| Title: | Estimates Pareto-Optimal Solution for Hiring with 3 Objectives | 
| Version: | 1.0.1 | 
| Description: | Estimates Pareto-optimal solution for personnel selection with 3 objectives using Normal Boundary Intersection (NBI) algorithm introduced by Das and Dennis (1998) <doi:10.1137/S1052623496307510>. Takes predictor intercorrelations and predictor-objective relations as input and generates a series of solutions containing predictor weights as output. Accepts between 3 and 10 selection predictors. Maximum 2 objectives could be adverse impact objectives. Partially modeled after De Corte (2006) TROFSS Fortran program https://users.ugent.be/~wdecorte/trofss.pdf and updated from 'ParetoR' package described in Song et al. (2017) <doi:10.1037/apl0000240>. For details, see Study 3 of Zhang et al. (2023). | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.2.1 | 
| Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) | 
| VignetteBuilder: | knitr | 
| Imports: | graphics, grDevices, nloptr, stats | 
| Config/testthat/edition: | 3 | 
| NeedsCompilation: | no | 
| Packaged: | 2023-11-08 20:34:13 UTC; kimye | 
| Author: | Chelsea Song  | 
| Maintainer: | Chelsea Song <qianqisong@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2023-11-08 23:00:02 UTC | 
rMOST: Estimates Pareto-Optimal Solution for Hiring with 3 Objectives
Description
Estimates Pareto-optimal solution for personnel selection with 3 objectives using Normal Boundary Intersection (NBI) algorithm introduced by Das and Dennis (1998) doi:10.1137/S1052623496307510. Takes predictor intercorrelations and predictor-objective relations as input and generates a series of solutions containing predictor weights as output. Accepts between 3 and 10 selection predictors. Maximum 2 objectives could be adverse impact objectives. Partially modeled after De Corte (2006) TROFSS Fortran program https://users.ugent.be/~wdecorte/trofss.pdf and updated from 'ParetoR' package described in Song et al. (2017) doi:10.1037/apl0000240. For details, see Study 3 of Zhang et al. (in press).
Author(s)
Maintainer: Chelsea Song qianqisong@gmail.com (ORCID)
Other contributors:
Yesuel Kim kimyesuel97@gmail.com (ORCID) [contributor]
MOST
Description
Optimizes 3 objectives with normal boundary intersection algorithm
Usage
MOST(optProb, Rx, Rxy1, Rxy2, Rxy3, sr, prop1, prop2, d1, d2, Spac = 10)
Arguments
optProb | 
 Optimization problem. "3C" = no adverse impact objectives and three non-adverse impact objectives; "2C_1AI" = one adverse impact objective and two non-adverse impact objectives; "1C_2AI" = two adverse impact objectives and one non-adverse impact objective.  | 
Rx | 
 Predictor intercorrelation matrix  | 
Rxy1 | 
 Needs to specify for all three types of optimization problems (optProb). Predictor criterion-related validity for non-adverse impact objective 1 (i.e., correlation between each predictor and non-adverse impact objective 1)  | 
Rxy2 | 
 Only specify if optimization problem is "3C" or "2C_1AI". Predictor criterion-related validity for non-adverse impact objective 2 (i.e., correlation between each predictor and non-adverse impact objective 2)  | 
Rxy3 | 
 Only specify if optimization problem is "3C". Predictor criterion-related validity for non-adverse impact objective 3 (i.e., correlation between each predictor and non-adverse impact objective 3)  | 
sr | 
 Only specify if optimization problem is "2C_1AI" or "1C_2AI". Overall selection ratio.  | 
prop1 | 
 Only specify if optimization problem is "2C_1AI" or "1C_2AI". Proportion of minority1 in the applicant pool; prop1 = (# of minority1 applicants)/(total # of applicants)  | 
prop2 | 
 Only specify if optimization problem is "1C_2AI". Proportion of minority2 in the applicant pool; prop2 = (# of minority2 applicants)/(total # of applicants)  | 
d1 | 
 Only specify if optimization problem is "2C_1AI" or "1C_2AI". Vector of standardized group-mean differences between majority and minority 1 for each predictor; d1 = avg_majority - avg_minority1  | 
d2 | 
 Only specify if optimization problem is "1C_2AI". Vector of standardized group-mean differences between majority and minority 2 for each predictor; d2 = avg_majority - avg_minority2  | 
Spac | 
 Determines the number of solutions.  | 
Details
# Inputs required by optimization problems Different types of optimization problems require different input parameters: * optProb = "3C": MOST(optProb, Rx, Rxy1, Rxy2, Rxy3) * optProb = "2C_1AI": MOST(optProb, Rx, Rxy1, Rxy2, sr, prop1, d1) * optProb = "1C_2AI": MOST(optProb, Rx, Rxy1, sr, prop1, d1, prop2, d2)
# Notes regarding the inputs * For personnel selection applications, all predictor-intercorrelations and criterion-related validity inputs should be corrected for range restriction and criterion unreliability to reflect the relations in the applicant sample. * For optimization problems with 2 adverse impact objectives (i.e., optProb = "1C_2AI"), d1 and d2 should be the standardized mean difference between a minority group and the same reference group (e.g., Black-White and Hispanic-White, not Black-White and female-male)
# Optimization * Optimization may take several minutes to run. * Optimization may fail in some applications due to non-convergence.
For more details, please consult the vignette.
Value
Pareto-Optimal solutions with objective values (e.g., C1, AI1) and the corresponding predictor weights (e.g., P1, P2)
Examples
# A sample optimization problem with 3 non-adverse impact objectives and 3 predictors
# For more examples, please consult the vignette.
# Specify inputs
# Predictor inter-correlation matrix (Rx)
Rx <- matrix(c(1,  .50, .50,
               .50,  1, .50,
               .50, .50,  1), 3, 3)
# Predictor-objective relation vectors (Rxy1, Rxy2, Rxy3)
# Criterion-related validities
## Criterion 1
Rxy1 <- c(-.30, 0, .30)
## Criterion 2
Rxy2 <- c(0, .30, -.30)
## Criterion 3
Rxy3 <- c(.30, -.30, 0)
# Get Pareto-optimal solutions
out <- MOST(optProb = "3C", Rx = Rx, Rxy1 = Rxy1, Rxy2 = Rxy2, Rxy3 = Rxy3, Spac = 10)
out
NBI Main Function
Description
Main function for obtaining pareto-optimal solution via normal boundary intersection.
Usage
NBI_1C_1AIR(
  X0,
  Spac,
  Fnum,
  VLB = vector(),
  VUB = vector(),
  TolX = 1e-04,
  TolF = 1e-04,
  TolCon = 1e-07,
  graph = TRUE
)
Arguments
X0 | 
 Initial input for predictor weight vector  | 
Spac | 
 Number of Pareto spaces (i.e., number of Pareto points minus one)  | 
Fnum | 
 Number of criterions  | 
VLB | 
 Lower boundary for weight vector estimation  | 
VUB | 
 Upper boundary for weight vector estimation  | 
TolX | 
 Tolerance index for estimating weight vector, default is 1e-4  | 
TolF | 
 Tolerance index for estimating criterion, default is 1e-4  | 
TolCon | 
 Tolerance index for constraint conditions, default is 1e-7  | 
graph | 
 If TRUE, plots will be generated for Pareto-optimal curve and predictor Weights_1C_1AIR  | 
Value
Pareto-Optimal solutions
NBI Main Function
Description
Main function for obtaining pareto-optimal solution via normal boundary intersection.
Usage
NBI_1C_2AIR(
  X0,
  Spac,
  Fnum,
  VLB = vector(),
  VUB = vector(),
  TolX = 1e-07,
  TolF = 1e-07,
  TolCon = 1e-07
)
Arguments
X0 | 
 Initial input for predictor weight vector  | 
Spac | 
 Number of Pareto spaces (i.e., number of Pareto points minus one)  | 
Fnum | 
 Number of criterions  | 
VLB | 
 Lower boundary for weight vector estimation  | 
VUB | 
 Upper boundary for weight vector estimation  | 
TolX | 
 Tolerance index for estimating weight vector, default is 1e-4  | 
TolF | 
 Tolerance index for estimating criterion, default is 1e-4  | 
TolCon | 
 Tolerance index for constraint conditions, default is 1e-7  | 
Value
Pareto-Optimal solutions
NBI Main Function
Description
Main function for obtaining pareto-optimal solution via normal boundary intersection.
Usage
NBI_2C(
  X0,
  Spac,
  Fnum,
  VLB = vector(),
  VUB = vector(),
  TolX = 1e-04,
  TolF = 1e-04,
  TolCon = 1e-07,
  graph = TRUE
)
Arguments
X0 | 
 Initial input for predictor weight vector  | 
Spac | 
 Number of Pareto spaces (i.e., number of Pareto points minus one)  | 
Fnum | 
 Number of criterions  | 
VLB | 
 Lower boundary for weight vector estimation  | 
VUB | 
 Upper boundary for weight vector estimation  | 
TolX | 
 Tolerance index for estimating weight vector, default is 1e-4  | 
TolF | 
 Tolerance index for estimating criterion, default is 1e-4  | 
TolCon | 
 Tolerance index for constraint conditions, default is 1e-7  | 
graph | 
 If TRUE, plots will be generated for Pareto-optimal curve and predictor weights  | 
Value
Pareto-Optimal solutions
NBI Main Function
Description
Main function for obtaining pareto-optimal solution via normal boundary intersection.
Usage
NBI_2C_1AIR(
  X0,
  Spac,
  Fnum,
  VLB = vector(),
  VUB = vector(),
  TolX = 1e-04,
  TolF = 1e-04,
  TolCon = 1e-07
)
Arguments
X0 | 
 Initial input for predictor weight vector  | 
Spac | 
 Number of Pareto spaces (i.e., number of Pareto points minus one)  | 
Fnum | 
 Number of criterions  | 
VLB | 
 Lower boundary for weight vector estimation  | 
VUB | 
 Upper boundary for weight vector estimation  | 
TolX | 
 Tolerance index for estimating weight vector, default is 1e-4  | 
TolF | 
 Tolerance index for estimating criterion, default is 1e-4  | 
TolCon | 
 Tolerance index for constraint conditions, default is 1e-7  | 
Value
Pareto-Optimal solutions
NBI Main Function
Description
Main function for obtaining pareto-optimal solution via normal boundary intersection.
Usage
NBI_3C(
  X0,
  Spac,
  Fnum,
  VLB = vector(),
  VUB = vector(),
  TolX = 1e-07,
  TolF = 1e-07,
  TolCon = 1e-07
)
Arguments
X0 | 
 Initial input for predictor weight vector  | 
Spac | 
 Number of Pareto spaces (i.e., number of Pareto points minus one)  | 
Fnum | 
 Number of criterions  | 
VLB | 
 Lower boundary for weight vector estimation  | 
VUB | 
 Upper boundary for weight vector estimation  | 
TolX | 
 Tolerance index for estimating weight vector, default is 1e-4  | 
TolF | 
 Tolerance index for estimating criterion, default is 1e-4  | 
TolCon | 
 Tolerance index for constraint conditions, default is 1e-7  | 
Value
Pareto-Optimal solutions
ParetoR_1C_1AIR
Description
Command function to optimize 1 non-adverse impact objective and 1 adverse impact objective via NBI algorithm
Usage
ParetoR_1C_1AIR(Rx, Rxy1, sr, prop1, d1, Spac = 10, graph = FALSE)
Arguments
Rx | 
 Matrix with intercorrelations among predictors  | 
Rxy1 | 
 Vector with correlation between each predictor and criterion 1  | 
sr | 
 Selection ratio in the full applicant pool  | 
prop1 | 
 Proportion of minority applicants in full applicant pool  | 
d1 | 
 Subgroup difference; standardized mean differences between minority and majority subgroups on each predictor in full applicant pool  | 
Spac | 
 Number of solutions  | 
graph | 
 If TRUE, plots will be generated for Pareto-optimal curve and predictor Weights_1C_1AIR  | 
Value
out Pareto-Optimal solution with objective outcome values (Criterion) and predictor Weights_1C_1AIR (ParetoWeights)
ParetoR_1C_2AIR
Description
Command function to optimize 1 non-adverse impact objective and 2 adverse impact objectives via NBI algorithm
Usage
ParetoR_1C_2AIR(sr, prop1, prop2, Rx, Rxy1, d1, d2, Spac = 10)
Arguments
sr | 
 Selection ratio in the full applicant pool  | 
prop1 | 
 Proportion of minority1 applicants in the full applicant pool  | 
prop2 | 
 Proportion of minority2 applicants in the full applicant pool  | 
Rx | 
 Matrix with intercorrelations among predictors  | 
Rxy1 | 
 Vector with correlation between each predictor and the non-adverse impact objective  | 
d1 | 
 Subgroup difference 1; standardized mean differences between minority1 and majority subgroups on each predictor in full applicant pool  | 
d2 | 
 Subgroup difference 2; standardized mean differences between minority2 and majority subgroups on each predictor in full applicant pool  | 
Spac | 
 Number of solutions  | 
Value
out Pareto-Optimal solution with objective outcome values (Criterion) and predictor weights (ParetoWeights)
ParetoR_2C
Description
Command function to optimize 2 non-adverse impact objectives via NBI algorithm
Usage
ParetoR_2C(Rx, Rxy1, Rxy2, Spac = 10, graph = TRUE)
Arguments
Rx | 
 Matrix with intercorrelations among predictors  | 
Rxy1 | 
 Vector with correlation between each predictor and non-adverse impact objective 1  | 
Rxy2 | 
 Vector with correlation between each predictor and non-adverse impact objective 2  | 
Spac | 
 Number of Pareto points  | 
graph | 
 If TRUE, plots will be generated for Pareto-optimal curve and predictor weights  | 
Value
out Pareto-Optimal solution with objective outcome values (Criterion) and predictor weights (ParetoWeights)
ParetoR_2C_1AIR
Description
Command function to optimize 2 non-adverse impact objectives and 1 adverse impact objective via NBI algorithm
Usage
ParetoR_2C_1AIR(Rx, Rxy1, Rxy2, sr, prop1, d1, Spac = 10)
Arguments
Rx | 
 Matrix with intercorrelations among predictors  | 
Rxy1 | 
 Vector with correlation between each predictor and non-adverse impact objective 1  | 
Rxy2 | 
 Vector with correlation between each predictor and non-adverse impact objective 2  | 
sr | 
 Selection ratio in full applicant pool  | 
prop1 | 
 Proportion of minority applicants in full applicant pool  | 
d1 | 
 Subgroup difference; standardized mean differences between minority and majority subgroups on each predictor in full applicant pool  | 
Spac | 
 Number of Pareto points  | 
Value
out Pareto-Optimal solution with objective outcome values (Criterion) and predictor weights (ParetoWeights)
ParetoR_3C
Description
Command function to optimize 3 non-adverse impact objectives via NBI algorithm
Usage
ParetoR_3C(Rx, Rxy1, Rxy2, Rxy3, Spac = 10)
Arguments
Rx | 
 Matrix with intercorrelations among predictors  | 
Rxy1 | 
 Vector with correlation between each predictor and non-adverse impact objective 1  | 
Rxy2 | 
 Vector with correlation between each predictor and non-adverse impact objective 2  | 
Rxy3 | 
 Vector with correlation between each predictor and non-adverse impact objective 3  | 
Spac | 
 Number of solutions  | 
Value
out Pareto-Optimal solution with objective outcome values (Criterion) and predictor weights (ParetoWeights)
Weight_Generate_1C_1AIR
Description
Function intended to test the weight generation scheme for NBI for > 2 objectives
Usage
Weight_Generate_1C_1AIR(n, k)
Arguments
n | 
 Number of objects (i.e., number of predictor and criterion)  | 
k | 
 Number of Pareto points  | 
Value
Weight_Generate_1C_1AIR
Weight_Generate_1C_2AIR
Description
Function intended to test the weight generation scheme for NBI for > 2 objectives
Usage
Weight_Generate_1C_2AIR(n, k)
Arguments
n | 
 Number of objects (i.e., number of predictor and criterion)  | 
k | 
 Number of Pareto points  | 
Value
Weight_Generate_1C_2AIR
Weight_Generate_2C
Description
Function intended to test the weight generation scheme for NBI for > 2 objectives
Usage
Weight_Generate_2C(n, k)
Arguments
n | 
 Number of objects (i.e., number of predictor and criterion)  | 
k | 
 Number of Pareto points  | 
Value
Weight_Generate_2C
Weight_Generate_2C_1AIR
Description
Function intended to test the weight generation scheme for NBI for > 2 objectives
Usage
Weight_Generate_2C_1AIR(n, k)
Arguments
n | 
 Number of objects (i.e., number of predictor and criterion)  | 
k | 
 Number of Pareto points  | 
Value
Weight_Generate_2C_1AIR
Weight_Generate_3C
Description
Function intended to test the weight generation scheme for NBI for > 2 objectives
Usage
Weight_Generate_3C(n, k)
Arguments
n | 
 Number of objects (i.e., number of predictor and criterion)  | 
k | 
 Number of Pareto points  | 
Value
Weight_Generate_3C
WeightsFun_1C_1AIR
Description
Support function, checks input predictor weight vector x
Usage
WeightsFun_1C_1AIR(n, k)
Arguments
n | 
 the number of objectives  | 
k | 
 the inverse of the 1/k, which is the unform spacing between two w_i (k integral)  | 
Value
x Checked and refined input predictor weight vector
WeightsFun_1C_2AIR
Description
Support function, generates all possible weights for NBI subproblems
Usage
WeightsFun_1C_2AIR(n, k)
Arguments
n | 
 Number of objects (i.e., number of predictor and criterion)  | 
k | 
 Number of Pareto points  | 
Value
Weights All possible weights for NBI subproblem
WeightsFun_2C
Description
Support function, generates all possible weights for NBI subproblems
Usage
WeightsFun_2C(n, k)
Arguments
n | 
 Number of objects (i.e., number of predictor and criterion)  | 
k | 
 Number of Pareto points  | 
Value
Weights All possible weights for NBI subproblem
WeightsFun_2C_1AIR
Description
Support function, generates all possible weights for NBI subproblems
Usage
WeightsFun_2C_1AIR(n, k)
Arguments
n | 
 Number of objects (i.e., number of predictor and criterion)  | 
k | 
 Number of Pareto points  | 
Value
Weights All possible weights for NBI subproblem
WeightsFun_3C
Description
Support function, generates all possible weights for NBI subproblems
Usage
WeightsFun_3C(n, k)
Arguments
n | 
 Number of objects (i.e., number of predictor and criterion)  | 
k | 
 Number of Pareto points  | 
Value
Weights All possible weights for NBI subproblem
ai_ratio
Description
Helper function to convert mean subgroup differences to AI ratios (Newman et al., 2007). Called by calc_out().
Usage
ai_ratio(d, sr, p)
Arguments
d | 
 Mean subgroup difference of predictor(s)  | 
sr | 
 Selection ratio in the full applicant pool  | 
p | 
 Proportion of minority group in the full applicant pool  | 
assert_col_vec_1C_1AIR
Description
Support function, refines intermediate variable for use in NBI()
Usage
assert_col_vec_1C_1AIR(v)
Arguments
v | 
 Intermediate variable v  | 
Value
Refined variable v
assert_col_vec_1C_2AIR
Description
Support function, refines intermediate variable for use in NBI()
Usage
assert_col_vec_1C_2AIR(v)
Arguments
v | 
 Intermediate variable v  | 
Value
Refined variable v
assert_col_vec_2C
Description
Support function, refines intermediate variable for use in NBI()
Usage
assert_col_vec_2C(v)
Arguments
v | 
 Intermediate variable v  | 
Value
Refined variable v
assert_col_vec_2C_1AIR
Description
Support function, refines intermediate variable for use in NBI()
Usage
assert_col_vec_2C_1AIR(v)
Arguments
v | 
 Intermediate variable v  | 
Value
Refined variable v
myCon_ineq_3C
Description
Support function, defines inequal constraint condition
Usage
assert_col_vec_3C(v)
Arguments
v | 
 Input predictor weight vector  | 
Value
Inequal constraint condition for use in NBI()
calc_out
Description
Helper function to calculate the expected objective outcome values based on predictor weights solutions. Called by MOST().
Usage
calc_out(x)
Arguments
x | 
 Matrix of predictor weights solutions  | 
Value
Expected objective outcomes
combR_1C_1AIR
Description
Support function to create predictor-criterion matrix
Usage
combR_1C_1AIR(Rx, Ry)
Arguments
Rx | 
 Predictor inter-correlation matrix  | 
Ry | 
 Predictor-criterion correlation (validity)  | 
Value
Rxy Predictor-criterion correlation matrix
combR_1C_2AIR
Description
Support function to create predictor-criterion matrix
Usage
combR_1C_2AIR(Rx, Ry)
Arguments
Rx | 
 Predictor inter-correlation matrix  | 
Ry | 
 Predictor-criterion correlation (validity)  | 
Value
Rxy Predictor-criterion correlation matrix
combR_2C_1AIR
Description
Support function to create predictor-criterion matrix
Usage
combR_2C_1AIR(Rx, Ry)
Arguments
Rx | 
 Predictor inter-correlation matrix  | 
Ry | 
 Predictor-criterion correlation (validity)  | 
Value
Rxy Predictor-criterion correlation matrix
combR_3C
Description
Support function to create predictor-criterion matrix
Usage
combR_3C(Rx, Ry)
Arguments
Rx | 
 Predictor inter-correlation matrix  | 
Ry | 
 Predictor-criterion correlation (validity)  | 
Value
Rxy Predictor-criterion correlation matrix
dimFun_1C_1AIR
Description
Support function, checks input predictor weight vector x
Usage
dimFun_1C_1AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
x Checked and refined input predictor weight vector
dimFun_1C_2AIR
Description
Support function, checks input predictor weight vector x
Usage
dimFun_1C_2AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
x Checked and refined input predictor weight vector
dimFun_2C
Description
Support function, checks input predictor weight vector x
Usage
dimFun_2C(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
x Checked and refined input predictor weight vector
dimFun_2C_1AIR
Description
Support function, checks input predictor weight vector x
Usage
dimFun_2C_1AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
x Checked and refined input predictor weight vector
dimFun_3C
Description
Support function, checks input predictor weight vector x
Usage
dimFun_3C(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
x Checked and refined input predictor weight vector
myCon_eq_1C_1AIR
Description
Support function, defines equal constraint condition
Usage
myCon_eq_1C_1AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
Equal constraint condition for use in NBI_1C_1AIR()
myCon_eq_1C_2AIR
Description
Support function, defines equal constraint condition
Usage
myCon_eq_1C_2AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
Equal constraint condition for use in NBI()
myCon_eq_1_1C_2AIR
Description
Support function, defines equal constraint condition
Usage
myCon_eq_1_1C_2AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
Equal constraint condition for use in NBI()
myCon_eq_2C
Description
Support function, defines equal constraint condition
Usage
myCon_eq_2C(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
Equal constraint condition for use in NBI()
myCon_eq_2C_1AIR
Description
Support function, defines equal constraint condition
Usage
myCon_eq_2C_1AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
Equal constraint condition for use in NBI()
myCon_eq_2_1C_2AIR
Description
Support function, defines equal constraint condition
Usage
myCon_eq_2_1C_2AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
Equal constraint condition for use in NBI()
myCon_ineq_3C
Description
Support function, defines inequal constraint condition
Usage
myCon_eq_3C(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
Inequal constraint condition for use in NBI()
myFM_1C_1AIR
Description
Supporting function, defines criterion space
Usage
myCon_ineq_1C_1AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
f Criterion vector
myCon_ineq_1C_2AIR
Description
Support function, defines inequal constraint condition
Usage
myCon_ineq_1C_2AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
Inequal constraint condition for use in NBI()
myCon_ineq_2C
Description
Support function, defines inequal constraint condition
Usage
myCon_ineq_2C(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
Inequal constraint condition for use in NBI()
myCon_ineq_2C_1AIR
Description
Support function, defines inequal constraint condition
Usage
myCon_ineq_2C_1AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
Inequal constraint condition for use in NBI()
myCon_ineq_3C
Description
Support function, defines inequal constraint condition
Usage
myCon_ineq_3C(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
Inequal constraint condition for use in NBI()
myFM_1C_1AIR
Description
Supporting function, defines criterion space
Usage
myFM_1C_1AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
f Criterion vector
myFM_1C_2AIR
Description
Supporting function, defines criterion space
Usage
myFM_1C_2AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
f Criterion vector
myFM_2C
Description
Supporting function, defines criterion space
Usage
myFM_2C(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
f Criterion vector
myFM_2C_1AIR
Description
Supporting function, defines criterion space
Usage
myFM_2C_1AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
f Criterion vector
myFM_3C
Description
Supporting function, defines criterion space
Usage
myFM_3C(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
f Criterion vector
myLinCom_1C_1AIR
Description
Support function
Usage
myLinCom_1C_1AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
f Criterion vector
myLinCom_1C_2AIR
Description
Support function
Usage
myLinCom_1C_2AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
f Criterion vector
myLinCom_2C
Description
Support function
Usage
myLinCom_2C(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
f Criterion vector
myLinCom_2C_1AIR
Description
Support function
Usage
myLinCom_2C_1AIR(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
f Criterion vector
myLinCom_3C
Description
Support function
Usage
myLinCom_3C(x)
Arguments
x | 
 Input predictor weight vector  | 
Value
f Criterion vector
myTCon_eq_1C_1AIR
Description
Support function, define constraint condition for intermediate step in NBI()
Usage
myTCon_eq_1C_1AIR(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
ceq Temporary constraint condition
myTCon_eq_1C_2AIR
Description
Support function, define constraint condition for intermediate step in NBI()
Usage
myTCon_eq_1C_2AIR(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
ceq Temporary constraint condition
myTCon_eq_1_1C_2AIR
Description
Support function, define constraint condition for intermediate step in NBI()
Usage
myTCon_eq_1_1C_2AIR(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
ceq Temporary constraint condition
myTCon_eq_2C
Description
Support function, define constraint condition for intermediate step in NBI()
Usage
myTCon_eq_2C(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
ceq Temporary constraint condition
myTCon_eq_2C_1AIR
Description
Support function, define constraint condition for intermediate step in NBI()
Usage
myTCon_eq_2C_1AIR(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
ceq Temporary constraint condition
myTCon_eq_2_1C_2AIR
Description
Support function, define constraint condition for intermediate step in NBI()
Usage
myTCon_eq_2_1C_2AIR(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
ceq Temporary constraint condition
myTCon_eq_3C
Description
Support function, define constraint condition for intermediate step in NBI()
Usage
myTCon_eq_3C(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
ceq Temporary constraint condition
myTCon_ineq_1C_2AIR
Description
Support function, defines inequal constraint condition
Usage
myTCon_ineq_1C_2AIR(x_t)
Arguments
x_t | 
 Input predictor weight vector  | 
Value
Inequal constraint condition for use in NBI()
myTCon_ineq_3C
Description
Support function, defines inequal constraint condition
Usage
myTCon_ineq_3C(x_t)
Arguments
x_t | 
 Input predictor weight vector  | 
Value
Inequal constraint condition for use in NBI()
myT_1C_1AIR
Description
Support function, define criterion space for intermediate step in NBI()
Usage
myT_1C_1AIR(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
f Temporary criterion space
myT_1C_2AIR
Description
Support function, define criterion space for intermediate step in NBI()
Usage
myT_1C_2AIR(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
f Temporary criterion space
myT_2C
Description
Support function, define criterion space for intermediate step in NBI()
Usage
myT_2C(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
f Temporary criterion space
myT_2C_1AIR
Description
Support function, define criterion space for intermediate step in NBI()
Usage
myT_2C_1AIR(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
f Temporary criterion space
myT_3C
Description
Support function, define criterion space for intermediate step in NBI()
Usage
myT_3C(x_t)
Arguments
x_t | 
 Temporary input weight vector  | 
Value
f Temporary criterion space
plotPareto_1C_1AIR
Description
Function for plotting Pareto-optimal curve and predictor Weights_1C_1AIR
Usage
plotPareto_1C_1AIR(CriterionOutput, ParetoWeights)
Arguments
CriterionOutput | 
 Pareto-Optimal criterion solution  | 
ParetoWeights | 
 Pareto-Optimal predictor weight solution  | 
Value
Plot of Pareto-optimal curve and plot of predictor Weights_1C_1AIR
plotPareto_2C
Description
Function for plotting Pareto-optimal curve and predictor weights
Usage
plotPareto_2C(CriterionOutput, ParetoWeights)
Arguments
CriterionOutput | 
 Pareto-Optimal criterion solution  | 
ParetoWeights | 
 Pareto-Optimal predictor weight solution  | 
Value
Plot of Pareto-optimal curve and plot of predictor weights