,314
entries12, which is roughly three times13 the size of the Ding dictionary.

As presented on the About Page [23], the German-English dictionary is actually based on an
earlier version of the Ding dictionary. According to the Download Page [22], it was provided to
the owner of dict.cc under a more permissive license than the GPL, allowing the site owner
to publish a modified version under a more restricted version. Despite the possibility to down-
load the dictionary data, it is therefore not usable under a free license, according to the site
owner14 [22].

8The code is equally available in the tools repository [14] at importers/ding2tei, albeit currently in the branch
ding2tei-haskell-rewrite.

9I am not aware of a source for a recent count.
10See definition 2.1.3.
11These numbers should be taken with a grain of salt, since they likely denote different entities; for LEO, it is

unknown of which kind these entities are.
12The dictionary data can be obtained automatically via E-Mail [22], albeit in a slightly obfuscated form.
13See footnote 11 on why this comparison is flawed. In particular, since the dict.cc dictionary only relates

single words and expressions—unlike both the Ding dictionary and TEI—the count is naturally much higher for
that.

14This is actually debatable, since the dictionary data was originally available under the terms of the GPL
and grew with the help of volunteers—as it still does [45]. It seems reasonable that these volunteers—from back
then—hold copyright on their additions, while these could only have happened under the terms of the GPL. In
this case, the dictionary data as it can be downloaded today, due to the terms of the GPL, must be provided

leo.org
dict.cc
leo.org
leo.org
dict.cc
dict.cc
dict.cc
dict.cc

4 CHAPTER 1. INTRODUCTION

Although the German-English dictionary on dict.cc is built atop the Ding dictionary, it
retains little of its syntax and structure. In particular, the syntax is much simpler; the dictionary
essentially consists of word pairs, where both may have annotations.

Due to the large number of users, who are able to add—and in particular to fix—incorrect
entries, the dictionary is generally of better quality, but lacks some of the rich structure of the
Ding dictionary.

Wiktionary

The Wiktionary is a project just like Wikipedia, but for dictionaries. Its dictionaries are not
bilingual by design; however, many entries contain translations into other languages. [57]

In fact, there exists a chain of Free Software projects (DBNary [36], WikDict [2] and FreeDict’s
WikDict importer15) that translate the Wiktionary’s translations to FreeDict TEI. As noted in
subsection 1.2.1, the alternative to using the Ding dictionary as source for the German-English
FreeDict dictionaries would have been to use the Wiktionary data.

1.3 TEI
The Text Encoding Initiative (TEI) is an international community that primarily develops the
TEI Guidelines aimed at the encoding of any digital text16 [5, 38]. The current version are the
TEI P5 Guidelines, which will be considered exclusively in this thesis.

The Guidelines in particular contain a chapter on dictionaries (chapter 9). In the follow-
ing, the language (or format) described by the TEI Guidelines, in particular the chapter on
dictionaries, shall be referred to as simply TEI, unless further qualified.

The TEI format allows to represent the original text in all its particularities, though enriched
with information that cannot be easily derived from the original text by a machine. As an
example (which is not dictionary related), consider the following encoding of a phrase, as found
in the TEI Guidelines:
<cl type="relative"
function="clause_modifier">Which frightened
both the heroes so ,<cl>They quite forgot their quarrel.</cl>

</cl>

As one might guess from the example above, TEI uses XML as markup language, though
the choice of this markup language is not inherent to TEI. SGML was used previously and this
choice may be altered again [38].

1.3.1 FreeDict TEI
The FreeDict project uses a custom dialect of TEI based on the TEI Guidelines’ chapter on
dictionaries [15]. It shall be referred to as FreeDict TEI here and later also simply as TEI.

In contrast to generic TEI, FreeDict TEI is not meant to represent purely presentational
data. In the context of the Ding this means that, among others, the previously seen separators
(::, ;, |), and braces surrounding grammar annotations should not be preserved.

There are some further restrictions that ease automated handling by the FreeDict tools.
To get an idea how the format looks like, recall the example Ding line from section 1.2:

Ding {n} ; Sache {f} | Dings {n} [ugs.] : : thing | thingy ; dingus

under these terms.
15Code available at importers/wikdict in FreeDict’s tools repository [14].
16For example, I could have specified this thesis in TEI, but I haven’t.

dict.cc

1.3. TEI 5

Instead of translating this right away to FreeDict TEI XML (which quickly becomes huge),
we first look at an abstract version of how this can be represented in TEI:
entries:
* "Ding"

- translation: "thing"
- synonym: "Sache"
- related: "Dings"
- part -of-speech: noun
- number: singular
- gender: neuter

* "Sache"
- translation: "thing"
- synonym: "Ding"
- related: "Dings"
- part -of-speech: noun
- number: singular
- gender: feminine

* "Dings"
- translation: "thingy"
- translation: "dingus"
- related: "Ding"
- related: "Sache"
- part -of-speech: noun
- number: singular
- gender: neuter
- usage[register]: "ugs."

Note how this is clearly a directed17 dictionary. A diametrical version can be obtained similarly.
The corresponding (redacted) TEI XML, as produced by the final translation program, looks

as follows:
<TEI xmlns="http://www.tei -c.org/ns/1.0" version="5.0">

<teiHeader xml:lang="en" /><!-- redacted -->
<text xml:lang="en">

<body>
<entry xml:id="Ding.1">

<form>
<orth>Ding</orth>

</form>
<gramGrp >

<gen>neut</gen>
</gramGrp >
<sense>

<cit type="trans">
<quote xml:lang="en">thing</quote>

</cit>
<xr type="syn">

<ref target="#Sache.1">Sache</ref>
</xr>
<xr type="see">

<ref target="#Dings.1">Dings</ref>
</xr>

</sense>
</entry>
<entry xml:id="Sache.1">

<form>
<orth>Sache</orth>

</form>
<gramGrp >

17See definition 2.1.3.

6 CHAPTER 1. INTRODUCTION

<gen>fem</gen>
</gramGrp >
<sense>

<cit type="trans">
<quote xml:lang="en">thing</quote>

</cit>
<xr type="syn">

<ref target="#Ding.1">Ding</ref>
</xr>
<xr type="see">

<ref target="#Dings.1">Dings</ref>
</xr>

</sense>
</entry>
<entry xml:id="Dings.1">

<form>
<orth>Dings</orth>

</form>
<gramGrp >

<gen>neut</gen>
</gramGrp >
<sense>

<usg type="reg">ugs.</usg>
<cit type="trans">

<quote xml:lang="en">thingy </quote >
</cit>
<cit type="trans">

<quote xml:lang="en">dingus </quote >
</cit>
<xr type="see">

<ref target="#Ding.1">Ding</ref>
</xr>
<xr type="see">

<ref target="#Sache.1">Sache</ref>
</xr>

</sense>
</entry>

</body>
</text>

</TEI>

1.4 Goals

The foremost goal is to write a program that translates the Ding dictionary, as specified in the
Ding format, to FreeDict TEI.

Primarily, the latest stable version of the Ding dictionary, 1.8.1, is targeted.
In the following, the words must and should are used deliberately, to denote obligatory and

facultative goals, respectively. The word should may in particular also mean that there is also a
value in partial fulfillment of the respective goal.

1.4.1 Validity of the output

The resulting TEI must be valid FreeDict TEI and it should work well with most of the FreeDict
tools.

1.4. GOALS 7

1.4.2 Quality of the translation
The resulting TEI should retain most of the information encoded in the Ding dictionary, excluding
any presentational aspects. This information should mostly be encoded explicitly and as specific
as possible in TEI. For example,

• grammar annotations such as {f} or {pl} must be properly classified (gender, number)
and encoded explicitly (<gen>, <num>) using this classification,

• usage annotations such as [coll.] should be classified into common recommended cate-
gories such as register or domain and encoded accordingly (e.g., <usg type="reg">coll.
</usg>).

Information that either cannot be reliably extracted from the Ding dictionary or cannot be
expressed in FreeDict TEI should either not be represented at all or retained in verbatim (as
part of plain text nodes) in the resulting FreeDict TEI. The presence of such information is a
natural consequence of the Ding dictionary being only partially intended as machine-readable.
An example is the following line from the Ding dictionary:

Ackerwagen - und -maschinenreifen {m} : : implement tyre [Br.] / tire [Am.]

It is unclear how the hyphens (-) are to be interpreted18 and similarly it is unclear which entities
the slash (/) separates, in other words, the left and right scopes of the slash cannot be reliably
determined.

Information that is deemed hard to extract from the Ding dictionary may be considered
equally to such information that cannot be reliably extracted, and therefore dropped or retained
in verbatim.

If, however, the reliable information extraction is only hindered by a small number of incon-
sistencies in the syntax, these should be fixed in the Ding dictionary.

Enrichment

The resulting TEI should be enriched with information that is not evident from the Ding, but
can be reliably inferred. For example, the annotation of a gender (e.g., {f}), when not combined
with {pl}, implies that the annotated unit19 is in the singular form.

1.4.3 Quality of the Code
This is not a one-shot program. We shall see that at the end of this thesis that there remains
a lot of space for improvement. Also, the Ding dictionary is evolving, later versions might
require adaptation. Similarly, the expressiveness of FreeDict TEI might increase, such that more
information can be expressed explicitly. Further, this program is to become part of the FreeDict
project, there may be other people wanting to read or alter it.

The code should therefore be maintainable and well documented. One particular goal is that
it allows understanding and some altering for people who are less experienced in programming
or the chosen programming languages and tools.

18In fact, even I—as a human and speaker of German—have some trouble identifying the set of words described
by use of these hyphens.

19See definition 2.1.1.

8 CHAPTER 1. INTRODUCTION

Efficiency

There are no high expectations towards efficiency of the code. It is not meant to be run often.
In fact, the program is unlikely to be more often run than compiled.

Nonetheless, the program should not exceed certain reasonable bounds, both regarding run-
time and memory usage. Ideally, it would translate the Ding dictionary on a not-too-ancient
machine in less than an hour and without the need for swapping due to overly high memory
usage. Note that testing can be performed on subsets of the input dictionary.

1.4.4 Further optional goals
Spanish-English dictionary

There exists also a Spanish-German dictionary that claims to be in the same format as the Ding
dictionary [18]. Ideally, the translating program could handle this as well.

Other versions of the Ding dictionary

The latest stable version, 1.8.1, that is primarily targeted in this thesis, stems from 2016. There
is also a more recent, albeit not tremendously larger, devel version. Unfortunately, there is no
record of old devel versions; therefore, no devel version could serve as a base for the to be written
program. Due to a lack of a clearly defined syntax, any changes in devel could make its parsing
fail.

Nonetheless, it would be very valuable to also be able to parse and translate such a devel
version.

Older versions of the Ding dictionary shall not be considered. They might only cause obstacles
that are not relevant anymore.

Chapter 2

Syntax overview and analysis

Before attempting to translate between two languages, it is usually a good idea to learn these
languages. This applies to natural languages in particular, but also to formal languages.

Therefore, in the following, the syntax of both the Ding dictionary and TEI are unfolded. This
happens incrementally, where the two formats step down the ladder of complexity in parallel, so
they can be compared and related with one another at each of these levels of detail.

This process is interleaved by section 2.3, detailing the methods of syntax analysis.

2.1 Preliminary definitions
Definition 2.1.1 (language, unit). A language refers to a natural language, in particular to a
language of the Ding dictionary, English or German.

A unit is a single entity in a language that is atomic in the context of a dictionary. The class
of units encompasses single words, composed expressions, single phrases, but also sequences of
phrases, which might for example form an interaction between two speakers.

Furthermore, a language is identified with the set of units that stem from it.

Definition 2.1.2 ((bilingual) dictionary). A dictionary is any kind of structure that relates
units with one another. Unless specified otherwise, a dictionary refers to a bilingual dictionary,
relating units of two distinct languages.

Definition 2.1.3 (direction, source, target). A dictionary may have a direction with its two
languages distinguished as source and target language.

This is the case when a dictionary serves as a (partial) map from structures of the source
language to such of the target language.

A dictionary that has a direction is also called directional, and directionless otherwise. A
dictionary with a single direction is called monodirectional and one with two directions bidirec-
tional.

Note that being directionless and bidirectional usually expresses the same, only from a dif-
ferent point of view.

2.2 Dictionary structure
The structure of the Ding dictionary fundamentally differs from that of TEI. Therefore, before
getting into any specifics of the Ding and TEI formats, three different basic structures of bilingual

9

10 CHAPTER 2. SYNTAX OVERVIEW AND ANALYSIS

dictionaries shall be introduced and compared, including those that correspond to Ding and TEI.
When enriching these structures with examples, the Ding syntax will be used. This is possible

because the Ding’s structure will show to be the most general one.
Note that the following dictionary categories’ terms are not standard terms, but rather cus-

tomary to this thesis.

2.2.1 Relational dictionary
Definition 2.2.1 (relational dictionary). A relational dictionary D to two languages A and B
is a relation in the mathematical sense between these two, that is,

D :⊆ A× B.

This is arguably the simplest dictionary structure, though quite limited, as we will see when
comparing with the others. It is clear that such a relational dictionary is directionless, the order
of A and B does not matter.

Example 2.2.1.
Rolle : : part
Rolle : : role
Rolle : : roll
Ballen : : roll

Note how single units with several translations are required to be divided into several elements
of the dictionary.

Neither the Ding dictionary nor TEI adhere to this structure; however, a dictionary of this
structure can be naturally derived from both (and likely any bilingual dictionary).

2.2.2 Traditional dictionary (~ TEI)
TEI in general tries to allow for representation of any existing body of text, usually originating
in print form. Therefore, in the case of dictionaries, the structure is essentially that found in tra-
ditional print dictionaries. Note that it does allow for different types than bilingual dictionaries,
where the structure is mostly the same; we shall only consider the latter though.

Definition 2.2.2 (traditional dictionary). A traditional dictionary D is directional and contains
mappings from key units in the source language A to non-empty sets of value units in the target
language B. This can be expressed as

D :⊆ A× (P(B) \ {∅}).

A single element of D relates a unit in A to equivalent units in B. Note that a single key
a ∈ A, which is identified by its orthography, may have several sets of related units. This is the
case where there are homographs1. Note further that not each unit a ∈ A needs to occur as key
in D.

Example 2.2.2.
Rolle : : role ; part
Rolle : : roll
Ballen : : roll

1Homographs: Orthographically identical words/units with different pronunciation and/or meaning. [49]

2.2. DICTIONARY STRUCTURE 11

From the point of view of computer science, one might prefer to see a traditional dictionary
as a multi-map from A to sets of units in B, that is,

A→ P(P(B) \ {∅}).

Compare example 2.2.2 to example 2.2.1 to see how traditional dictionaries are more expres-
sive than relational dictionaries: Synonymous units in the target language may now be grouped.

Traditional dictionaries can be seen as a generalization of relational dictionaries, even though
the former are monodirectional, unlike the latter. Given a relational dictionary Dr ⊆ A×B, this
can naturally be embedded in the space of traditional dictionaries, as

Dt := {(a, {b} | (a, b) ∈ Dr}.

An alternative embedding would be

D̃t := {(a, {b | (a, b) ∈ Dr}) | a ∈ domDr}.

However, this would mean that potential homographs with distinct meanings (such as “Rolle”
in example 2.2.1) are grouped together.

Most traditional print dictionaries further allow the subdivision of the values to a given key
into several senses (and [recursive] sub-senses). This is also the case with TEI.

2.2.3 Semantic dictionary (~ Ding)
In comparison to print dictionaries, digital dictionaries are much less restrained, for example it
is not imperative to have a natural order on its entries. The Ding dictionary takes advantages
of this. Its basic structure is that of a semantic dictionary.

Definition 2.2.3 (semantic dictionary). A semantic dictionary D links sets of units in both
languages together that all share a common sense, that is,

D :⊆ (P(A)× P(B)) \ {(∅,∅)}.

Note that this definition allows elements in the dictionary that only link together units of a
single language.2 A corresponding alternative definition would be

D̃ :⊆ (P(A) \ {∅})× (P(B) \ {∅}).

One may also consider such a semantic dictionary as a partial function from an abstract set
of senses S to entities in both languages,

Df : S 7→ (P(A)× P(B)) \ {(∅,∅)}

(or conversely). However, the nature of such an abstract sense is entirely unclear, and it is
probably best defined by its value under Df .

Example 2.2.3.
Rolle : : role ; part
Rolle : : roll
Rolle ; Ballen : : roll

2Semantic dictionaries can effectively be monolingual. Such dictionaries are known as thesauri [54]. In partic-
ular, the Wordnet [31]—a great free dictionary of English—may be considered (a generalization of) a monolingual
semantic dictionary. There actually are some Ding entries that may be considered monolingual; both thesauri
and the Wordnet shall serve as reference on why such entries nevertheless are meaningful.

12 CHAPTER 2. SYNTAX OVERVIEW AND ANALYSIS

Similarly to how relational dictionaries can be seen as a special case of traditional dictionaries,
these can be considered a subset of semantic dictionaries. Given a traditional dictionary Dt ⊆
A× (P(B) \ {∅}), this can be embedded as

Ds = {({a}, b) | (a, b) ∈ Dt}.

Note that this also induces a natural embedding of relational dictionaries into the space of
semantic dictionaries.

Note further that the embedding of a semantic dictionary into the space of traditional dic-
tionaries is not generally possible.3 In this aspect, the Ding format is therefore clearly superior
to TEI.4

2.3 Syntax analysis
Neither the Ding nor the FreeDict TEI syntax is thoroughly documented. Before describing
these, we shall therefore direct our attention on the means used to identify sufficiently strict
syntax for both languages.

Note that the prior section on the dictionaries’ structures partially depends on the results
found by these means.

2.3.1 Ding
As mentioned in the introduction, there exists a quite old specification of the Ding syntax [34],
which lacks many details though and is outdated in some aspects. For example, it specifies that
braces always contain grammar information, while in practice, they may also contain inflected
forms of a verb. Hence, this syntax specification is considered unreliable and not used as primary
source of information on the syntax.

Instead, the syntax is inferred from the given dictionary in several steps. This includes
searching for patterns that are described in the just mentioned Ding syntax specification.

Case studies

Without a reliable syntax description, the first step in inferring a syntax is to have a look
at individual elements of the given text. In the case of the Ding dictionary, the primarily
distinguishable entities are lines.

Automated analysis

Next, recognized syntax elements that do not seem obvious in semantics or in particularities
of its syntax may be analyzed automatically. This is done primarily using the sed language
[9] (see also section 3.2), which particularly allows to perform regular expression matching and
replacement. For example, we may use this to list all contents of braces, together with the count
of the respective occurrences, with the aid of some other small tools. This particular information
can then be used to identify both grammar information and inflected forms inside braces, the
used separators and the possible (separated) values of grammar annotations.

3The later translation of Ding to TEI will split up non-traditional entries into several entries and link these
with one another, see subsection 2.4.2.

4While we can losslessly translate a Ding dictionary to TEI, as noted in footnote 3, this comes at the cost of
data duplication.

2.3. SYNTAX ANALYSIS 13

During this process, there will also be identified many inconsistencies and bugs in the Ding
syntax. In many cases, we consequently need to decide on what precise syntax should be con-
sidered correct. The goal is to have a rather strict syntax where there are not too many ways
to convey the same meaning. Note how this process is therefore quite interwoven with the pre-
processing as described in section 3.2, where the now identified bugs are to be fixed—also using
sed.

Rectification based on syntax violations

Finally once there is a partial implementation of the main program, we can use that to identify
violations of our current syntax. Such may either cause to refine our syntax—likely accompanied
by further sed based syntax analysis—or to improve the main program, where the preprocessor
is to count as part of it.

2.3.2 TEI
Since TEI, as defined by the TEI Guidelines [38], is meant to represent any kind of text, it is
quite general and liberal in structure. FreeDict TEI is a stricter subset of TEI, which nevertheless
retains many liberties. While the TEI Guidelines are quite thorough, the FreeDict TEI specific
documentation as specified mostly in its Wiki [15] lacks information on how to handle many
particularities. This gap can partially be filled by existing dictionaries of the FreeDict project
[13] that may serve as examples.

Validation

Additionally, the FreeDict project provides XML schemata5, which may be used to verify the
syntax to a certain degree.

Human interaction

Questions that could not be resolved with sufficient clarity using the above methods, I have
discussed with members of the FreeDict project, in particular Sebastian Humenda. There arose
actually a lot of such questions, many of which I asked on the FreeDict mailing list [25], others
via IRC6. A majority of these questions, together with any answers (some of which by myself), I
have gathered in a page on the FreeDict wiki [12], to allow for a structured overview of both the
remaining questions and the answers—where the latter may very well be useful to the FreeDict
project in general, and might be used to refine its documentation.

TEI Lex-0

Another standard that describes a subset of TEI is TEI Lex-0 [6]. In comparison to FreeDict
TEI, the documentation is closer to completeness. There was a short lived debate on the FreeDict
Mailing List on whether TEI Lex-0 should replace FreeDict TEI. Unfortunately, unlike FreeDict
TEI, TEI Lex-0 “was created to handle "retrodigitized dictionaries"” and was consequently con-
sidered unfit [1]. Nevertheless, it may serve as a useful resource wherever the syntax of FreeDict
TEI and TEI Lex-0 do not collide.

5The XML schemata are located in the shared/ folder of the git repository holding non-imported dictionaries
[13].

6Internet Relay Chat [50]

14 CHAPTER 2. SYNTAX OVERVIEW AND ANALYSIS

2.4 Syntax overview
In this section, the syntax of both the Ding dictionary and TEI is described, excluding some
specialties7. In the course of this, we shall start defining the respective Haskell data types
pertaining to the nodes of the abstract syntax trees (ASTs) of both Ding and TEI.

While there exist more modern approaches on AST representation, such as presented in a
2008 paper by McBride [29], I have chosen to take the more traditional approach of generally
associating to each element of the syntax a single Haskell type.

Knowing that both the Ding and TEI language represent dictionaries, we may start by
defining a common dictionary type:

1 data Dictionary header element = Dictionary
2 { dictHeader :: header
3 , dictSrcLang :: Language
4 , dictTgtLang :: Language
5 , dictBody :: Body element
6 }

Since we only are concerned with bilingual dictionaries, there always need to be two languages,
which we distinguish as source and target languages. In case of a directionless dictionary—as may
be considered the Ding dictionary—we need to define a direction arbitrarily.8 The header may
contain any auxiliary information such as the version or the author of the respective concrete
dictionary. Unlike the source and target languages, the type of the header is specific to the
respective concrete dictionary type; therefore, the Dictionary is polymorphic in this aspect.
The core part of a dictionary is naturally its body, composed of a set of elements, which also are
particular to the respective dictionary type. The body is defined as follows:

1 newtype Body element = Body [element]

Note that unlike stated above, we do not define it as a set of elements, but rather a list or
sequence of such. In practice, there may very well be dictionaries where the order of its elements
matter. Even though this is not the case for both Ding and TEI, a list may very well serve the
purpose of representing a set; we shall only need trivial set operations that can efficiently be
performed on a list representation.

2.4.1 Ding
In the following, the Ding syntax, as identified using the means described in subsection 2.3.1,
shall be explicated. Note that this syntax only applies to the German-English Ding dictionary
as supplied with the Ding program. As mentioned in subsection 1.4.4 of the introduction, there
also exists a Spanish-German dictionary that claims to be specified in the same format. Syntax
analysis has shown though that the syntax is in fact, while similar, different (see section 4.1.4).

On the top level, the Ding dictionary is composed of a header and a list of lines. These
shall be defined from the bottom up—alongside examples and the corresponding Haskell types—
starting with simple lines and ending with general lines, which is where the Line data type shall
be defined. Knowing that there will be defined such a type, we can already define the Haskell
type for a Ding dictionary:

7Among the syntax particularities, we shall later only have a look at the most important ones—annotations—in
section 2.5.

8For the Ding dictionary, the language occurring on the left side (German) shall be considered the source
language and the language on the right side (English) the target language. That is, upon initial parsing. The
dictionary may very well be mirrored programmatically.

2.4. SYNTAX OVERVIEW 15

1 type Ding = Dictionary Ding.Header Ding.Line

Remember that the Ding dictionary generally adheres to the structure of a semantic dic-
tionary, which is the most general of the presented structures. Therefore, it may in particular
contain lines that adhere to the structure of a relational dictionary’s element. Such a line would
simply relate two units. The simplest (and most prominent) line is hence:
Ding : : thing

Any line is separated by a double-colon (::), which separates the German side from the
English side. The particular line above indicates that the German word “Ding” is equivalent to
the English word “thing”.

Further, the units in a line may be annotated9 with additional information, for example as
follows:
Dings {n} [ugs.] : : thingy [coll.]

In this example, {n} is a grammar annotation specifying that “Dings” is a neuter noun, while
[ugs.] and [coll.] are usage annotations that both specify that the respective unit is used
colloquially10

This motivates the following definition of a unit in the context of the Ding dictionary.

Definition 2.4.1 (Ding unit). A Ding unit is a unit that is annotated with further information.
Such annotations are either prepended to the unit (in the case of parentheses-enclosed prefix
collocates) or appended to the unit (in all other cases) using special markup such as braces or
slashes.

A Ding unit may also simply be referred to as a unit.

The Unit type distinguishes different types of annotations, as they are introduced in sec-
tion 2.5:

1 data Unit = Unit
2 { unitHeadword :: String
3 , unitPlain :: String
4 , unitGrammar :: [GrammarInfo]
5 , unitUsages :: [Usage]
6 , unitPrefixes :: [String]
7 , unitSuffixes :: [String]
8 , unitAbbrevs :: [String]
9 , unitInflected :: Maybe InflectedForms

10 , unitReferences :: [String]
11 , unitExamples :: [Example]
12 }

Note that Examples are special in that they may be considered annotations in the AST, albeit
not being explicitly present in the Ding dictionary like the other annotations; instead they will
be added in the enrichment step (see subsection 3.6.2).

In order not to be restricted to elements of a relational dictionary, and to allow for general
elements of a semantic dictionary, define the following.

Definition 2.4.2 (group). A group is a set of units in a single language that share a common
translation group in the respective other language of the dictionary. The units in a group shall
be considered synonyms.

9See section 2.5.
10ugs. is the German abbreviation corresponding to coll..

16 CHAPTER 2. SYNTAX OVERVIEW AND ANALYSIS

In Haskell, a group is implemented as follows.

1 newtype Group = Group [Unit]

Note that the obsolete Ding specification [34] only refers to “similar” units in what I call a
group. While the syntax clearly mandates that such units share a common translation group, it
is less clear that the units in a group indeed are synonymous. The decision on whether or when
they are is somewhat important, because in the TEI format we will need to classify the relation
between units in a group, synonymy being one of the options.

There is one particular class of cases where the synonymy is debatable, as depicted by the
following example:
Studentin {f} ; Student {m} : : student

For most nouns describing persons, the German language has gendered forms, that is, for each
of the masculine and feminine gender there is a word that both has this grammatical gender and
describes people of this social gender. The English language in most cases instead only has a
single word for all social genders. In fact, there is quite a debate in Germany on gender-neutral
language, for several reasons [41], one of them being the perceived need for truly neutral (generic)
forms, as the English language has them—currently, in a generic context, the masculine forms
are most frequently used. Alternatively, the feminine form11 or newly developed forms may be
seen. I personally take the stand that in direct comparison to the masculine gender, the feminine
gender is a better choice to express genericity—and therefore a (synonymous) option. Further,
I do not see no harm in blurring the lines between the genders a little. Thus, I have decided to
not distinguish differently gendered forms from other synonyms.

Definition 2.4.3 (Ding entry). An entry is a pair of groups, each in one of the dictionary’s
languages, where each of them contains translations to the respective other group.

The corresponding Haskell type:

1 data Entry = Entry Group Group

A richer line may now contain a single entry relating two groups:
Dings ; Dingsda : : thingy ; dingbat ; dingus

The units in a group are separated by semicola.
As may have become apparent from the separate notion of an entry, the Ding dictionary

actually has one more layer than semantic dictionaries.

Definition 2.4.4 (Line). A line is composed of a non-empty sequence of entries, where these
entries, or rather the units contained therein, have similar meanings.

Note that the entries in a line are ordered, this will be important later.
In Haskell, a line is defined as:

1 data Line = Line [Entry]

The representation of a line containing multiple entries in Ding is not as simple as the others’:
Ding ; Sache | Dings : : thing | thingy ; dingbat ; dingus

11As an example, the German ministry of justice recently authored a bill wherein the feminine gender is used
generically—which was soon rejected by the interior ministry. [37]

2.4. SYNTAX OVERVIEW 17

The corresponding separator is the vertical bar; it does not separate entries though, but instead
the entries, separately on each side. The line’s entries are formed by combining the left and right
groups, in order. In particular, the numbers of vertical bars on both sides are required to match.
The formation of a line from two lists of groups can be easily expressed in Haskell:
1 makeLine :: [Group] -> [Group] -> Line
2 makeLine = Line . map (uncurry Entry) . zip
3 -- = Line . Data . List . zipWith Entry

This implementation is not ideal, since it would silently drop excess groups if any of the lists of
groups is longer than the respective other. The actual implementation throws an error in this
case.

2.4.2 TEI
In contrast to the definition of Ding dictionaries, TEI dictionaries shall be introduced from the
top down. Also, the definitions will not be illustrated with concrete examples; these tend to grow
quite large, as seen in the introduction. Because not only general TEI but also FreeDict TEI are
quite liberal in structure, the TEI syntax as specified in the following is even more restricted to
accommodate for the needs of the Ding dictionary.

As noted in the introduction, TEI is specified in XML. TEI shall therefore primarily be
defined along the XML elements it is made of. XML itself is not introduced; the definitions shall
be quite explicit, so even if XML is unbeknownst to the reader, they should be able to grasp the
definitions. Further, the TEI AST shall be developed alongside the XML it corresponds to.

In order to define TEI entities as XML elements, we use a simple custom XML schema
language.

Syntax definition 2.4.1 (XML element schema). The schema of an XML element el is made
up of the opening tag (<el>), a content schema and the closing tag (</el>), in this order. The
opening tag may contain attributes with placeholder values, which are written in capital letters,
or fixed values, which contain small letters. These attributes are considered mandatory.

Syntax definition 2.4.2 (XML content schema). The content schema is made up of either
placeholder text or a list of element schemata. Any of the the latter may be redacted, in which
case an empty-element tag shall be used (which may contain attributes, just like a regular element
schema).

Further, any redacted element schema may be enclosed in brackets ([])—to indicate that the
presence of a corresponding element is optional—or in braces ({})—to indicate that there may
occur a list of corresponding elements, of any length (including 0).

Note that using this schema language, regular empty elements are not permitted. We will
not need them.

The interpretation of element schemata is quite natural: An element is valid in a schema iff
the schema can be transformed into it by first expanding bracket- and brace-enclosed redacted
elements to a list of such redacted elements—of a length that the brackets/braces permit—
and thereafter replacing placeholder attribute values and placeholder text with any specific text
and finally replacing redacted element schemata with any concrete elements. In the case of a
set of related element schemata, redacted element schemata may only be replaced according to
the corresponding schema in the set, if present. An element schema corresponds to a redacted
element schema iff the names match and the latter’s specified attributes are a subset of the
former’s, where potential fixed values must match and any fixed value must be retained during
the replacing.

18 CHAPTER 2. SYNTAX OVERVIEW AND ANALYSIS

In the following, we shall define a set of element schemata describing the TEI language,
that is, the set of TEI dictionaries (of the restricted form that we consider here). Some of the
occurring redacted element schemata will not be defined as proper element schemata. This will
in particular be the case with any redacted element schemata representing annotations. This is
not to indicate that these redacted element schemata may have arbitrary content though; they
should be rather considered as unspecified here. If desired, the corresponding element schemata
may be inferred from the code accompanying this thesis.

We start on the top level.

Definition 2.4.5 (TEI dictionary). A TEI dictionary is composed of a header and a list of TEI
entries:
<TEI xmlns="http://www.tei -c.org/ns/1.0" version="5.0">

<teiHeader xml:lang="en" />
<text xml:lang="SRCLANG">

<body>
{<entry />}

</body>
</text>

</TEI>

Note that TEI entries are distinct from Ding entries. In the context of TEI, TEI entries may
be simply referred to as entries.

The TEI header is notably larger than the Ding header and shall not be explicated here.
Because we only intend to represent TEI dictionaries that are derived of Ding dictionaries, we
do not need to represent the rather complex TEI header explicitly in the TEI AST. Instead, we
can later directly derive the TEI header’s XML form from the Ding header.

Therefore, using a soon to be defined Entry type, the TEI AST type can be defined as follows:
1 type TEI = Dictionary Ding.Header TEI.Entry

As announced in subsection 2.2.2, a TEI dictionary generally adheres to the structure of a
traditional dictionary, that is, it maps key units—headwords—in a source language to (potentially
several) sets of value units in the target language. A single entry essentially represents a single
such mapping, but allows for a little more structure and information:

Definition 2.4.6 (TEI entry). A TEI entry has a unique identifier and consists of a form that
most prominently contains the headword, a list of senses to this headword, and optionally some
grammar information pertaining to all senses of the headword:
<entry xml:id="ID">

<form />
[<gramGrp />]
{<sense />}

</entry>

The identifier by convention should be of the form HW.n, where HW is the headword of the
entry and n is a positive decimal number.

Both the translations and any further annotations will be allotted to specific senses of a
headword and therefore to be found in a sense element. Note that a gramGrp, if present,
contains a non-empty list of elements specifying grammatical properties. This is why the Haskell
type is slightly different in structure:
1 data Entry = Entry
2 { entryIdent :: Ident

2.4. SYNTAX OVERVIEW 19

3 , entryForm :: Form
4 , entryGrammar :: [GrammarInfo]
5 , entrySenses :: [Sense]
6 }

We will later want to refer to specific entries within TEI; therefore, unique identifiers are essential.
Note that the headword inside the form cannot serve this purpose; a TEI dictionary may very
well contain several homographs12.

Note further that any TEI entry resulting from the Ding dictionary will contain exactly one
sense. While Ding does not offer a directly corresponding syntactical element, one might consider
to group certain homographs. I discussed this with the people of the FreeDict project; however,
the question remains open. Hence, the structure for several senses is provided, but not used yet.

Definition 2.4.7 (form). A form contains a single unit representing the headword of an entry,
potentially together with some related forms, which are specified using nested form elements that
adhere to a different schema:
<form>

<orth>HEADWORD </orth>
{<form type="TYPE"/>}

</form>

We shall use such nested form elements to specify inflected forms (@type="infl") and ab-
breviations (@type="abbrev") to the respective headword. This motivates the following Haskell
type:
1 data Form = Form
2 { formOrth :: String -- ^ headword
3 , formAbbrevs :: [String]
4 , formInflected :: Maybe InflectedForms
5 }

Definition 2.4.8 (sense). A sense groups information to a headword that is particular to a
specific sense of that headword. It may contain a list of translations and essentially any annota-
tions that may be found in a Ding dictionary. Such annotations refer to the headword (and the
particular sense); annotations that exclusively refer to a translation may be annotated within a
translation element. Further, it may contain references (xr) to other entries.

The sense element is subject to the following schema, with the added requirement that it must
contain at least one nested element:
<sense>

[<gramGrp />]
{<usg />}
{<cit type="trans"/>}
{<cit type="example"/>}
{<xr type="TYPE"/>}
{<note />}

</sense>

The ability to refer to other entries shall be used to link entries together that stem from
the same Ding line (@type="see") or Ding entry/group (@type="syn"). Note that the latter is
necessary because we will have to split up Ding entries into several TEI entries whenever there
is more than one unit in the source group of that entry, since TEI entries only permit a single
keyword.

12See footnote 1 on page 10.

20 CHAPTER 2. SYNTAX OVERVIEW AND ANALYSIS

The corresponding Haskell type quite naturally reproduces the structure of the above schema,
albeit again with the exception of gramGrp.
1 data Sense = Sense
2 { senseGrammar :: [GrammarInfo]
3 , senseUsages :: [Usage]
4 , senseTranslations :: [Translation]
5 , senseExamples :: [Example]
6 , senseReferences :: [Reference]
7 , senseNotes :: [String]
8 }

Note that grammar information can both be annotated at the sense and at the entry level.
Naturally, it should be specified at the sense level if it is particular to a sense, and at the entry
level if it pertains to all senses of the respective entry.

At last, let’s have a look at how translations are represented:

Definition 2.4.9 (translation). A translation is a single unit together with some annotations
pertaining to that translation:
<cit type="trans">

<quote xml:lang="TGTLANG">TRANS_UNIT </quote >
[<gramGrp />]
{<usg />}
{<cit type="abbrev"/>}
{<cit type="trans"/>}
{<cit type="example"/>}
{<note />}

</cit>

Note how the above schema is quite similar to that of a sense. Both allow for representation
of most of the Ding units’ annotations. The Haskell type again quite naturally represents the
above structure:
1 data Translation = Translation
2 { translationOrth :: String
3 , translationGrammar :: [GrammarInfo]
4 , translationUsages :: [Usage]
5 , translationAbbrevs :: [String]
6 , translationInflected :: Maybe InflectedForms
7 , translationNotes :: [String]
8 }

2.5 Annotations
The Ding dictionary contains annotations, of many different kinds. As noted in subsection 2.4.1,
they are generally present on the level of units.

These annotations can mostly be specified in a quite similar form in TEI; therefore, we only
define one family of data types for them. Nonetheless, the Ding syntax shall be used to introduce
them:

Parenthesis expressions

Ding units may contain text enclosed in parentheses (“()”). We differentiate three cases:

• Prefixing parenthesis expressions are considered prefix collocations, that is, optional text.

2.5. ANNOTATIONS 21

• Infix parenthesis expressions are equally considered optional text, but because they cannot
be properly represented in TEI, they shall be retained in verbatim as part of the unit’s
text.

• Suffixing parenthesis expressions are considered a generic note. In practice, they may have
a lot of meanings, including that of an optional suffix. In most cases, the latter does not
apply though; therefore, we use the catch-all note term.

Grammar annotations

Grammar annotations are enclosed in braces (“{}”). They may contain one or more grammar
keywords or expressions, separated by semicola, commata or slashes.

Individual grammar annotations are of the type GrammarInfo, which may be considered a
grammar AST—for single grammar annotations. It represents both single grammar keywords—
of type GramLexCategory—such as {f}, and grammar expressions such as {+Dat. [ugs.]}13.

As apparent from the definition of the Unit type in subsection 2.4.1, the set of grammar
annotations to a unit are—like most annotations—encoded as a list. One might consider to
instead encode all grammar information of a unit in a single tree data structure. While this might
seem advantageous—in particular during further processing, as happens during enrichment—I
have decided against this, for two reasons: First, both in the Ding dictionary and in TEI, grammar
annotations occur in lists; we would hence need to construct that tree, only to deconstruct
it later—in most cases, the list of annotations may in fact be be transferred unaltered (i.e.,
the enrichment has no effect).14 Second, most units have very few or no annotations, it is
consequently a waste of both time and memory to annotate each of them with a full grammar
tree.

Inflected forms

Inflected forms are equally enclosed in braces. They occur exclusively on the English side and
are of the form {simple past; past participle}, where simple past and past participle
are made up of a comma separated list of simple past and past participle forms, respectively.

The only means of differentiating inflected forms from a set of grammar annotations—which
are also enclosed in braces and may also be separated by semicolon—is to rely on the above
mentioned grammar keywords.

Usage annotations

Usage annotations are enclosed in brackets (“[]”). In contrast to grammar annotations, they may
contain arbitrary text—provided any contained brackets, braces and parentheses are matched.
However, syntax analysis has shown that most usage annotations occur repeatedly, the most
frequently occurring contender being [ornith.] with 8,971 occurrences.

TEI allows for the subdivision of usages into several categories such as domain, register or
region. Such subdivision needs unfortunately to happen manually, that is, a function needs to
be written that performs the categorization based on the concrete usage string. Despite the high
number of occurrences for many of the usages, their overall number is quite large; therefore,
categorization remains unfinished. Usages that are not categorized yet or are considered unfit
for all of the standard categories are specified as being of the fallback hint category.

13Unfortunately, usage annotations to grammar annotations, as seen here, cannot be represented in TEI.
14One might consider it an advantage to naturally get a fixed order on the annotations, when translating to

TEI (e.g., part of speech before gender). However, one might also prefer the original order should to be preserved.

22 CHAPTER 2. SYNTAX OVERVIEW AND ANALYSIS

Abbreviations

Abbreviations are enclosed in slashes, as in “example /ex./”. In some cases, they may also be
of the form “/ abbrev /”.

Since slashes may also occur as simple alternative indicators, as they usually do in written
text, the recognition of abbreviation annotations is generally non-trivial. See subsection 3.3.1 on
how it is done.

References

Units may be annotated with references to other units—which are not guaranteed to occur in
the dictionary—in the form ~word.

These references can be easily represented in TEI. Note that, while the representation uses
mostly the same TEI syntax as the references generated during translation (see section 3.4), they
should not be confounded with these.

Angle-bracket expressions

Angle-bracket expressions are exceptions by several respects. Syntactically, they are enclosed
in between angle brackets (“<>”). In contrast to all other annotations, they seem to apply to
groups, not units.

According to the obsolete Ding syntax specification [34], they show wrong or old spellings of
headwords. Syntax analysis has shown though that this is rather rare; in practice, they mostly
show alternative (valid) forms or synonyms, sometimes also a singular form to the annotated
group, which contains plural forms.

Due to the many different meanings, angle-bracket expressions are dropped during parsing.
One might consider to use a heuristic instead; in particular most singular forms are easy to relate
to their respective plural form. Also, one might consider some of the occurrences bugs and fix
them accordingly and/or report them upstream.

Chapter 3

Implementation

Now that we are aware of the structure of both the Ding dictionary and TEI, we shall be
concerned with the transformation of the former into the latter, and the implementation thereof.
After all, the main goal of this thesis was stated as writing a translation program.

3.1 Structure of the Program
The program needs to perform the following basic steps:

1. Read the Ding input and represent it in an internal data structure (abstract syntax tree /
AST).

2. Translate that Ding AST to a TEI AST.

3. Convert the TEI AST to TEI XML.

Additionally, there will be an initial preprocessing step, and an enrichment step, located
between steps 1 and 2 from above.

After introducing the folder structure right below, we shall have a closer look at the above
named steps.

3.1.1 Module & folder structure
In the following, the folder structure is briefly introduced.

Upon request from the FreeDict project, the code is made part of the main FreeDict tools git
repository [14] and located at importers/ding2tei. As of now, it lives in a separate branch,
ding2tei-haskell-rewrite.

The top level structure—below importers/ding2tei—is loosely based on a “semi-standard”
in the Haskell Wiki [21]:

• src/: The code needed to translate the dictionary.

• utils/: Code that is to be used for syntax analysis.

• doc/: Textual documentation describing some of the more important aspects of the two
languages’ syntax and the program.

• todo/: Less well structured documentation on issues that remain to be (fully) solved.

23

24 CHAPTER 3. IMPLEMENTATION

Below src/, the code is organized as follows:

• preprocess/: The preprocessor scripts.

• Language/Ding: All code pertaining to or working on the Ding dictionary exclusively.

• Language/TEI: All code pertaining to or working on TEI dictionaries exclusively.

• Data/NatLang: Data structures that are common to both the Ding and TEI dictionaries.

• App/: The code to translate from the Ding AST to the TEI AST.

Most of the program is to be written in Haskell; therefore, the folder hierarchy largely matches
the hierarchy of Haskell modules1.

3.2 Preprocessing
As noted earlier, the Ding dictionary contains many inconsistencies. These are considered bugs
in the input data and we therefore do not want to have the main program handle them. Instead,
we shall handle these inconsistencies in a preprocessing step. The main program can then expect
a rather well formed syntax and does not need to account for the lot of special cases that might
otherwise arise.

Another notable reason for the separation is that such bugs should ideally be reported up-
stream and fixed there. If they are fixed in a separate preprocessing step, these fixes can easily
be incorporated upstream.

Tool choice

For the preprocessing step, the sed [9] language shall be used, as is also used for the identification
of syntax (see subsection 2.3.1). Sed is an acronym for stream editor and is quite similar in
syntax to the ed [32] editor. Sed is most known for its ability to search and replace using regular
expressions, which we will primarily use.2 Note though that sed can do much more and is in fact
Turing-complete [3].

To be precise, we shall use GNU sed, which has some useful extensions, with the -E flag,
which specifies to use POSIX extended regular expressions.

Linguistics

A notable part of the syntax errors required a certain knowledge of either the English or German
language. Furthermore, there are also pure linguistic errors, such as typographic ones—which
both may be spotted occasionally by hand or by searching for certain patterns using sed. When
unsure in linguistic questions, I mostly relied upon Wikipedia and the Wiktionary [57], in some
cases other on-line dictionaries. In one particular case, this did not suffice:
wenig zersetzte Streu fressend ; makrohumiphag {m} [zool.] : : macrohumiphagous ;

↪→ macrosaprophagous

The {m} annotation usually would indicate that makrohumiphag is a male noun, which seems
unlikely from both the context and the lower case spelling. In the lack of a definition of
“makrohumiphag” or any of its given translations in the common places, I was finally able to find
“macrohumiphagous” used in a biology paper—as an adjective [39].

1The Haskell module structure is largely modelled after one proposed in the Haskell Wiki [20].
2The searching capabilities of sed essentially match those of the previously introduced grep program, which

actually got its name from the g/re/p ed command that allows to search for the regular expression re. [48]

3.3. LEXING AND PARSING 25

3.3 Lexing and Parsing
The first step of the actual Haskell program is step 1 as specified in the introductory section 3.1.
The task at hand is to convert a stream of characters to the Ding AST as defined in subsec-
tion 2.4.1. As the heading indicates, this step is usually separated into two successive smaller
steps, namely lexing (or scanning) and parsing. There do, however, also exist so called scannerless
parsers [53].

Lexing is the process of converting the input stream of characters into a stream of so called
tokens, such as separators, keywords and literals. In the context of the Ding dictionary, such
would be for example ::, pl and flower, respectively.

A parser usually operates on such a stream of tokens and—in abstraction from the concrete
syntax—generates an abstract syntax tree.

Both the lexer and the parser could be written by hand, but for nontrivial languages, as is
the Ding language, it is much more handy to use additional tools that are specifically targeted
to such use.

Tool choice

There are two common options:

1. Using lexer and parser generators that allow a rather natural specification of the input
syntax and from that generate (Haskell) code.

2. Using a parser combinator library that eases the writing of a parser right in Haskell. Such
a library usually directly works on the stream of characters, so requires no separate lexer.

In the Haskell ecosystem, the common choice for a lexer generator is Alex [7] and for a parser
generator Happy [28]. These are essentially Haskell derivations of the well known lex and yacc
tools for the C programming language.

The most prominent parser combinator library in Haskell is Parsec. However, there exist a
number of others, in particular Megaparsec, a fork of Parsec that particularly claims to be more
efficient [30].

In the following, Alex+Happy and Megaparsec shall be compared. Happy may generate
a parser to any LALR(1)3 grammar, which is to be specified in a form quite similar to the
Backus-Naur-Form (BNF) [42].

In contrast, Megaparsec allows to parse any LL(1)4 grammar. Neither of the language classes
LL(1) and LALR(1) is a subset of the other [4]; however, many languages can be expressed by
grammars of both types, including the language of the Ding dictionary. Both grammar classes—
and the corresponding tools—have their respective advantages:

• In contrast to LL(1), LALR(1) allows for left recursion [52], which often helps to specify
the grammar in a more natural way.

• Megaparsec is a Haskell library; therefore, it allows for all the flexibility of Haskell, while
Happy has its own specification language. For example, using Megaparsec, it is possible to
define parametrised rules.

3LALR(1) stands for Look-Ahead LR parser (with 1 token look-ahead) and is a weaker form of an LR parser
(left-to-right, rightmost derivation) that can be implemented with notably less memory than a general LR(1)
parser. [51]

4LL(1) signifies that parsing happens from left to right and produces a leftmost derivation. [52]

26 CHAPTER 3. IMPLEMENTATION

• Megaparsec may be used without a separate lexer. Most notably, this reduces the number
of different components and technologies. However, this also has the effect of functionality
usually specific to the lexer being interwoven with such that is specific to parsers, which
can be an advantage.

• When used without a separate lexer, it is cumbersome to match keywords using Mega-
parsec. When overlapping, the common prefix needs to be extracted, or else—at the cost
of efficiency—keywords that are prefixes of other keywords need to be specified before
these. Note that it is often desirable to subdivide lists of keywords that may occur in the
same place into several sub-lists, using separate rules. The word before does relate to single
keywords; therefore, the whole concatenation of those lists needs to be ordered accordingly.
Note that this problem could likely be avoided by using another parser combinator library,
for example Earley [10], which allows for parsing any context-free language [46].

The decisive issue—leading to the choice of Alex and Happy—was finally the ability to handle
slashes as they occur in the Ding dictionary. As described in subsection 3.3.1, while these seem
generally difficult to parse, Alex has certain features that allow to do so relatively easily. I was
unable to find a viable solution for Megaparsec, except by altering the Ding syntax and modifying
it accordingly during preprocessing.

Similarly, the whitespace handling as required by the Ding dictionary would need uncommon
usage of Megaparsec. Usually, whitespace is considered as to be ignored separator, while in the
Ding dictionary, it may be part of a unit’s text, where the precise amount of whitespace (usually
zero or one single space character) matters.

3.3.1 Lexing
As noted before, the first step in the construction of the AST is to convert a stream of characters
to a stream of tokens, where a token essentially groups and labels a sequence of characters.

Introduction by example

Let’s consider an example Ding line:
Dings {n} [ugs.] : : thingy ; dingus

In this line, we wish to recognize the separators (“::”, “;”, “{”, “}”, “[”, “]”) and the terminating
newline character as individual tokens and further all occurring words as text tokens, except for
“n”.

Definition 3.3.1 (word). A word is a maximal sequence of characters that does not contain
special characters—such as separators—and no whitespace.

The “n” is to be matched as grammar keyword. Note that the lexer is not able to infer this
from the surrounding braces, instead it simply knows that the word “n” is a grammar keyword; if
it were to occur outside of braces, it would equally be recognized as such. It is the parser’s job to
recognize grammar tokens enclosed in braces as actual grammar annotations. In contrast, “ugs.”
is not recognized as keyword, because usage annotations—as indicated by the brackets—may in
general contain arbitrary text (see section 2.5).

The main reason to not allow whitespace in text tokens is to allow for the recognition of
keywords that are not separated by special characters.5

The token type is now defined as follows:
5We have not yet seen such keywords; in fact, the only such keyword is currently “to”, which is often prefixed

to verbs.

3.3. LEXING AND PARSING 27

1 data Atom = NL -- \n
2 | LangSep -- ::
3 | Semi
4 | OBrace
5 | CBrace
6 | OBracket
7 | CBracket
8 | GramKW GramLexCategory
9 | Text String

10 | ...

Note that the type is not named Token—we shall soon define a wrapper type around Atom named
Token. Note further that the GramKW constructor takes a value of type GramLexCategory which
is not simply an enumeration of keywords, but rather the type of a quite flat grammar AST (see
section 2.5). AST construction is generally the job of the parser; however, since it can already be
done here, there is hardly a point in inventing a new intermediate type for that a direct injective
correspondence to the grammar AST would exist.

Composability

One particularity that was already seen with “n” is that some tokens may be only of special
meaning in special context, whereas in other context they should be treated like a regular text
token. Further, in the latter case, it should also be possible to join these tokens with their
surrounding (text) tokens. This is particularly also the case with commata (“,”), as exemplified
by the following lines:
Abschließend ... : : To conclude , ...
Stampfkartoffeln {f,pl} : : mashed potatoes

In the first line, the comma is simply part of the unit, whereas in the second line, it serves as a
separator in between braces. We also are reminded of the fact that units may be composed of
more than one word, as defined above.

First, to allow for treating all tokens as text tokens, we define a function to convert tokens
to their respective string representations:

1 atomToString :: Atom -> String

Note that this requires the correspondence function from strings to tokens to be injective, or
else atomToString cannot generally give the original string—being the inverse of that function
(restricted to the latter’s image). Non-injectivity may actually be acceptable in certain cases—
when two strings are considered equivalent or one of them a misspelling of the other.

Second, to enable joining of tokens, we might want to define the following function:

1 joinAtoms :: Atom -> Atom -> Atom

If taking this route, we soon encounter the question of how to separate the joined tokens by
whitespace. While regular text tokens are usually separated by a single space, a comma for
example is usually not preceded by space and succeeded by a single space. However, if serving
as a (German) decimal point, there shouldn’t be any space inserted. The most general way to
deal with this issue is therefore to remember the spacing between tokens. This brings us to the
previously announced Token type:

1 data Token = Token String Atom

28 CHAPTER 3. IMPLEMENTATION

The first argument of the Token constructor is to denote the whitespace preceding6 the token.
Note that newline characters are not considered whitespace in this context, they are regular
tokens.

With this type, we should now be able to define a joinTokens function. Considering such a
function as an operator, we realize that it is associative, and therefore we may consider Token
as a semigroup:
1 instance Semigroup Token where
2 (Token ws1 atom1) <> (Token ws2 atom2) = Token ws1 $
3 Text $ atomToString atom1 ++ ws2 ++ atomToString atom2

The result of joining two elementary tokens is naturally a text token—if a token has a special
meaning, it looses that when joined with surrounding tokens. The associativity law is clearly
fulfilled.

It might come in handy to also have a neutral element, and thereby a monoid structure.
Such in particular provides us with the mconcat function to merge arbitrary lists of tokens into
a single token. As neutral element, we might be tempted to choose an empty text token (Token
"" (Text "")); however, we can easily verify that this is not a left identity:
1 Token "" (Text "") <> Token "␣" (Text "Ding")
2 = Token "" (Text "␣Ding")

Instead, we introduce a separate constructor for Token, namely EmptyToken, that takes no
argument, and amend the definition of (<>) to treat EmptyToken as neutral element. This
provides us with the desired Monoid instance:
1 instance Monoid Token where
2 mempty = EmptyToken

Note that this Monoid instance may only be defined together with a corresponding Semigroup in-
stance as defined above. This allows for the binary Monoid operator, ‘mappend‘, to be implicitly
defined as <> from the Semigroup instance.

Alex specification

Alex allows to perform token recognition using regular expressions. An Alex specification at its
core consists of a list of rules, which in the simplest case are made of a regular expression and
an action—a function to convert any matched string to the corresponding token—each. The
matching occurs using the maximum-munch strategy, that is, the prefix of maximal length is
matched. Thereafter, Alex continues with the remaining suffix. In case of overlapping rules for
some input, Alex chooses the rule that matches the longest prefix. If these lengths are equal,
earlier rules are preferred. [7]

To avoid the explicit handling of whitespace in each rule, we introduce an intermediate token
type representing either whitespace or an Atom:
1 data SimpleToken = RegularToken Atom
2 | Whitespace String

A stream of SimpleTokens can later be easily converted to a stream of tokens using a function
of the following type:
1 mergeWS :: [SimpleToken] -> [Token]

6We could equally well annotate the whitespace succeeding a token. Also, one might consider annotating a
count of space characters instead—tabs, not to speak of \v et al., are rare—or even only the presence of whitespace
using a boolean value.

3.3. LEXING AND PARSING 29

This function is to merge each Atom with any directly preceding Whitespace into the correspond-
ing Token—final Whitespace is to be dismissed.

A subset of Alex’ rules may now look as follows:
1 [$white # \n]+ { Whitespace }
2 \n { const $ RegularToken NL }
3 :: { const $ RegularToken LangSep }
4 \{ { const $ RegularToken OBrace }

As seen, on the left are regular expressions, and on the right—in braces—are the corresponding
actions. Remember, these are functions that are provided with the respectively matched string.
To any sequence of non-newline whitespace7, we simply apply the Whitespace constructor. For
the separators, we instead use the const function because we do not need the string value of the
matched token to determine the token value.

This is not the case for text tokens. As noted earlier, as text tokens we intend to match words,
that is, sequences of characters that do not contain separators or otherwise special characters,
nor whitespace.

Alex also allows for the specification of character sets and macros, so we define a macro for
words8:
1 $textChar = $printable # [$specialChar $white]
2 @word = $textChar+

Ignoring for now that some words should be recognized as keywords, we may now define a
rule for Text tokens:
1 @word { RegularToken . Text }

Keywords

There are two common ways to perform the keyword identification in the lexer:
1. We can give regular expressions for individual keywords, or—less likely—sets of related

keywords.

2. We can change the rule for @word above by providing it with an action that distinguishes
keywords from regular text tokens.

The second option allows for decomposition, make the Alex specification smaller. Unfortunately,
there is an issue with this second option—being that there are also multi-word keywords, such as
“no pl”. This issue could be resolved by identifying each of such a multi-keyword’s constituent
words as individual keywords, and delegating the recognition of their co-occurrence to the parser.
This would introduce a level of detail to the parser that I consider undesirable. The first option
is thus preferred and chosen, manifesting for example as follows:
1 "f" { const $ RegularToken $ GramKW $ Gender Feminine }

Note that all keyword rules need to be listed before the general text token rule as introduced
earlier. This is because most keywords also match this rule—otherwise we could never have
considered the second option above. The result is that single words that are keywords are—due
to being specified earlier—recognized as such. On the other hand, words that are not keywords,
but have a prefix which is, are properly recognized as regular text tokens, due to Alex’ preference
of the longest matching sequence.

7$white is a predefined character set representing any whitespace character and # is the set difference operator.
[7]

8$printable is a predefined character set of printable characters. [7]

30 CHAPTER 3. IMPLEMENTATION

Multi-word keywords

Multi-word keywords—being the reason for individual keyword rules—require a little more cau-
tion. Consider the keyword “no pl”, where one might want the corresponding rule to look as
follows:

1 "no␣pl" { const $... }

If we do now provide the Alex generated lexer with input prefixed by the sequence of words “no
plural”, it will happily9 recognize our keyword “no pl”, succeeded by the regular text token
“ural”. This is not what we want. The problem with multi-word keywords is that for partial
matches as just exemplified, there is no generic multi-word matching rule that takes preference,
as is the case with single-word keywords. We therefore need to specify explicitly that the last
word of a multi-word keyword is ended.

Fortunately, Alex provides us with a mechanism to do just this: contexts. For each rule,
we may give a left and a right context, where the former must be a character set, while the
latter may be an arbitrary regular expression. These contexts have the effect that the rule only
matches when—next to the matching of the main regular expression—the preceding character
matches the left context character set and the succeeding character stream matches the right
context regular expression. Note that for efficiency reasons it is advised to not make extensive
use of right contexts. [7]

For our purpose, we do only need to check the single next character, it should be one that
may not occur in a word. We therefore define a character set for the complement of a word’s
characters:

1 $word_end = ~$textChar

Subsequently, we may use this character set—also being a regular expression—to enhance the
“no pl” rule as desired:

1 "no␣pl" / $word_end { const $... }

Keeping track of positions

The lexer as introduced above should not fail on any input. It is, however, very well possible
that the sequence of tokens it generates is not accepted by the parser. In this case, we would
like to be told the position of the offending token in the input.

Alex allows for keeping track of these positions by using the “posn” wrapper instead of the
“basic” wrapper that we used until now. Using the “posn” wrapper changes the required type of
actions to the following:

1 AlexPosn -> String -> Token

An AlexPosn is a triple of absolute position, line and column. Since we are happy10 with the
line and column, we define a type that only stores these:

1 Position = Position Int Int

Further, we want to provide each Token with such a Position; therefore, we change its definition
to the following:

9happily: from happy, not Happy [55]
10happy: adjective to happiness [56], not to be confused with Happy, which is a homograph, except for capital-

ization.

3.3. LEXING AND PARSING 31

1 Token = Token String Position Atom
2 | EmptyToken

We also need to modify the definition of the intermediate SimpleToken:

1 data SimpleToken = RegularToken Position Atom
2 | Whitespace String

Note how we do not record the position for whitespace; the position of a Token should be that
of the wrapped Atom.

To avoid handling the position individually in each rule’s action, we define a wrapper for
regular tokens:

1 regularToken :: (String -> Atom) -> AlexPosn -> String -> SimpleToken
2 regularToken f p s = RegularToken (toPosition p) (f s)

The function toPosition translates a AlexPosn to a Position. With that new function, we
now only need to wrap each regular token action in a call to regularToken.

For whitespace, since we are not interested in the position, we may simply give the action
const Whitespace—thereby dropping the undesired first argument.

Specialty: slashes

Slashes serve multiple purposes in the Ding dictionary. These are exemplified in the following
units:
to adopt/pass an amendment
der zeitliche Ablauf / die zeitliche Abfolge von etw.
greatest lower bound /glb/ (set theory)

We may infer three corresponding different usages of slashes:

1. Strong slashes, usually separating single words, with the meaning of an alternative between
these.

2. Weak slashes, sometimes separating more than single words, equally with the meaning of
an alternative between these.

3. Opening and closing slashes, surrounding an abbreviation (see section 2.5).

In the example units above, we might identify all slashes by their surrounding spacing. This
is the basic idea, which shall be refined a little: We say that a slash is left-free or right-free if the
preceding or succeeding character, respectively, is either whitespace or within a particular set of
characters that serves a similar purpose. For example, a slash is also left-free, if it is preceded by
an opening parenthesis; similarly a slash is right-free, if it is succeeded by a closing parenthesis.

With these definitions we may say that a strong slash is neither left- nor right-free, while a
weak slash is both left- and right-free, and opening and closing slashes are exclusively left- or
right-free, respectively.

Given character sets $slashLeftFree and $slashRightFree, we may now easily differentiate
the different kinds of slashes in Alex, using the left and right contexts introduced earlier:

1 $slashLeftFree ^ "/" / $slashRightFree { ... WeakSlash }
2 $slashLeftFree ^ "/" { ... OSlash }
3 "/" / $slashRightFree { ... CSlash }
4 "/" { ... StrongSlash }

32 CHAPTER 3. IMPLEMENTATION

Note that there are actually some more particularities to be taken into account; however,
these shall not be discussed here. For details on these, consult the file doc/ding.slashes and/or
the concrete Alex specification. Note further that the above made distinction between different
types of slashes originally stems from exemplary observation and is not used consistently. In
particular, slashes that are strong by syntax may separate not only single words but groups of
words; conversely, weak slashes frequently separate single words. It is therefore not in general
possible to automatically infer the left and right scopes of strong and weak slashes. Additionally,
there is quite a number of opening and closing slashes that do not belong to an abbreviation.
Most of such cases can rather easily be identified in the parser, which allows for fixing them
individually in the preprocessor.

3.3.2 Parsing
Given a stream of tokens as produced by the lexer from above, the next step consists of con-
structing a Ding AST from that token stream.

As noted earlier, we use the Happy parser generator for this purpose. Happy essentially
allows to specify a grammar in Backus-Naur-Form [42], together with some Haskell code that
describes how the grammar’s rules correspond to the to be built AST. [28]

I initially specified the grammar for a whole Ding dictionary, that is, its header and a list
of lines. Noticing that this caused the parsing step to consume a lot of memory and therefore
most likely not to happen lazily, I decided to parse the header separately and have Happy only
parse a single line. Concerning the memory usage, this unfortunately did not help much, since
the remainder of the program requires to read in the whole Ding dictionary before it may start
writing the body of the resulting TEI dictionary, see section 4.1.3.

The start symbol of our grammar is hence line, for which a single rule exists:

1 line : groups ’::’ groups

In this rule, line and groups are non-terminals, while ’::’ is a terminal.
Terminals—also Happy tokens—are defined in an initial section as follows:

1 %token ’\n’ { Token _ _ NL }
2 ’::’ { Token _ _ LangSep }
3 ’{’ { Token _ _ OBrace }
4 ...
5

6 tok_gramPOS { Token _ _ (GramKW (PartOfSpeech _)) }
7 tok_gramGender { Token _ _ (GramKW (Gender _)) }
8 ...
9

10 tok_text { Token _ _ (Text _) }

To each Happy token, there is associated a Haskell Token pattern, which may contain under-
scores to match any fitting value. In particular, we ignore the Tokens’ position and preceding
whitespace. Further, we do not match each of the grammar keywords individually, but rather
classify them. Note how for the separators, their Happy token names match the corresponding
input string. This is not at all necessary, albeit quite common and useful. In particular, it is
therefore not necessary to introduce all of the separators’ token names here.

AST construction

In the following, the AST construction alongside the grammar rules shall be exemplified using
the single line rule:

3.3. LEXING AND PARSING 33

1 line :: { Line }
2 line : groups ’::’ groups { makeLine $1 $3 }

We need to think of every symbol—terminal or non-terminal—as holding a value, of a fixed type.
The non-terminal for which rules are to be defined may be annotated with the corresponding
Haskell type beforehand. Next to each rule, we may—in braces—give Haskell code that constructs
a value of the left hand’s type from the values of the right hand. Values on the right hand may
be accessed as $1 through $n, in order of appearance. The value of a terminal is naturally that
of the corresponding Token11, as matched in the preamble, while the value for a non-terminal is
either defined explicitly, preceding the corresponding rules, or inferred from these.

Knowing that the non-terminal groups is of type [Group], we may infer that makeLine needs
to have the type [Group] -> [Group] -> Line. In fact, we have seen a definition of makeLine
at the end of subsection 2.4.1.

Note how the line rule does not explicitly represent the syntax of Ding—the groups non-
terminal represents any number of “|” separated groups. We might alternatively give a line
rule as follows:
1 line :: { Line }
2 line : group ’::’ group
3 | group ’|’ line ’|’ group

This would ensure the numbers of groups on both sides match; however, the AST construction
would need to be specified in a quite unnatural way, since the groups forming an entry in a line
are matched by their order from left to right, not from outermost to innermost or conversely.
Another alternative would be to use an attribute grammar, which Happy supports, to essentially
count the number of groups on the left side and mandate that exact number on the right side.
This approach shall not be discussed further.

Parsing of units

Next to the simple example of a line, we shall discuss in a little more detail the parsing of
units—consisting each of a unit string and associated annotations.

Given the syntax description from subsection 2.4.1, consider the following examples:
Dings {n} [ugs.]
mashed potatoes {pl}

From the grammar point of view, a unit consists of a sequence of text tokens and a succeeding
sequence of annotations, of potentially differing types. We might describe a unit by the following
set of rules:
1 unit : unitText
2 | unit gramAnnot
3 | unit usageAnnot
4 | ...

We would need separate rules for unitText—specifying a sequence of text tokens12—and all the
different types of annotations.

We might further give the AST construction code as follows:
11In fact, Alex also allows for associating tokens with only constituents of the corresponding Haskell tokens.

We do not use this ability though, since for most tokens, we want in particular to be able to access the annotated
preceding whitespace.

12unitText might actually also include non-text tokens, such as commata or grammar keywords. For reasons
of simplicity we ignore these here.

34 CHAPTER 3. IMPLEMENTATION

1 unit : unitText { fromToken $1 }
2 | unit gramAnnot { $1 ‘plusGramAnnot ‘ $2 }
3 | unit usageAnnot { $1 ‘plusUsageAnnot ‘ $2 }
4 | ...

Here, fromToken creates a simple Unit without any annotations from a Token, assuming that
unitText uses the Token’s monoid structure to yield a single token. Further, the plus*Annot
functions each add an annotation of the respective type to a unit.

Unfortunately, the Ding syntax—concerning units—is not actually as simple as depicted in
subsection 2.4.1. In particular, annotations may also occur in the midst of a unit, as exemplified
by the following Ding units:
Legende {f} zum Bild
tyre [Br.] / tire [Am.] equipment

Considering the first example, the {f} annotation is clearly meant to apply to the preceding
text, “Legende”. Seeing the succeeding text, we might consider this a collocation and therefore
make it a separate annotation, that is, treat the unit similarly to:
Legende {f} (zum Bild)

This could not be generalized though, since in the second example, the suffix “equipment” cannot
be seen as an optional collocation. Alternatively, we might consider ignoring the early location
of the annotation, that is, consider it equivalent to:
Legende zum Bild {f}

Going through the list of units containing infix annotations13, we may see that most of them
may be validly interpreted this way. However, the clear contender is again the second exam-
ple from above, particularly the presence of the slash, introducing two alternative—one might
say contradicting—annotations. As explicated in subsection 3.3.1, handling slashes properly is
difficult, if not impossible.

To circumvent this issue, we could consider infix annotations equivalent to suffix annotations
iff there occur no commata14 in the unit’s text. While this approach seems to work for most
practical cases, there are still exceptions. Hence—that is, due to a a lack of a sufficiently precise
syntax description—I decided to ignore15 any infix annotations. Note how this can still cause
misinterpretations, as with the following units16:
Bildüberschrift {f} / Bildunterschrift {f} [print]
Buchführung {f} und Fakturierung {f}

In each of these units, both {f} annotations clearly are meant to apply to the just preceding word,
while the respective later one would be considered by the parser as applying to the whole unit.
Such special cases can unfortunately not be easily reliably recognized. There could surely be used
a heuristic—e.g., depending on the number of annotations describing the same property such as
{f} and {n}—but false positives or negatives would hardly be avoidable. The misinterpretation
of the just introduced special cases is therefore accepted in favor of a simpler parser.

Further, expressions enclosed in parentheses need to be an exception to this rule. As outlined
in section 2.5, infix parenthesis expressions are to be kept verbatim, as part of the unit’s text, as
for example in the following unit:

13E.g., by searching for the regex “(\}|\]) [[:alpha:]]”—catching most infix grammar and usage annotations.
14The <> separator is similarly problematic (see section 4.3) and should thus also cause infix annotations to be

dropped.
15Infix annotations are permitted, but not included in the AST.
16The second example additionally presents “und” as another slash-like separator (of many), exemplifying the

difficulty to provide a complete syntax description properly classifying infix annotations.

3.3. LEXING AND PARSING 35

distance (measuring) sensor

Note how this is clearly not ideal; I am unaware though of a better option.
One might consider to split the above unit up in two, as follows:

distance sensor
distance measuring sensor

These units would then likely become part of the same group, even though they are not necessarily
synonymous17.

Implementation

Having decided on how to treat infix annotations, it remains to modify the parser accordingly.
The first idea is to just keep the rules for unit as introduced earlier, where it is defined as

unitText followed by any number of annotations. It seems we only need to modify unitText
to allow for infix annotations. We shall not go into the details on how to do this; there are
several options—which all cause the same problem: Upon having Happy create a parser from
the annotated grammar, it will complain about either shift/reduce of reduce/reduce conflicts,
causing it to generate a faulty parser. This is because Happy is a LALR(1) parser—it has a look-
ahead of 1 token. Having read for example a text token and stumbling upon a usage annotation,
that is, the OBracket token, Happy is unable to decide whether that usage annotation should
be assumed an infix annotation as part of unitText or a suffix annotation as part of unit.

There are several ways to solve this problem, the likely easiest being the following. First, we
realize that a grammar allowing infix annotations can actually be specified quite naturally:
1 unit : text
2 | unit text
3 | unit gramAnnot
4 | unit usageAnnot
5 | ...

Note how the non-terminal unitText has been replaced by the terminal text18, which now may
also occur after annotations.

Unfortunately, the above rules for unit do not represent the semantic difference between infix
and suffix annotations, contrarily to a hypothetical implementation of our first idea. We shall,
however, see that this distinction can easily be provided for by the annotated Haskell functions.
Similarly to the first attempt, we annotate the above rules with Haskell functions:
1 unit : text { fromToken $1 }
2 | unit text { $1 ‘plusToken ‘ $2 }
3 | unit gramAnnot { $1 ‘plusGramAnnot ‘ $2 }
4 | unit usageAnnot { $1 ‘plusUsageAnnot ‘ $2 }
5 | ...

The only new function is plusToken. To demonstrate how this allows for the distinction of infix
and suffix annotations, consider again the following example Ding unit:
Legende {f} zum Bild

The parser operates from left to right, that is, it first recognizes “Legende”, then annotates that
as a feminine noun. Next, it recognizes a text token. The presence of this text token clearly
implies that all formerly recognized annotations were infix annotations and may therefore be
thrown away19. This is hence exactly the job of plusToken—amend the unit’s text by the newly

17In this particular example, the units likely may be considered examples; however, this cannot be generalized.
18Again, in practice, we’d also want to consider other tokens that do not introduce annotations, such as

commata. For reasons of simplicity, we continue to assume that these do not exist.
19Parenthesis expressions need to be treated slightly differently.

36 CHAPTER 3. IMPLEMENTATION

read text token and ditch all its annotations.

3.4 Translation
Now that we are able to generate a Ding AST from the input file, the next step is to translate
this AST to a TEI AST:

1 ding2tei :: Ding -> TEI

This function should assume the Ding dictionary to be directed, that is, the resulting TEI
directory will have as source language the first language of the Ding dictionary.20

Remember the definitions of these ASTs:

1 type Ding = Dictionary Ding.Header Ding.Line
2 type TEI = Dictionary Ding.Header TEI.Entry
3

4 data Dictionary header element
5 = Dictionary
6 header
7 Language -- ^ source language
8 Language -- ^ target language
9 (Body element)

10

11 newtype Body element = Body [element]

As mentioned in subsection 2.4.2, the header of a TEI dictionary is just retained from the Ding
dictionary, further the source and target languages also remain unchanged. Therefore, we only
need to translate the body, that is, a list of Ding lines to a list of TEI entries.

One particularity that we need to take care of is the allocation of identifiers. As noted
in subsection 2.4.2, these identifiers should bear the form HW.n, where HW is the headword of
the entry and n is a positive decimal number. These numbers should be chosen minimal such
that for a given entry all previous entries with the same headword are provided with a smaller
number. We therefore should process the Ding lines (and entries) in order while maintaining a
state—storing for each headword the last given number, or equivalently the number of previous
occurrences of that headword. The natural way to do this in Haskell is by use of a state monad:

1 type IdState = State IdMap
2 type IdMap = Map String Int

For the state to be passed through, we use a standard map from the containers package and
for the state monad, we use the standard state monad from the transformers package. For the
map, any headword that is not in the map should be considered as having value 0 under the
map.

Note that a state monad essentially has the following form:

1 type State s a = s -> (a, s)

It modifies a state of type s and in parallel produces a value of type a. Note further that the
above defined IdState is not a full type, but instead takes as argument the type of the value
that the state monad should produce.

Most of the computation should now happen in the IdState monad, which gives us the type
for the translation of individual Ding lines:

20In order to obtain a TEI dictionary of the other direction, the Ding dictionary needs to have its content
mirrored first, which can be achieved quite easily.

3.4. TRANSLATION 37

1 convLine :: Ding.Line -> IdState [TEI.Entry]

Given this, we may define
1 convLines :: [Ding.Line] -> IdState [TEI.Entry]
2 convLines = liftM concat . mapM convLine

and subsequently the main translation function:
1 ding2tei (Dictionary header srcLang tgtLang (Body ls)) =
2 Dictionary header srcLang tgtLang (Body tes)
3 where
4 tes = evalState (convLines dingLines) Map.empty

Note that a Ding line may be translated to several TEI entries, which is why convLines needs
to concatenate the results.

Conversion of a Ding entry

Because the Ding dictionary is a semantic dictionary, while TEI dictionaries are traditional
dictionaries, we cannot simply convert a Ding entry to a TEI entry. Consider the following Ding
entry (or rather, Ding line containing a single entry):
Ding {n} ; Sache {f} : : thing

Our source language is German, our Ding entry thus contains two keywords. Since TEI does not
allow for several keywords per entry, we need to create two TEI entries from the above single
Ding entry. We are, however, able to provide them with links to one another, as described in
subsection 2.4.2.

The implementation of the Ding entry conversion shall not be explicated here, it is quite
similar to the conversion of Ding lines described below.

Conversion of a Ding line

Remember that a Line is essentially a list of entries. Hence, before defining convLine, we
consider the function convEntries, assuming that there is a function convEntry. The natural
definition is analogous to that of convLines:
1 convEntries :: [Ding.Entry] -> IdState [TEI.Entry]
2 convEntries = liftM concat . mapM convEntry

We may also specify this more verbosely as:
1 convEntries :: [Ding.Entry] -> IdState [TEI.Entry]
2 convEntries [] = return []
3 convEntries (de:des) = do
4 tes1 <- convEntry de
5 tes2 <- convEntries des
6 return $ tes1 ++ tes2

Note how a single Ding entry may result in several TEI entries, as explained earlier in this
section.

The above definition of convEntries allows to provide the resulting TEI entries with unique
identifiers. We do additionally want to use these identifiers though, to refer to other TEI entries.
In particular, TEI entries that stem from the same Ding entry shall refer to one another as
synonyms, and such that stem from the same Ding line, but different Ding entries shall refer to
one another as related entries.

38 CHAPTER 3. IMPLEMENTATION

Currently, we are concerned with the translation of a list of entries (i.e., a line), where refer-
ences to related entries are of interest, that is, Ding lines with more than one entry. Therefore,
consider the following example line:
Ding | Dings | Krempel : : thing | thingy | things

In this case, there is a direct correspondence between Ding entries and TEI entries, no Ding
entry results in multiple TEI entries. The above definition of convEntries would provide each
of these three entries with an identifier, from left to right. If we do now want to provide the
TEI entry bearing the headword “Dings” with references to the other two entries, we need to
access in particular the identifier for “Krempel”, which is to be calculated after the translation
of the “Dings” entry is completed. Unfortunately, monadic transformations generally mandate
an execution order, similar to that in imperative languages.

One way to solve this problem is by subdivision of the translation into two steps, where in
the first, identifiers would be distributed to those Ding units that are to become headwords of
TEI entries, while most of the Ding’s structure is retained, and in the second step, the actual
translation would happen, using these new identifiers to include references. This would require
either defining a new intermediate language or adding some Maybe attributes to Ding units,
which would initially be set to Nothing. Also, we’d have to traverse the AST twice in our code.

Fortunately, there is another way to solve the above problem. While monadic transformation,
in particular when specified in do notation, looks quite similar to imperative statement sequences,
it is different. A monadic action is still a regular function; it may be seen as a recipe to transform
a state and produce a value. The combination of monadic actions therefore does not need to
happen in some chronological order.

In simple terms, what we want to achieve is to combine two monadic actions, where each of
the produced values may be accessed by the respective other monadic action. Ideally, we’d like
to be able to write something like the following:
1 ma = do
2 a1 <- ma1 a2
3 a2 <- ma2 a1
4 return a2

While this is clearly invalid code—due to the early accessal of a1—we shall see that we actually
can validly specify this in a quite similar way.

As a first step, we translate the above’s intentions to a let expression. For reasons of
simplicity, we assume that State s a = s -> (a, s).
1 ma s0 =
2 let (a1 , s1) = ma1 a2 s0
3 (a2 , s2) = ma2 a1 s1
4 in (a2 , s2)

At first sight, this definition might look equally wrong, given the cyclic dependency between the
two equations in the let expression. Fortunately, this is perfectly valid due to Haskell’s laziness
and implicit calculation of a fixed point. We may specify an equivalent definition without cyclic
dependencies, but by use of the fix function:
1 ma s0 = fix $ \ (a2, _) ->
2 let (a1 , s1) = ma1 a2 s0
3 (a2 ’, s2) = ma2 a1 s1
4 in (a2 ’, s2)

Clearly, we want to ensure that the fixed point exists and can be calculated in finite time. This
is the case for our concrete problem: The identifiers given to a TEI entry do not depend on that

3.4. TRANSLATION 39

TEI entry’s references to other TEI entries. We could therefore unwrap the IdState and specify
the function convEntries using a let expression.

There is a still better way though. What fix is to regular functions, mfix is to monadic
actions. Unlike fix, mfix is not directly defined. Instead, there exists a class MonadFix:

1 class Monad m => MonadFix m where
2 mfix :: (a -> m a) -> m a

Given a MonadFix instance, we may now redefine ma from above as follows:

1 ma = mfix $ \ a2 -> do
2 a1 <- ma1 a2
3 a2’ <- ma2 a1
4 return a2’

This looks already much better. Furthermore, we may use the RecursiveDo GHC21 extension
[19, 8] that allows us to specify this quite naturally:

1 ma = do
2 rec
3 a1 <- ma1 a2
4 a2 <- ma2 a1
5 return a2

The rec keyword groups a list of lines in the do notation that should essentially be wrapped in
mfix, as demonstrated above. Note that we could also use the mdo keyword in place of do, which
would allow us to omit the rec keyword. I prefer the explicitness of rec though.

Fortunately, the state monad that we use provides an instance of MonadFix. Hence, using
the newly gained knowledge, we may get to the following implementation of convEntries:

1 convEntries :: [Ding.Entry]
2 -> [TRef.Ident]
3 -> IdState ([TRef.Ident], [TEI.Entry])
4

5 convEntries [] _ = return ([], [])
6 convEntries (de:des) refs = do
7 rec
8 (refs1 , tes1) <- convEntry de (refs ++ refs2)
9 (refs2 , tes2) <- convEntries des (refs ++ refs1)

10 return (refs1 ++ refs2 , tes1 ++ tes2)

To understand this definition, consider again the following example Ding line:
Ding | Dings | Krempel : : thing | thingy | things

The convEntries function is to sequentially process all suffixes of a Ding line, from longest
to shortest, where a Ding line is considered a list of entries. Consider in particular the case
where convEntries is applied to the suffix starting at Ding :: thing. The idea is now that
convEntries

• is provided with references of type TRef.Ident that stem from previous entries in the same
line (e.g., “Ding.4”) and

• returns the TEI entries together with the corresponding references (e.g., “Dings.2” and
“Krempel.1”) as constructed from the given list of entries.

21Glasgow Haskell Compiler: The most widely used Haskell compiler.

40 CHAPTER 3. IMPLEMENTATION

Additionally, convEntry is provided with all references from surrounding Ding entries. The job
of convEntry is subsequently to convert a single Ding entry to potentially several TEI entries,
each of which must be annotated with references to the related entries, as given to convEntry.
Also, convEntry needs to provide the generated entries with references to synonymous TEI
entries—such that stem from the same Ding entry. This may be done in a quite similar fashion
to the distribution of related-references and—as noted earlier—shall therefore not be discussed
here.

Annotations

As noted in section 2.5, the annotations’ structure is the same for both the Ding and TEI AST,
it just needs to be put into other places (see subsection 2.4.1 and subsection 2.4.2). The concrete
implementation is hence rather simple and shall not be discussed here.

3.5 TEI XML generation
In this step, we need to translate the TEI AST to textual XML. The actual generation of the
XML shall not be discussed here, it is mostly unspectacular.

Tool choice

It is not convenient to generate XML by hand, in particular proper indentation is non-trivial.
Therefore, we shall use an XML library, in particular the xml library [17]. This is a quite simple
library—simple to use, but lacking some features. However, since we only need to print a rather
simple XML tree, it shall suffice.

3.6 Enrichment
As specified in the introduction, we not only wish to represent in TEI what is explicitly repre-
sented in the Ding dictionary, but also include information that is only implicitly present.

As equally noted in the introduction, the Ding dictionary is directionless, while TEI dictio-
naries have a direction. Although the actual fixing of a direction happens in the translation step,
some of the concrete enrichments also assume a direction. Therefore, the enrichment is split into
two steps, enrichUndirected and enrichDirected, where the latter is to happen after the for-
mer. This would in particular be useful if it were desired to produce two TEI dictionaries—one
for each direction—in a single run of the program. This is not currently implemented though.

The enrichUndirected step currently is only concerned with grammar annotations, while
the enrichDirected step identifies examples and transforms the AST correspondingly.

3.6.1 Grammar
The grammar enrichment is further subdivided in two steps, which shall be explicated in the
following.

Inferral

During inferral, grammar information that is not explicitly present in the Ding dictionary, but
can be reliably inferred, is added, on the level of single units. For example, syntax analysis has

3.6. ENRICHMENT 41

shown that words annotated with a gender, but no grammatical number, generally are in the
singular form.

Additionally, the lists of grammar annotations are deprived of duplicated information, some
of which may stem from the inferral.

Transferral

Many annotations are only present in a single unit in a Ding entry, while they often also apply to
other units of the same entry. In particular, most of the annotations—barring inflected forms—
are much more frequent on the German side of the Ding.

I therefore have identified a subset of possible grammar information that can—potentially
only partially—validly be transferred between units in an entry. While it seems likely that that
subset differs for transferral between units on the same side and units on different sides, this has
shown not to be the case for the known annotations, in the context of the German and English
languages.

3.6.2 Examples
Many of the entries in the Ding dictionary exemplify other entries. Such examples can unfortu-
nately not be identified on the level of the syntax, as it is described in subsection 2.4.1.

Representation in TEI

Before going into the details of what an example constitutes, we shall have a look at how we can
represent examples in TEI, which may restrict us in what to consider an example.

FreeDict TEI allows to add examples within a sense element. Such examples may have
several forms. Until lately, I was assuming that the only permitted form was that expressed by
the following XML element schemata22:
<cit type="example">

<quote xml:lang="SRCLANG">SRC_EXAMPLE </quote >
{<cit type="trans" />}

</cit>

<cit type="trans">
<quote xml:lang="TGTLANG">TGT_EXAMPLE </quote >

</cit>

Note that the schema for <cit type="trans" /> here should be distinguished from that for
translations as defined in definition 2.4.9.

Essentially, we may specify a single example in the source language—that exemplifies the
surrounding entry’s headword—and add any number of translations in the target language.
Rather lately, I was made aware that it is also possible to specify examples as a list of any
number of examples in both languages. We will not pursue this option here.

Case studies

Consider a few lines from the Ding dictionary that may be considered as containing an example.
Note that they are redacted.

First, consider the following line.
22See definition 2.4.1.

42 CHAPTER 3. IMPLEMENTATION

Aufenthalt | Dieser Aufenthalt war nicht eingeplant. : : stop | This stop wasn ’t
↪→ scheduled.

Listing 3.1: line containing a definite example entry

It consists of two syntactically minimal entries, where the second one clearly is to be read as an
example to the first, rather than its own independent entry. The exemplifying becomes apparent
in particular by the fact that for each language, the only unit of that language in the first entry
appears literally in the second entry. Furthermore, the second entry relates phrases, which are
usually not seen in a dictionary as independent headwords.

Compare this to the following line.
redaktionell | Redaktionssitzung : : editorial | editorial meeting

Listing 3.2: line containing two regular entries

At first, one might consider the second entry equally an example to the first; however, the second
entry is also useful on its own. One might very well search for “Redaktionssitzung”—which
one couldn’t even find by any of its constituents, namely “Redaktion” and “Sitzung”, if it were
only present as an example to “redaktionell”.

Next, have a look at a completely different line.
ein erfreulicher Anblick | Schön, dich zu sehen! : : a sight for sore eyes | Good

↪→ to see you!

Listing 3.3: line containing two composed expressions

Both entries contain composed expressions and these are of similar complexity. It would therefore
be unnatural to consider one of them an example of the other.

Finally, consider a less redacted version of the line 3.1.
Aufenthalt ; Halt | Dieser Aufenthalt war nicht eingeplant. : : stop ; stopover ;

↪→ layover | This stop wasn ’t scheduled.

Listing 3.4: line with nontrivial groups

This line contains groups with more than one unit, where not all of them occur as infixes in the
alleged example entry. Remember that entries with several units in the source language are split
into several TEI entries; therefore, the question arises which of these TEI entries the potential
example should be annotated to.

Identification

With the above lines in mind, we shall now decide on what to consider an example, that is, by
which characteristics it is to be identified.

There are two basic means of identification:

1. Define an example by its properties (e.g., number of words, presence of interpunctuation).

2. Define examples with respect to the units they exemplify (e.g., require that an example is
an infix of another unit).

Both means are reasonable, so they shall be combined.

Definition 3.6.1 (expression). A unit is called an expression if it either

a) contains interpunctuation, or

b) is composed of three or more space-separated words, where annotations do not count.

3.6. ENRICHMENT 43

Definition 3.6.2 (example unit). An expression is said to exemplify another unit if the latter
is not an expression and infix of the former. In this case, the expression is called an example
unit.

We impose the additional restriction that units may only exemplify units within groups
left of them. This choice can be justified by syntax analysis, but also by the obsolete Ding
syntax specification [34], according to which what I call a line consists of an initial main entry
together with some auxiliary entries that in particular may include examples. Having relaxed
that definition generally, it is natural to allow examples to not only refer to the very first entry
but also to later, albeit preceding ones.

Next to the exemplifying unit, we also want to give its translations, which leads us to the
following definition.

Definition 3.6.3 (example). An example is composed of an example unit and the corresponding
translation group, that is, the set of units it translates to.

Goal

For each line, examples should be identified as described above, removed from that line and
annotated to the units they exemplify. Note that a single example may exemplify more than one
unit.

Examples are identified on the unit level. That is, an entry’s source group may contain both
examples and non-examples. In the latter case, the whole entry should be removed from the
line; in the former case, we only need to remove units from the source group. This is, because
for each Ding unit in the source group, a separate TEI entry is to be generated.

Implementation

Since we require examples to be right of the units they exemplify, we process a line from left to
right. A unit is clearly a non-example—and therefore to be retained—iff it is not an example to
any of the preceding (non-example) units.

For each entry in a line, and each unit in its source group, we need to test whether it
exemplifies any of the preceding non-example units. If it does, we need to amend the exemplified
unit with the newfound example and remove the example unit from its group. If a group ends
up empty this way, the enclosing entry is to be removed.23

Note how the alteration of the previously processed units is non-trivial, they have already
been processed after all. The solution to this shall be a stack on which any entry is pushed after
initial processing. This stack is wrapped in a state monad24 and can therefore be changed during
the processing of later units in the same line. We implement this as follows:

1 type EntryStackState = State [Entry]
2

3 push :: s -> State [s] ()
4 push x = modify (x:)

Assuming a handleEntry function, we may now define a function to process a list of entries:

1 handleEntries :: [Entry] -> EntryStackState ()
2 handleEntries = mapM_ handleEntry

23Groups that were empty since the beginning can safely be removed, the surrounding entry has no non-empty
representation in TEI anyways; only entries with empty target groups may be represented in TEI.

24See section 3.4 for a brief introduction to state monads.

44 CHAPTER 3. IMPLEMENTATION

Note that the list of resulting entries is only present as the state inside the monad and needs to
be extracted from there in the calling function.

When testing a unit that is an expression for being an example, we provide it with a list of
the preceding entries—the stack’s content. To allow for both annotating the examined potential
example unit to units it exemplifies and to log whether any such annotation occurred—that is,
whether we found an example unit—we use a Writer monad25. This Writer monad should
allow for writing a boolean value, where several boolean values should be combined using ∧. We
therefore effectively want to consider the Bool type a monoid with False as neutral element and
&& as operator, which can be implemented as follows:
1 type ChangeWriter = Writer Changed
2

3 newtype Changed = Changed Bool
4

5 instance Semigroup Changed where
6 (Changed b1) <> (Changed b2) = Changed $ b1 || b2
7

8 instance Monoid Changed where
9 mempty = Changed False

This allows us now to define a function that updates the stack’s entries with respect to a single
potential example unit, and to identify whether this actually is an example:
1 updateEntries :: Unit -> [Unit] -> [Entry]
2 -> ChangeWriter [Entry]
3 updateEntries pex pexTrans = mapM $ updateEntry pex pexTrans

It is provided with the to be examined unit, the list of its translations and the entries to be
considered as being exemplified.

The updateEntry function subsequently needs to inspect each unit in the source group of the
entry it is provided with—for being exemplified by the equally supplied potential example unit.

25A writer monad is like a generic state monad, except it does only allow for writing, in the form of amending
a state with values of a monoid using that monoid’s operator.

Chapter 4

Conclusion

4.1 Reflection on the goals
In this section, the goals, as stated in section 1.4 of the introduction shall be reflected upon.

4.1.1 Validity of the output
To test the resulting TEI XML files for validity and interoperability with the FreeDict tools, we
need to insert them into the directory structure of the the FreeDict dictionaries’ git repository
[13] (locally), thereby replacing the old files.

The results are:

• make validation and make qa succeed. In particular, the syntax is valid according to the
provided XML RelaxNG schema.

• The teiaddphonetics script—responsible for adding phonetics information to the resulting
TEI—fails. The reason has been identified as a bug in that script, not allowing certain
special constellations of special characters. While the adding of phonetic information is
required by the Makefile to be executed before translating the TEI result to any output
format, this step can be simulated by just putting a symbolic link in the right place1.

• Building both output formats (DICT [44] and Slob [40]) succeeds.

Additionally, the FreeDict project’s member Sebastian Humenda kindly commented on a
preliminary result, identifying a few flaws, which since have been fixed.

4.1.2 Quality of the translation
With a few exceptions, all information that is marked up explicitly in the Ding dictionary (e.g.,
by “::”, “|”, ”{”) is represented explicitly in the TEI output. The exceptions are annotations in
angle brackets, which are used quite inconsistently (see section 2.5) and infix annotations, which
are mostly dropped (see subsection 3.3.2), since they cannot be generally represented in FreeDict
TEI.

Additionally, the enrichment notably increases the grammar annotations and identifies some
examples.

1See README.

45

46 CHAPTER 4. CONCLUSION

In general, the result can in my opinion be seen as good and usable, albeit there remain many
possibilities for improvement, as depicted in section 4.3. In particular, the resulting dictionaries
seems superior to the current German-English and English-German FreeDict dictionaries; not
only due to the larger data set, but also due to richer annotation (e.g., cross-references).

4.1.3 Quality of the Code
The module structure is rather fine grained and the code is generally well equipped with docu-
mentation. The general documentation, located in doc/, is quite limited though. Some files in
the todo/ directory may also serve as documentation on the present code; however, the quality
of documentation therein is often not overly high. Additionally, this thesis is also intended as
documentation.

Some non-trivial Haskell constructs, such as MonadFix, are used. These generally make the
code shorter, but in parralel also likely harder to grasp for people not experienced in Haskell.
However, should I ever hand maintainership of the resulting dictionary over to somebody else
(of the FreeDict project), it is likely that they only want to change certain bits, to accommodate
for changes in the upstream Ding dictionary. In most cases, this will require amending the
preprocessor, which is written in sed and bears very little structure—editing it should be trivial,
given a minimal knowledge of sed. Further, the syntax of either Ding or FreeDict TEI may
change or be interpreted differently; in most cases this will only affect the part of the AST that
is shared between the Ding and TEI AST (in particular, annotations), or the construction of TEI
XML. In either case, the to be edited code is of quite simple structure. Also, I have provided a
brief introduction to Haskell2 to ease the understanding of the code. Furthermore, the syntax
of Ding is given in (annotated) BNF; at least its understanding does not require any Haskell or
Happy knowledge; modification may cause some hard to grasp error messages though.

Efficiency

On my not-too-recent machine, the main program takes approximately 1 minute and 40 seconds
to translate the Ding dictionary to TEI, when compiled with -O2. The compilation itself takes
about a minute, the preprocessing about 10 seconds. The run-times of alex and happy are
negligible (less than a second). Overall, the run-times are definitely within reasonable bound.

Concerning the memory usage, the main program consumes about 4.5 GiB of memory when
working on the full Ding dictionary. This is quite a lot. One might expect that due to Haskell’s
laziness, the memory usage should be easy to keep in bounds; unfortunately there is one small
problem: The TEI header needs to contain the number of TEI entries—which is unknown until
the whole list of TEI entries is constructed. As the TEI header is located at the top of the TEI
output, the program cannot start writing any of the body—and thereby freeing memory—until
most of it is computed.

While the memory usage could likely notably be reduced by replacing the String type with
more a space-efficient type such as ByteString [33], this seems less important when looking at
the resource consumption by the FreeDict tools when applied to the TEI output of the main
program:

All nontrivial tools that were tested consumed more than the above 4.5 GiB of memory, with
a peak of 7.7 GiB for teiaddphonetics. Concerning run-time, the DICT exporter ran for about
24 hours, while the other tools took less time, some of them even a moderate amount. Note
that my program cannot influence the resource consumption of these tools, except by producing

2doc/haskell intro

4.2. REFLECTION ON CHOICES MADE 47

smaller output, which is not possible without stripping information. Instead, the DICT exporter
in particular should likely be investigated in order to make it more efficient.

4.1.4 Further optional goals
Spanish-English dictionary

Syntax analysis has shown that the Spanish-German dictionary’s format, which is advertised as
that of the Ding dictionary, is actually different. It is nonetheless similar and actually much
simpler. Note that the Ding program can easily handle it, simply because the Ding program
(i.e., grep) can handle anything. Notable incompatibilities are:

• The number of group separators (“|”) sometimes differs between the two sides of a line.

• There are annotations of the form “/SOME WORD” at the end of lines, which presumably are
to apply to the whole line.

Due to the simplicity of the structure, I was able to write a simple sed script to adapt the syntax3,
albeit with some loss of information. This script is not to be considered a solution, but rather a
proof of concept. Instead, the main program should be adapted to also allow for the syntax of
this Spanish-German dictionary, likely only when supplied with a special flag.

Other versions of the Ding dictionary

The written program exclusively works with the latest stable version of the Ding dictionary,
1.8.1. Adapting it to the unstable devel version likely mostly requires amending a copy of the
preprocessing scripts.

4.2 Reflection on choices made
Lexing and Parsing tools

In the Ding dictionary, some syntax elements may only occur on either of the German or English
side, it would therefore be useful to be able to distinguish these sides in the parser. However,
most syntax is equal on both sides; thus, it is not viable to set up a complete rule set for
both languages. Instead, we’d like to have rule families, parametrised by language. This is
unfortunately not possible in Happy, while it would have been when using Megaparsec.

As an alternative measure, one might consider to use the Happy-supported attribute gram-
mars [28], however—while they do allow to pass arguments (inherited attributes) from top to
bottom—they do not allow to have these arguments alter the actual grammar rules, but only the
annotated functions used to build the AST from the grammar’s rules. This may in particular be
used to throw errors in case of unexpected syntax depending on the respective side’s language;
however, this is often not sufficient, as certain syntax might occur on both sides, albeit with
different semantics.

Note that the main reasons that led to the decision for Alex and Happy over Megaparsec were
actually reasons to choose Alex over the Lexing capabilities of Megaparsec. It might therefore
have been a better choice to combine Alex and Megaparsec, even though this would deprive
Megaparsec of one of its core advantages.

3src/preprocess/es-de/syntax.sed

48 CHAPTER 4. CONCLUSION

XML library

The xml library has shown to be very limited. In particular, the XML header needs to be added
manually, and—when pretty-printing—XML content made up of a list of both text and element
nodes is unconditionally treated equally to a list of element nodes, that is, causing superfluous
whitespace to be added between them. This issue was circumvented by providing a function that
combines such a sequence of text and element nodes into the corresponding XML string literal,
and subsequently treating that literal as single XML element.

Other XML libraries likely would not have required to resort to such tricks.

4.3 Future work
As noted earlier, the Ding dictionary is in large parts meant to be parsed by the human reader
and therefore the structure is in many cases quite hard to parse by a machine. Hence, the
possibilities of improvement are mostly endless—many of them requiring (notably) more of a
linguistics background than of a computer science background. This is not to say though that
all potential improvements are hard to implement.

Next to the remaining optional goals reflected upon in section 4.1, the following issues par-
ticularly deserve further work. Note that the below list is far from complete. Refer to the files
in the todo/ directory for more.

Special collocations

Many Ding units contain keywords such as “sth.”, “to sb.”, “from sb./sth.”, “etw.”, “für
etw.”, “für etw./jdn.”; as in the following units:
to award the contract to sb.
to accept sb.’s bid
to demand an explanation of sth. from sb.
to entrust sth. to sb. / sb. with sth.
etw. ablegen
für jdn. ein Vorbild sein
eine Gefahr/Bedrohung für jdn./etw. darstellen

Ideally, we would like these keywords—collocations—to be identified and treated similarly to
annotations, in particular they should not be retained as part of the unit’s text. This is in
particular to allow finding for example “etw. ablegen” when only searching for “ablegen”. Note
that the “to” prefix is already recognized during parsing as a verb indicator and not considered
part of the unit’s text.

As seen in the above examples, those collocations appear usually, but not always, as prefixes
or suffixes of units. Further, they may be combined, potentially with slashes, and also occur
between other annotations, such as {f}. We have seen in subsection 3.3.1 and subsection 3.3.2
that the handling of slashes is generally difficult.

Another difficulty lies in the fact that such collocations (e.g., “for sb.”) may also occur
as individual units (the collocation would then be “sb.”). Because of this, and also the quite
unlimited composability of these collocations’ constituents (e.g. “für/gegen jdn./etw.”), we
cannot simply have the lexer identify them and treat them similarly to annotations in the parser.

Also, it may be desirable to only allow certain valid compositions4; thereby denying for
example “für jdm.”—which should instead be “für jdn.”.

4See todo/parsing.collocation-literals for a partial syntax of valid compositions.

4.3. FUTURE WORK 49

In general, properly identifying these collocations seems quite difficult. However, they also
represent the single biggest flaw in the TEI result in my opinion and therefore it is likely worth
the effort tackling this issue.

Improved example handling

The example handling as explicated in subsection 3.6.2 unfortunately catches only a minority of
all units that are expressions.

At least some of these are not recognized because the heuristic only recognizes them as
exemplifying a unit in the respective target language and not also in the source language. It
should therefore be considered to change the representation in TEI to also allow these examples
to be recognized.

Also, it may be worth amending the heuristic; for example, to also recognize umlaut modifi-
cations (e.g., “Apfel” ~ “viele Äpfel essen”).

Slash and “<>” handling

While for slashes in general it is difficult to determine their scopes, it has been noted in sub-
section 3.3.1 that strong slashes usually have only single words in scope. One might decide to
ignore the few exceptions or identify them by hand and fix them.

The “<>” symbol is similar to a strong slash, it specifies that the surrounding two words may
be swapped [34]. In particular, the scopes are generally clear, although one needs to take care
of slashes once again, as exemplified by the following unit:
to big up <> sb./sth.

Acknowledgements

This work is built upon the work of others.
It literally could not exist without a subject to work on; therefore, I wish to thank Frank

Richter and any other contributors to the Ding dictionary for their valuable work and for sharing
it as Free Software. Equally, I wish to thank the various contributors to the FreeDict project, for
their continued successful endeavour to provide the public with “truly free bilingual dictionaries”
[16], and for providing the infrastructure and support allowing me to translate the Ding dictionary
to FreeDict TEI.

I particularly wish to express my gratitude towards Sebastian Humenda of the FreeDict
project, who spent a great amount of time on dealing with the many questions of mine, and
additionally Piotr Bański, who also answered some of them.

Finally, I wish to thank my advisor, Frank Huch, for his valuable suggestions and answers on
my similarly numerous questions, both on programming and the general writing of a thesis.

51

Bibliography

[1] Piotr Bański and Sebastian Humenda. [freedict] Re: Case inflections, verb and adjec-
tive forms. Sept. 8, 2020. url: https://www.freelists.org/post/freedict/Case-
inflections-verb-and-adjective-forms,9.

[2] Karl Bartel. Wikdict: About. url: https://www.wikdict.com/page/about (visited on
10/10/2020).

[3] Christophe Blaess. Implementation of a Turing Machine as Sed Script. 2001. url: https:
//catonmat.net/ftp/sed/turing.txt (visited on 10/09/2020).

[4] Nigel P. Chapman. LR parsing. theory and practice. Cambridge: Cambridge University
Press, 1987, pp. 86–87. isbn: 052130413X.

[5] TEI Consortium. TEI: About. url: https://tei-c.org/about/ (visited on 10/10/2020).
[6] DARIAH Working Group on Lexical Resources. TEI Lex-0. A baseline encoding for lex-

icographic data. url: https://dariah- eric.github.io/lexicalresources/pages/
TEILex0/TEILex0.html (visited on 10/10/2020).

[7] Chris Dornan, Isaac Jones, and Simon Marlow. Alex User Guide. Version 3.0. Aug. 11,
2003. url: https://www.haskell.org/alex/doc/alex.pdf (visited on 10/11/2020).

[8] Levent Erk and John Launchbury. “A Recursive do for Haskell”. In: Proceedings of the
2002 ACM SIGPLAN Haskell Workshop (Sept. 2002). doi: 10.1145/581690.581693.

[9] Jay Fenlason et al. sed(1). stream editor for filtering and transforming text. Version 4.7.
Dec. 2018. url: https://manpages.debian.org/buster/sed/sed.1.en.html (visited
on 10/09/2020).

[10] Olle Fredriksson. Earley: Parsing all context-free grammars using Earley’s algorithm. Ver-
sion 0.13.0.1. url: https://hackage.haskell.org/package/Earley (visited on 10/11/2020).

[11] Free Software Foundation. grep(1). print lines that match patterns. Version 3.3. May 11,
2018. url: https://manpages.debian.org/buster/grep/grep.1.en.html (visited on
10/09/2020).

[12] FreeDict project. Discussion on (FreeDict) TEI. url: https://github.com/freedict/
fd-dictionaries/wiki/discussion-TEI (visited on 10/09/2020).

[13] FreeDict project. FreeDict dictionaries. url: https : / / github . com / freedict / fd -
dictionaries (visited on 10/09/2020).

[14] FreeDict project. FreeDict tools. url: https://github.com/freedict/tools (visited on
10/09/2020).

[15] FreeDict project. FreeDict Wiki. url: https://github.com/freedict/fd-dictionaries/
wiki (visited on 10/09/2020).

53

https://www.freelists.org/post/freedict/Case-inflections-verb-and-adjective-forms,9
https://www.freelists.org/post/freedict/Case-inflections-verb-and-adjective-forms,9
https://www.wikdict.com/page/about
https://catonmat.net/ftp/sed/turing.txt
https://catonmat.net/ftp/sed/turing.txt
https://tei-c.org/about/
https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html
https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html
https://www.haskell.org/alex/doc/alex.pdf
https://doi.org/10.1145/581690.581693
https://manpages.debian.org/buster/sed/sed.1.en.html
https://hackage.haskell.org/package/Earley
https://manpages.debian.org/buster/grep/grep.1.en.html
https://github.com/freedict/fd-dictionaries/wiki/discussion-TEI
https://github.com/freedict/fd-dictionaries/wiki/discussion-TEI
https://github.com/freedict/fd-dictionaries
https://github.com/freedict/fd-dictionaries
https://github.com/freedict/tools
https://github.com/freedict/fd-dictionaries/wiki
https://github.com/freedict/fd-dictionaries/wiki

54 BIBLIOGRAPHY

[16] FreeDict project. Home — FreeDict. 2020. url: https://freedict.org/ (visited on
10/10/2020).

[17] Galois Inc. xml: A simple XML library. Version 1.3.14. url: https://hackage.haskell.
org/package/xml (visited on 10/09/2020).

[18] Zeno Gantner and Matthias Buchmeier. Spanish-German vocabulary list for ding. Ver-
sion 0.0i Mon Mar 5 18:36:47 2012. url: https://savannah.nongnu.org/projects/
ding-es-de (visited on 10/09/2020).

[19] GHC Team.Glasgow Haskell Compiler User’s Guide. GHC Language features. Version 8.10.1.
2015. url: https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
glasgow_exts.html (visited on 10/11/2020).

[20] HaskellWiki. Hierarchical module names — HaskellWiki. 2012. url: https : / / wiki .
haskell.org/index.php?title=Hierarchical_module_names&oldid=45429 (visited on
10/13/2020).

[21] HaskellWiki. Structure of a Haskell project — HaskellWiki. 2012. url: https://wiki.
haskell.org/index.php?title=Structure_of_a_Haskell_project%5C&oldid=54914
(visited on 10/09/2020).

[22] Paul Hemetsberger. dict.cc | German-English dictionary. url: https://www1.dict.cc/
translation_file_request.php (visited on 10/08/2020).

[23] Paul Hemetsberger. dict.cc: About/Contact. url: https://www.dict.cc/?s=about:
(visited on 10/08/2020).

[24] Sebastian Humenda. [freedict] Poll: replace deu-eng / eng-deu. May 8, 2020. url: https:
//www.freelists.org/post/freedict/Poll-replace-deueng-engdeu.

[25] Einhard Leichtfuß. [freedict] Re: Poll: replace deu-eng / eng-deu. Aug. 29, 2020. url:
https://www.freelists.org/post/freedict/Poll-replace-deueng-engdeu,19.

[26] LEO Dictionary Team. ganzer | ganze - Translation in LEO’s English ⇔ German Dictio-
nary. url: https://dict.leo.org/german- english/ganzer+%7C+ganze (visited on
10/09/2020).

[27] LEO Dictionary Team. LEO: Dict-Statistik. Archived at https://web.archive.org/web/
20130122233400/http://dict.leo.org/pages.ende/stat_de.html. Jan. 22, 2013. url:
http://dict.leo.org/pages.ende/stat_de.html (visited on 01/22/2013).

[28] Simon Marlow and Andy Gill. Happy User Guide. Version 1.18. 2009. url: https://www.
haskell.org/happy/doc/html/index.html (visited on 10/11/2020).

[29] Conor McBride. “Clowns to the Left of Me, Jokers to the Right (Pearl): Dissecting Data
Structures”. In: SIGPLAN Not. 43.1 (Jan. 2008), pp. 287–295. issn: 0362-1340. doi: 10.
1145/1328897.1328474.

[30] Megaparsec contributors. megaparsec: Monadic parser combinators. Version 9.0.0. url:
https://hackage.haskell.org/package/megaparsec (visited on 10/11/2020).

[31] George A. Miller. “WordNet: A Lexical Database for English”. In: Communications of the
ACM 38.11 (Nov. 1995), pp. 39–41. doi: 10.1145/219717.219748.

[32] Andrew L. Moore and Antonio Diaz Diaz. ed(1). line-oriented text editor. Version 1.15.
Jan. 2019. url: https://manpages.debian.org/buster/ed/ed.1.en.html (visited on
10/09/2020).

[33] Bryan O’Sullivan et al. xml: A simple XML library. Version 0.11.0.0. url: https : / /
hackage.haskell.org/package/bytestring (visited on 10/10/2020).

https://freedict.org/
https://hackage.haskell.org/package/xml
https://hackage.haskell.org/package/xml
https://savannah.nongnu.org/projects/ding-es-de
https://savannah.nongnu.org/projects/ding-es-de
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html
https://wiki.haskell.org/index.php?title=Hierarchical_module_names&oldid=45429
https://wiki.haskell.org/index.php?title=Hierarchical_module_names&oldid=45429
https://wiki.haskell.org/index.php?title=Structure_of_a_Haskell_project%5C&oldid=54914
https://wiki.haskell.org/index.php?title=Structure_of_a_Haskell_project%5C&oldid=54914
https://www1.dict.cc/translation_file_request.php
https://www1.dict.cc/translation_file_request.php
https://www.dict.cc/?s=about:
https://www.freelists.org/post/freedict/Poll-replace-deueng-engdeu
https://www.freelists.org/post/freedict/Poll-replace-deueng-engdeu
https://www.freelists.org/post/freedict/Poll-replace-deueng-engdeu,19
https://dict.leo.org/german-english/ganzer+%7C+ganze
https://web.archive.org/web/20130122233400/http://dict.leo.org/pages.ende/stat_de.html
https://web.archive.org/web/20130122233400/http://dict.leo.org/pages.ende/stat_de.html
http://dict.leo.org/pages.ende/stat_de.html
https://www.haskell.org/happy/doc/html/index.html
https://www.haskell.org/happy/doc/html/index.html
https://doi.org/10.1145/1328897.1328474
https://doi.org/10.1145/1328897.1328474
https://hackage.haskell.org/package/megaparsec
https://doi.org/10.1145/219717.219748
https://manpages.debian.org/buster/ed/ed.1.en.html
https://hackage.haskell.org/package/bytestring
https://hackage.haskell.org/package/bytestring

BIBLIOGRAPHY 55

[34] Frank Richter. Aufbau der Übersetzungs-Datei. July 2005. url: https : / / dict . tu -
chemnitz.de/doc/syntax.html (visited on 10/09/2020).

[35] Frank Richter. Ding: A Dictionary Lookup program. Version 1.8.1. Sept. 2016. url: https:
//www-user.tu-chemnitz.de/~fri/ding/ (visited on 10/10/2020).

[36] Gilles Sérasset. “DBnary: Wiktionary as a Lemon-Based Multilingual Lexical Resource in
RDF”. In: Semantic Web 6 (May 2015), pp. 355–361. doi: 10.3233/SW-140147.

[37] Tagesschau.de. Geschlechtergerechte Sprache. Streit über Gesetzestext in weiblicher Form.
ARD. Oct. 12, 2020. url: https://www.tagesschau.de/inland/streit-gesetzestext-
weibliche-form-101.html (visited on 10/12/2020).

[38] TEI Consortium, eds. TEI P5: Guidelines for Electronic Text Encoding and Interchange.
Version 4.1.0. Aug. 19, 2020. url: http://www.tei-c.org/Guidelines/P5/ (visited on
10/09/2020).

[39] Anne Theenhaus and Matthias Schaefer. “The effects of clear-cutting and liming on the soil
macrofauna of a beech forest”. In: Forest Ecology and Management 77.1 - 3 (Sept. 1995),
pp. 35–51. doi: 10.1016/0378-1127(95)03580-4.

[40] Igor Tkach. Slob. url: https://github.com/itkach/slob/blob/master/README.org
(visited on 10/13/2013).

[41] Wikipedia. Geschlechtergerechte Sprache — Wikipedia, Die freie Enzyklopädie. 2020. url:
https://de.wikipedia.org/w/index.php?title=Geschlechtergerechte_Sprache&
oldid=204426566 (visited on 10/10/2020).

[42] Wikipedia contributors. Backus–Naur form — Wikipedia, The Free Encyclopedia. 2020.
url: https://en.wikipedia.org/w/index.php?title=Backus%E2%80%93Naur_form&
oldid=981305357 (visited on 10/09/2020).

[43] Wikipedia contributors. Copyleft — Wikipedia, The Free Encyclopedia. 2020. url: https:
//en.wikipedia.org/w/index.php?title=Copyleft&oldid=980794227 (visited on
10/13/2020).

[44] Wikipedia contributors. DICT — Wikipedia, The Free Encyclopedia. 2020. url: https:
/ / en . wikipedia . org / w / index . php ? title = DICT & oldid = 956132992 (visited on
10/13/2020).

[45] Wikipedia contributors. Dict.cc — Wikipedia, The Free Encyclopedia. 2019. url: https:
//en.wikipedia.org/w/index.php?title=Dict.cc%5C&oldid=928265367 (visited on
10/08/2020).

[46] Wikipedia contributors. Earley parser — Wikipedia, The Free Encyclopedia. 2020. url:
https://en.wikipedia.org/w/index.php?title=Earley_parser&oldid=970168970
(visited on 10/11/2020).

[47] Wikipedia contributors. English language — Wikipedia, The Free Encyclopedia. 2020. url:
https : / / en . wikipedia . org / w / index . php ? title = English _ language & oldid =
982362604 (visited on 10/10/2020).

[48] Wikipedia contributors. Grep — Wikipedia, The Free Encyclopedia. 2020. url: https:
/ / en . wikipedia . org / w / index . php ? title = Grep & oldid = 982878639 (visited on
10/12/2020).

[49] Wikipedia contributors.Homograph — Wikipedia, The Free Encyclopedia. 2020. url: https:
//en.wikipedia.org/w/index.php?title=Homograph&oldid=966897894 (visited on
10/10/2020).

https://dict.tu-chemnitz.de/doc/syntax.html
https://dict.tu-chemnitz.de/doc/syntax.html
https://www-user.tu-chemnitz.de/~fri/ding/
https://www-user.tu-chemnitz.de/~fri/ding/
https://doi.org/10.3233/SW-140147
https://www.tagesschau.de/inland/streit-gesetzestext-weibliche-form-101.html
https://www.tagesschau.de/inland/streit-gesetzestext-weibliche-form-101.html
http://www.tei-c.org/Guidelines/P5/
https://doi.org/10.1016/0378-1127(95)03580-4
https://github.com/itkach/slob/blob/master/README.org
https://de.wikipedia.org/w/index.php?title=Geschlechtergerechte_Sprache&oldid=204426566
https://de.wikipedia.org/w/index.php?title=Geschlechtergerechte_Sprache&oldid=204426566
https://en.wikipedia.org/w/index.php?title=Backus%E2%80%93Naur_form&oldid=981305357
https://en.wikipedia.org/w/index.php?title=Backus%E2%80%93Naur_form&oldid=981305357
https://en.wikipedia.org/w/index.php?title=Copyleft&oldid=980794227
https://en.wikipedia.org/w/index.php?title=Copyleft&oldid=980794227
https://en.wikipedia.org/w/index.php?title=DICT&oldid=956132992
https://en.wikipedia.org/w/index.php?title=DICT&oldid=956132992
https://en.wikipedia.org/w/index.php?title=Dict.cc%5C&oldid=928265367
https://en.wikipedia.org/w/index.php?title=Dict.cc%5C&oldid=928265367
https://en.wikipedia.org/w/index.php?title=Earley_parser&oldid=970168970
https://en.wikipedia.org/w/index.php?title=English_language&oldid=982362604
https://en.wikipedia.org/w/index.php?title=English_language&oldid=982362604
https://en.wikipedia.org/w/index.php?title=Grep&oldid=982878639
https://en.wikipedia.org/w/index.php?title=Grep&oldid=982878639
https://en.wikipedia.org/w/index.php?title=Homograph&oldid=966897894
https://en.wikipedia.org/w/index.php?title=Homograph&oldid=966897894

56 BIBLIOGRAPHY

[50] Wikipedia contributors. Internet Relay Chat — Wikipedia, The Free Encyclopedia. 2020.
url: https://en.wikipedia.org/w/index.php?title=Internet_Relay_Chat&oldid=
982274231 (visited on 10/12/2020).

[51] Wikipedia contributors. LALR parser — Wikipedia, The Free Encyclopedia. 2020. url:
https://en.wikipedia.org/w/index.php?title=LALR_parser&oldid=941890158
(visited on 10/09/2020).

[52] Wikipedia contributors. LL parser — Wikipedia, The Free Encyclopedia. 2020. url: https:
//en.wikipedia.org/w/index.php?title=LL_parser&oldid=982396718 (visited on
10/09/2020).

[53] Wikipedia contributors. Scannerless Parsing — Wikipedia, The Free Encyclopedia. 2020.
url: https://en.wikipedia.org/w/index.php?title=Scannerless_parsing&oldid=
979074748 (visited on 10/11/2020).

[54] Wikipedia contributors. Thesaurus — Wikipedia, The Free Encyclopedia. 2020. url: https:
//en.wikipedia.org/w/index.php?title=Thesaurus&oldid=979685055 (visited on
10/13/2020).

[55] Wiktionary. happily —Wiktionary, The Free Dictionary. 2020. url: https://en.wiktionary.
org/w/index.php?title=happily&oldid=59506058 (visited on 10/11/2020).

[56] Wiktionary. happy —Wiktionary, The Free Dictionary. 2020. url: https://en.wiktionary.
org/w/index.php?title=happy&oldid=60731129 (visited on 10/11/2020).

[57] Wiktionary. Wiktionary, the free dictionary. 2020. url: https://en.wiktionary.org/
wiki/Wiktionary:Main_Page (visited on 10/09/2020).

https://en.wikipedia.org/w/index.php?title=Internet_Relay_Chat&oldid=982274231
https://en.wikipedia.org/w/index.php?title=Internet_Relay_Chat&oldid=982274231
https://en.wikipedia.org/w/index.php?title=LALR_parser&oldid=941890158
https://en.wikipedia.org/w/index.php?title=LL_parser&oldid=982396718
https://en.wikipedia.org/w/index.php?title=LL_parser&oldid=982396718
https://en.wikipedia.org/w/index.php?title=Scannerless_parsing&oldid=979074748
https://en.wikipedia.org/w/index.php?title=Scannerless_parsing&oldid=979074748
https://en.wikipedia.org/w/index.php?title=Thesaurus&oldid=979685055
https://en.wikipedia.org/w/index.php?title=Thesaurus&oldid=979685055
https://en.wiktionary.org/w/index.php?title=happily&oldid=59506058
https://en.wiktionary.org/w/index.php?title=happily&oldid=59506058
https://en.wiktionary.org/w/index.php?title=happy&oldid=60731129
https://en.wiktionary.org/w/index.php?title=happy&oldid=60731129
https://en.wiktionary.org/wiki/Wiktionary:Main_Page
https://en.wiktionary.org/wiki/Wiktionary:Main_Page

	Introduction
	The FreeDict project
	The Ding dictionary
	Incorporation into FreeDict
	Comparison with on-line dictionaries

	TEI
	FreeDict TEI

	Goals
	Validity of the output
	Quality of the translation
	Quality of the Code
	Further optional goals

	Syntax overview and analysis
	Preliminary definitions
	Dictionary structure
	Relational dictionary
	Traditional dictionary (~ TEI)
	Semantic dictionary (~ Ding)

	Syntax analysis
	Ding
	TEI

	Syntax overview
	Ding
	TEI

	Annotations

	Implementation
	Structure of the Program
	Module & folder structure

	Preprocessing
	Lexing and Parsing
	Lexing
	Parsing

	Translation
	TEI XML generation
	Enrichment
	Grammar
	Examples

	Conclusion
	Reflection on the goals
	Validity of the output
	Quality of the translation
	Quality of the Code
	Further optional goals

	Reflection on choices made
	Future work

	Acknowledgements
	Bibliography

