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pomp-package Inference for partially observed Markov processes

Description

The pomp package provides facilities for inference on time series data using partially-observed
Markov process (POMP) models. These models are also known as state-space models, hidden
Markov models, or nonlinear stochastic dynamical systems. One can use pomp to fit nonlinear,
non-Gaussian dynamic models to time-series data. The package is both a set of tools for data analy-
sis and a platform upon which statistical inference methods for POMP models can be implemented.

Data analysis using pomp

pomp provides algorithms for:

1. Simulation of stochastic dynamical systems; see simulate.

[\

. Particle filtering (AKA sequential Monte Carlo or sequential importance sampling); see pfilter
and wpfilter.

. The iterated filtering methods of Ionides et al. (2006, 2011, 2015); see mif2.

. The nonlinear forecasting algorithm of Kendall et al. (2005); see nlf.

. The particle MCMC approach of Andrieu et al. (2010); see pmcmc.

. The probe-matching method of Kendall et al. (1999, 2005); see probe_match.
Synthetic likelihood a 1la Wood (2010); see probe.

A spectral probe-matching method (Reuman et al. 2006, 2008); see spect_match.

© 0 N L R W

Approximate Bayesian computation (Toni et al. 2009); see abc.
10. The approximate Bayesian sequential Monte Carlo scheme of Liu & West (2001); see bsmc2.
11. Ensemble and ensemble adjusted Kalman filters; see kalman.

12. Simple trajectory matching; see traj_match.

The package also provides various tools for plotting and extracting information on models and data.

Structure of the package

pomp algorithms are arranged into several levels. At the top level, estimation algorithms esti-
mate model parameters and return information needed for other aspects of inference. Elementary
algorithms perform common operations on POMP models, including simulation, filtering, and ap-
plication of diagnostic probes; these functions may be useful in inference, but they do not them-
selves perform estimation. At the lowest level, workhorse functions provide the interface to basic
POMP model components. Beyond these, pomp provides a variety of auxiliary functions for ma-
nipulating and extracting information from ‘pomp’ objects, producing diagnostic plots, facilitating
reproducible computations, and so on.
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Implementing a model

The basic structure at the heart of the package is the ‘pomp object’. This is a container holding a
time series of data (possibly multivariate) and a model. The model is specified by specifying some
or all of its basic model components. One does this using the basic component arguments to the
pomp constructor. One can also add, modify, or delete basic model components “on the fly” in any
pomp function that accepts them.

Documentation and examples

The package contains a number of examples. Some of these are included in the help pages. In
addition, several pre-built POMP models are included with the package. Tutorials and other docu-
mentation, including a package FAQ, are available from the package website.

Useful links

* pomp homepage: https://kingaa.github.io/pomp/

* Report bugs to: https://github.com/kingaa/pomp/issues

* Frequently asked questions: https://kingaa.github.io/pomp/FAQ.html
 User guides and tutorials: https://kingaa.github.io/pomp/docs.html
e pomp news: https://kingaa.github.io/pomp/blog.html

Citing pomp

Execute citation("pomp") to view the correct citation for publications.

Author(s)

Aaron A. King

References

A. A. King, D. Nguyen, and E. L. Ionides. Statistical inference for partially observed Markov
processes via the package pomp. Journal of Statistical Software 69(12), 1-43, 2016. An updated
version of this paper is available on the package website.

See the package website for more references, including many publications that use pomp.

See Also
Useful links:

e https://kingaa.github.io/pomp/
* Report bugs at https://github.com/kingaa/pomp/issues/

More on implementing POMP models: Csnippet, accumvars, basic_components, betabinomial,
covariates, dinit_spec, dmeasure_spec, dprocess_spec, emeasure_spec, eulermultinom,
parameter_trans(), pomp_constructor, prior_spec, rinit_spec, rmeasure_spec, rprocess_spec,
skeleton_spec, transformations, userdata, vmeasure_spec
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https://kingaa.github.io/pomp/
https://github.com/kingaa/pomp/issues
https://kingaa.github.io/pomp/FAQ.html
https://kingaa.github.io/pomp/docs.html
https://kingaa.github.io/pomp/blog.html
https://kingaa.github.io/pomp/docs.html
https://kingaa.github.io/pomp/biblio.html
https://kingaa.github.io/pomp/
https://github.com/kingaa/pomp/issues/
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More on pomp workhorse functions: dinit(), dmeasure(), dprior(), dprocess(), emeasure(),

flow(), partrans(), rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(),
workhorses

More on pomp estimation algorithms: abc(), bsmc2(), estimation_algorithms, mif2(), nlf,
pmcmc (), probe_match, spect_match

More on pomp elementary algorithms: elementary_algorithms, kalman, pfilter(), probe()
simulate(), spect(), trajectory(), wpfilter()

abc Approximate Bayesian computation

Description

The approximate Bayesian computation (ABC) algorithm for estimating the parameters of a partially-
observed Markov process.

Usage

## S4 method for signature 'data.frame'
abc(

data,

Nabc = 1,

proposal,

scale,

epsilon,

probes,

params,

rinit,

rprocess,

rmeasure,

dprior,

verbose = getOption("verbose”", FALSE)
)

## S4 method for signature 'pomp'
abc(

data,

Nabc = 1,

proposal,

scale,

epsilon,

probes,

L

verbose = getOption("verbose", FALSE)
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## S4 method for signature 'probed_pomp'
abc(data, probes, ..., verbose = getOption("verbose"”, FALSE))

## S4 method for signature 'abcd_pomp'
abc(

data,

Nabc,

proposal,

scale,

epsilon,

probes,

L

verbose = getOption("verbose", FALSE)

)
Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be coerced to
an array with storage-mode double.

Nabc the number of ABC iterations to perform.

proposal optional function that draws from the proposal distribution. Currently, the pro-
posal distribution must be symmetric for proper inference: it is the user’s respon-
sibility to ensure that it is. Several functions that construct appropriate proposal
function are provided: see MCMC proposals for more information.

scale named numeric vector of scales.

epsilon ABC tolerance.

probes a single probe or a list of one or more probes. A probe is simply a scalar- or
vector-valued function of one argument that can be applied to the data array of
a ‘pomp’. A vector-valued probe must always return a vector of the same size.
A number of useful probes are provided with the package: see basic probes.

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

rmeasure simulator of the measurement model, specified either as a C snippet, an R func-

tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. Setting rmeasure=NULL removes the measurement model simu-
lator. For more information, see rmeasure specification.
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dprior optional; prior distribution density evaluator, specified either as a C snippet,
an R function, or the name of a pre-compiled native routine available in a dy-
namically loaded library. For more information, see prior specification. Setting
dprior=NULL resets the prior distribution to its default, which is a flat improper
prior.

additional arguments are passed to pomp.

verbose logical; if TRUE, diagnostic messages will be printed to the console.

Running ABC

abc returns an object of class ‘abcd_pomp’. One or more ‘abcd_pomp’ objects can be joined to
form an ‘abcList’ object.

Re-running ABC iterations

To re-run a sequence of ABC iterations, one can use the abc method on a ‘abcd_pomp’ object. By
default, the same parameters used for the original ABC run are re-used (except for verbose, the
default of which is shown above). If one does specify additional arguments, these will override the
defaults.

Continuing ABC iterations

One can continue a series of ABC iterations from where one left off using the continue method. A
call to abc to perform Nabc=m iterations followed by a call to continue to perform Nabc=n iterations
will produce precisely the same effect as a single call to abc to perform Nabc=m+n iterations. By
default, all the algorithmic parameters are the same as used in the original call to abc. Additional
arguments will override the defaults.

Methods

The following can be applied to the output of an abc operation:

abc repeats the calculation, beginning with the last state
continue continues the abc calculation
plot produces a series of diagnostic plots

traces produces an mecmc object, to which the various coda convergence diagnostics can be applied

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Author(s)

Edward L. Ionides, Aaron A. King
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References

J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder. Approximate Bayesian computational methods.
Statistics and Computing 22, 1167-1180, 2012.

T. Toni and M. P. H. Stumpf. Simulation-based model selection for dynamical systems in systems
and population biology. Bioinformatics 26, 104—110, 2010.

T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf. Approximate Bayesian compu-
tation scheme for parameter inference and model selection in dynamical systems. Journal of the
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See Also

More on methods based on summary statistics: basic_probes, nlf, probe(), probe_match,
spect(), spect_match

More on pomp estimation algorithms: bsmc2(), estimation_algorithms, mif2(), n1f, pmcmc(),
pomp-package, probe_match, spect_match

More on Markov chain Monte Carlo methods: pmcmc (), proposals

More on Bayesian methods: bsmc2(), dprior(), pmcmc(), prior_spec, rprior()

accumvars accumulator variables

Description

Latent state variables that accumulate quantities through time.

Details

In formulating models, one sometimes wishes to define a state variable that will accumulate some
quantity over the interval between successive observations. pomp provides a facility to make such
features more convenient. Specifically, variables named in the pomp’s accumvars argument will
be set to zero immediately following each observation. See sir and the tutorials on the package
website for examples.

See Also
sir
More on implementing POMP models: Csnippet, basic_components, betabinomial, covariates,
dinit_spec, dmeasure_spec, dprocess_spec, emeasure_spec, eulermultinom, parameter_trans(),

pomp-package, pomp_constructor, prior_spec, rinit_spec, rmeasure_spec, rprocess_spec,
skeleton_spec, transformations, userdata, vmeasure_spec


https://kingaa.github.io/pomp/
https://kingaa.github.io/pomp/

accumvars

Examples

## A simple SIR model.

ewmeas |>
subset(time < 1952) |>
pomp (
times="time",t0=1948,
rprocess=euler(

Csnippet(”

int nrate = 6;

double ratelnratel]; // transition rates
double trans[nratel; // transition numbers
double dw;

// gamma noise, mean=dt, variance=(sigma”2 dt)
dW = rgammawn(sigma,dt);

// compute the transition rates

rate[@] = mu*pop; // birth into susceptible class
rate[1] = (iotat+BetaxIxdW/dt)/pop; // force of infection
rate[2] = mu; // death from susceptible class
rate[3] = gamma; // recovery

rate[4] = mu; // death from infectious class
rate[5] = mu; // death from recovered class

// compute the transition numbers

trans[@] = rpois(rate[@]xdt); // births are Poisson
reulermultinom(2,S,&rate[1],dt,&trans[1]);
reulermultinom(2,I,&rate[3],dt,&trans[3]);
reulermultinom(1,R,&rate[5],dt,&trans[5]);

// balance the equations
S += trans[@]-trans[1]-trans[2];
I += trans[1]-trans[3]-trans[4];
R += trans[3]-trans[5];
"),
delta.t=1/52/20
),
rinit=Csnippet(”
double m = pop/(S_0+I_0+R_0);
S = nearbyint(m*S_0);
I = nearbyint(mxI_0);
R = nearbyint(m*R_0);
"),
paramnames=c("mu”,"pop"”,"iota","gamma"”,"Beta","sigma",
"S_@","I_0","R_0"),
statenames=c("s","I","R"),
params=c(mu=1/50,iota=10, pop=50e6,gamma=26,Beta=400,sigma=0.1,
S_0=0.07,1_0=0.001,R_0=0.93)
) —> ewl

ewl [>
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simulate() |>
plot(variables=c("S","I1","R"))

## A simple SIR model that tracks cumulative incidence.

ewl [>
pomp (
rprocess=euler(
Csnippet(”
int nrate = 6;
double rate[nratel; // transition rates
double trans[nrate]; // transition numbers
double dWw;

// gamma noise, mean=dt, variance=(sigma”2 dt)
dW = rgammawn(sigma,dt);

// compute the transition rates

rate[@] = mux*pop; // birth into susceptible class
rate[1] = (iotat+BetaxIxdW/dt)/pop; // force of infection
rate[2] = mu; // death from susceptible class
rate[3] = gamma; // recovery

rate[4] = mu; // death from infectious class
rate[5] = mu; // death from recovered class

// compute the transition numbers

trans[@] = rpois(rate[@]xdt); // births are Poisson
reulermultinom(2,S,&rate[1],dt,&trans[1]);
reulermultinom(2,I,&rate[3],dt,&trans[3]);
reulermultinom(1,R,&rate[5],dt,&trans[5]);

// balance the equations
S += trans[@]-trans[1]-trans[2];
I += trans[1]-trans[3]-trans[4];
R += trans[3]-trans[5];
H += trans[3]; // cumulative incidence
"),
delta.t=1/52/20
),
rmeasure=Csnippet ("
double mean = Hx*rho;
double size = 1/tau;
reports = rnbinom_mu(size,mean);
",
rinit=Csnippet(”
double m = pop/(S_0+I_0+R_0);

S = nearbyint(m*S_0);
I = nearbyint(m*I_0);
R = nearbyint(m*R_0);
H = 0;

n)
’
non nons non non

paramnames=c("mu”, "pop”,"iota","gamma"”, "Beta","sigma","tau","rho
"S_0" "I_0","R_0"),

n
’

accumvars
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statenames=c("s","I","R","H"),

params=c(mu=1/50,iota=10, pop=50e6,gamma=26,
Beta=400,sigma=0.1,tau=0.001,rho=0.6,
S_0=0.07,1_0-0.001,R_0=0.93)

) —> ew2

ew2 |[>
simulate() |>
plot()

## A simple SIR model that tracks weekly incidence.

ew2 |[>
pomp (accumvars="H") -> ew3

ew3 [>
simulate() |>
plot()

basic_components Basic POMP model components.

Description

Mathematically, the parts of a POMP model include the latent-state process transition distribution,
the measurement-process distribution, the initial-state distribution, and possibly a prior parameter
distribution. Algorithmically, each of these corresponds to at least two distinct operations. In
particular, for each of the above parts, one sometimes needs to make a random draw from the
distribution and sometimes to evaluate the density function. Accordingly, for each such component,
there are two basic model components, one prefixed by a ‘r’, the other by a ‘d’, following the usual
R convention.

Details

In addition to the parts listed above, pomp includes two additional basic model components: the
deterministic skeleton, and parameter transformations that can be used to map the parameter space
onto a Euclidean space for estimation purposes. There are also basic model components for com-
puting the mean and variance of the measurement process conditional on the latent-state process.

There are thus altogether twelve basic model components:

1. rprocess, which samples from the latent-state transition distribution,
dprocess, which evaluates the latent-state transition density,

rmeasure, which samples from the measurement distribution,

i

emeasure, which computes the conditional expectation of the measurements, given the latent
states,
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5. vmeasure, which computes the conditional covariance matrix of the measurements, given the
latent states,

6. dmeasure, which evaluates the measurement density,
7. rprior, which samples from the prior distribution,
8. dprior, which evaluates the prior density,
9. rinit, which samples from the initial-state distribution,
10. dinit, which evaluates the initial-state density,
11. skeleton, which evaluates the deterministic skeleton,
12. partrans, which evaluates the forward or inverse parameter transformations.
Each of these can be set or modified in the pomp constructor function or in any of the pomp ele-

mentary algorithms or estimation algorithms using an argument that matches the basic model com-
ponent. A basic model component can be unset by passing NULL in the same way.

Help pages detailing each basic model component are provided.

See Also

workhorse functions, elementary algorithms, estimation algorithms.

More on implementing POMP models: Csnippet, accumvars, betabinomial, covariates, dinit_spec,
dmeasure_spec, dprocess_spec, emeasure_spec, eulermultinom, parameter_trans(), pomp-package,
pomp_constructor, prior_spec, rinit_spec, rmeasure_spec, rprocess_spec, skeleton_spec,
transformations, userdata, vmeasure_spec

basic_probes Useful probes for partially-observed Markov processes

Description

Several simple and configurable probes are provided with in the package. These can be used directly
and as templates for custom probes.

Usage

probe_mean(var, trim = @, transform = identity, na.rm = TRUE)
probe_median(var, na.rm = TRUE)

probe_var(var, transform = identity, na.rm = TRUE)

probe_sd(var, transform = identity, na.rm = TRUE)
probe_period(var, kernel.width, transform = identity)

probe_quantile(var, probs, ...)
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probe_acf (
var,
lags,
type = c("covariance”, "correlation”),
transform = identity
)
probe_ccf(
vars,
lags,
type = c("covariance”, "correlation”),

transform = identity

)

probe_marginal(var, ref, order =

3, diff =1, transform = identity)

probe_nlar(var, lags, powers, transform = identity)

Arguments

var, vars
trim
transform
na.rm

kernel.width

probs

lags

type

ref

order
diff

powers

character; the name(s) of the observed variable(s).

the fraction of observations to be trimmed (see mean).

transformation to be applied to the data before the probe is computed.
if TRUE, remove all NA observations prior to computing the probe.

width of modified Daniell smoothing kernel to be used in power-spectrum com-
putation: see kernel.

the quantile or quantiles to compute: see quantile.
additional arguments passed to the underlying algorithms.

In probe_ccf, a vector of lags between time series. Positive lags correspond to
x advanced relative to y; negative lags, to the reverse.

In probe_nlar, a vector of lags present in the nonlinear autoregressive model
that will be fit to the actual and simulated data. See Details, below, for a precise
description.

Compute autocorrelation or autocovariance?

empirical reference distribution. Simulated data will be regressed against the
values of ref, sorted and, optionally, differenced. The resulting regression co-
efficients capture information about the shape of the marginal distribution. A
good choice for ref is the data itself.

order of polynomial regression.
order of differencing to perform.

the powers of each term (corresponding to 1ags) in the the nonlinear autoregres-
sive model that will be fit to the actual and simulated data. See Details, below,
for a precise description.
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Value

A call to any one of these functions returns a probe function, suitable for use in probe or probe_objfun.
That is, the function returned by each of these takes a data array (such as comes from a call to obs)
as input and returns a single numerical value.

Author(s)

Daniel C. Reuman, Aaron A. King

References

B.E. Kendall, C.J. Briggs, W.W. Murdoch, P. Turchin, S.P. Ellner, E. McCauley, R.M. Nisbet,
and S.N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling
approaches. Ecology 80, 1789-1805, 1999.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466,
1102-1104, 2010.

See Also

More on methods based on summary statistics: abc(), nlf, probe(), probe_match, spect(),
spect_match

betabinomial Beta-binomial distribution

Description

Density and random generation for the Beta-binomial distribution with parameters size, mu, and
theta.

Usage

rbetabinom(n = 1, size, prob, theta)

dbetabinom(x, size, prob, theta, log = FALSE)

Arguments
n integer; number of random variates to generate.
size size parameter of the binomial distribution
prob mean of the Beta distribution
theta Beta distribution dispersion parameter
X vector of non-negative integer quantiles

log logical; if TRUE, return logarithm(s) of probabilities.
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Details

A variable X is Beta-binomially distributed if X ~ Binomial(n, P) where P ~ Beta(y, ). Using
the standard (a, b) parameterization, a = 6 and b = (1 — ) 6.

Value
rbetabinom Returns a vector of length n containing random variates drawn from the Beta-
binomial distribution.
dbetabinom Returns a vector (of length equal to the number of columns of x) containing
the probabilities of observing each column of x given the specified parameters
(size, prob, theta).
C API

An interface for C codes using these functions is provided by the package. Visit the package home-
page to view the pomp C API document.

See Also

More on implementing POMP models: Csnippet, accumvars, basic_components, covariates,
dinit_spec, dmeasure_spec, dprocess_spec, emeasure_spec, eulermultinom, parameter_trans(),
pomp-package, pomp_constructor, prior_spec, rinit_spec, rmeasure_spec, rprocess_spec,
skeleton_spec, transformations, userdata, vmeasure_spec

blowflies Nicholson’s blowflies.

Description

blowflies is a data frame containing the data from several of Nicholson’s classic experiments with
the Australian sheep blowfly, Lucilia cuprina.

Usage

blowflies1(
P = 3.2838,
delta = 0.16073,
NO = 679.94,
sigma.P = 1.3512,
sigma.d = 0.74677,
sigma.y = 0.026649

)

blowflies2(
P =2.7319,
delta = 0.17377,
NO = 800.31,


https://kingaa.github.io/pomp/C_API.html
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sigma.P = 1.442,
sigma.d = 0.76033,
sigma.y = 0.010846
)
Arguments
P reproduction parameter
delta death rate
No population scale factor
sigma.P intensity of e noise
sigma.d intensity of eps noise
sigma.y measurement error s.d.
Details

blowflies1() and blowflies2() construct ‘pomp’ objects encoding stochastic delay-difference
equation models. The data for these come from "population I", a control culture. The experiment
is described on pp. 163—4 of Nicholson (1957). Unlimited quantities of larval food were provided;
the adult food supply (ground liver) was constant at 0.4g per day. The data were taken from the
table provided by Brillinger et al. (1980).

The models are discrete delay equations:
R(t+ 1) ~ Poisson(PN(t — 7) exp (=N (t — 7)/No)e(t + 1)At)
S(t+ 1) ~ Binomial(N (t), exp (—de(t + 1)At))

N(t) = R(t) + 5(¢)

where e(t) and e(t) are Gamma-distributed i.i.d. random variables with mean 1 and variances
0% /At, 02/ At, respectively. blowflies1 has a timestep (At) of 1 day; blowflies2 has a timestep
of 2 days. The process model in blowflies1 thus corresponds exactly to that studied by Wood
(2010). The measurement model in both cases is taken to be

y(t) ~ NegBin(N(t),1/07)

i.e., the observations are assumed to be negative-binomially distributed with mean N (¢) and vari-
ance N (t) + (o, N(t))2.

Default parameter values are the MLEs as estimated by Ionides (2011).

Value

blowflies1 and blowflies2 return ‘pomp’ objects containing the actual data and two variants of
the model.



bsflu 19

References

A.J. Nicholson. The self-adjustment of populations to change. Cold Spring Harbor Symposia on
Quantitative Biology 22, 153-173, 1957.

Y. Xia and H. Tong. Feature matching in time series modeling. Statistical Science 26,2146, 2011.

E.L. Ionides. Discussion of “Feature matching in time series modeling” by Y. Xia and H. Tong.
Statistical Science 26, 49-52, 2011.

S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466,
1102-1104, 2010.

W.S.C. Gurney, S.P. Blythe, and R.M. Nisbet. Nicholson’s blowflies revisited. Nature 287, 17-21,
1980.

D.R. Brillinger, J. Guckenheimer, P. Guttorp, and G. Oster. Empirical modelling of population
time series: The case of age and density dependent rates. In: G. Oster (ed.), Some Questions in
Mathematical Biology vol. 13, pp. 65-90, American Mathematical Society, Providence, 1980.

See Also

More examples provided with pomp: childhood_disease_data, compartmental_models, dacca(),
ebola, gompertz(), ou2(), pomp_examples, ricker (), rw2(), verhulst()

More data sets provided with pomp: bsflu, childhood_disease_data, dacca(), ebola, parus

Examples

plot(blowflies1())
plot(blowflies2())

bsflu Influenza outbreak in a boarding school

Description

An outbreak of influenza in an all-boys boarding school.

Details

Data are recorded from a 1978 flu outbreak in a closed population. The variable ‘B’ refers to boys
confined to bed on the corresponding day and ‘C’ to boys in convalescence, i.e., not yet allowed
back to class. In total, 763 boys were at risk of infection and, over the course of the outbreak, 512
boys spent between 3 and 7 days away from class (either in bed or convalescent). The index case
was a boy who arrived at school from holiday six days before the next case.

References

Anonymous. Influenza in a boarding school. British Medical Journal 1, 587, 1978.



20 bsmc2

See Also

compartmental models

More data sets provided with pomp: blowflies, childhood_disease_data, dacca(), ebola
parus

Examples
if (require(tidyr) && require(ggplot2)) {

bsflu |>
gather(variable,value,-date,-day) |>
ggplot(aes(x=date,y=value,color=variable))+
geom_line()+
labs(y="number of boys"”,title="boarding school flu outbreak”)+
theme_bw()

bsmc?2 The Liu and West Bayesian particle filter

Description

Modified version of the Liu & West (2001) algorithm.

Usage

## S4 method for signature 'data.frame'
bsmc2(
data,
Np,
smooth = 0.1,
params,
rprior,
rinit,
rprocess,
dmeasure,
partrans,

L

verbose = getOption("verbose"”, FALSE)

## S4 method for signature 'pomp'
bsmc2(data, Np, smooth = @.1, ..., verbose = getOption("verbose”, FALSE))
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Arguments

data either a data frame holding the time series data, or an object of class ‘pomp’,
i.e., the output of another pomp calculation. Internally, data will be coerced to
an array with storage-mode double.

Np the number of particles to use. This may be specified as a single positive integer,
in which case the same number of particles will be used at each timestep. Al-
ternatively, if one wishes the number of particles to vary across timesteps, one
may specify Np either as a vector of positive integers of length

length(time(object, t0=TRUE))

or as a function taking a positive integer argument. In the latter case, Np (k)
must be a single positive integer, representing the number of particles to be
used at the k-th timestep: Np(@) is the number of particles to use going from
timezero(object) to time(object)[1], Np(1), from timezero(object) to
time(object)[1], and so on, while when T=1length(time(object)), Np(T)
is the number of particles to sample at the end of the time-series.

smooth Kernel density smoothing parameter. The compensating shrinkage factor will
be sqrt(1-smooth”2). Thus, smooth=0 means that no noise will be added to
parameters. The general recommendation is that the value of smooth should be
chosen close to 0 (e.g., shrink ~ 0.1).

params optional; named numeric vector of parameters. This will be coerced internally
to storage mode double.

rprior optional; prior distribution sampler, specified either as a C snippet, an R func-
tion, or the name of a pre-compiled native routine available in a dynamically
loaded library. For more information, see prior specification. Setting rprior=NULL
removes the prior distribution sampler.

rinit simulator of the initial-state distribution. This can be furnished either as a C
snippet, an R function, or the name of a pre-compiled native routine available in
a dynamically loaded library. Setting rinit=NULL sets the initial-state simulator
to its default. For more information, see rinit specification.

rprocess simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL removes the latent-state simulator. For more informa-
tion, see rprocess specification for the documentation on these plugins.

dmeasure evaluator of the measurement model density, specified either as a C snippet, an
R function, or the name of a pre-compiled native routine available in a dynami-
cally loaded library. Setting dmeasure=NULL removes the measurement density
evaluator. For more information, see dmeasure specification.

partrans optional parameter transformations, constructed using parameter_trans.
Many algorithms for parameter estimation search an unconstrained space of pa-
rameters. When working with such an algorithm and a model for which the pa-
rameters are constrained, it can be useful to transform parameters. One should
supply the partrans argument via a call to parameter_trans. For more in-
formation, see parameter_trans. Setting partrans=NULL removes the parameter
transformations, i.e., sets them to the identity transformation.

additional arguments are passed to pomp.

verbose logical; if TRUE, diagnostic messages will be printed to the console.
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Details

bsmc2 uses a version of the original algorithm (Liu & West 2001), but discards the auxiliary particle
filter. The modification appears to give superior performance for the same amount of effort.

Samples from the prior distribution are drawn using the rprior component. This is allowed to
depend on elements of params, i.e., some of the elements of params can be treated as “hyperpa-
rameters”. Np draws are made from the prior distribution.

Value

An object of class ‘bsmcd_pomp’. The following methods are avaiable:

plot produces diagnostic plots

as.data.frame puts the prior and posterior samples into a data frame

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

Author(s)

Michael Lavine, Matthew Ferrari, Aaron A. King, Edward L. Ionides

References

J. Liu and M. West. Combining parameter and state estimation in simulation-based filtering. In A.
Doucet, N. de Freitas, and N. J. Gordon, (eds.), Sequential Monte Carlo Methods in Practice, pp.
197-224. Springer, New York, 2001.

See Also

More on Bayesian methods: abc(), dprior(), pmcmc(), prior_spec, rprior()
More on full-information (i.e., likelihood-based) methods: mif2(), pfilter(), pmemc(),wpfilter()

More on sequential Monte Carlo methods: cond_logLik(), eff_sample_size(), filter_mean(),
filter_traj(), kalman,mif2(), pfilter (), pmcmc(), pred_mean(), pred_var(), saved_states(),
wpfilter()

More on pomp estimation algorithms: abc(), estimation_algorithms, mif2(), n1f, pmemc(),
pomp-package, probe_match, spect_match
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bsplines

B-spline bases

Description

These functions generate B-spline basis functions. bspline_basis gives a basis of spline functions.
periodic_bspline_basis gives a basis of periodic spline functions.

Usage

bspline_basis(x, nbasis, degree = 3, deriv = @, names = NULL, rg =

range(x))

periodic_bspline_basis(

X,
nbasis,
degree = 3,
period = 1
deriv = 0,

’

names = NULL

Arguments

X
nbasis
degree
deriv

names

rg
period

Value

bspline_basis

Vector at which the spline functions are to be evaluated.
The number of basis functions to return.

Degree of requested B-splines.

The order of the derivative required.

optional; the names to be given to the basis functions. These will be the column-
names of the matrix returned. If the names are specified as a format string
(e.g., "basis%d"), sprintf will be used to generate the names from the column
number. If a single non-format string is specified, the names will be generated
by paste-ing name to the column number. One can also specify each column
name explicitly by giving a length-nbasis string vector. By default, no column-
names are given.

numeric of length 2; range of the B-spline basis. To be properly specified, we
must have rg[1] < rg[2].

The period of the requested periodic B-splines.

Returns a matrix with length(x) rows and nbasis columns. Each column
contains the values one of the spline basis functions.

periodic_bspline_basis

Returns a matrix with length(x) rows and nbasis columns. The basis func-
tions returned are periodic with period period.



24 childhood_disease_data

If deriv>0, the derivative of that order of each of the corresponding spline basis functions are
returned.

C API
Access to the underlying C routines is available: see the pomp C API document. for definition and
documentation of the C APL.

Author(s)
Aaron A. King

See Also

More on interpolation: covariates, lookup()

Examples

x <- seq(@,2,by=0.01)

y <- bspline_basis(x,degree=3,nbasis=9,names="basis")
matplot(x,y,type="1"',ylim=c(0,1.1))
lines(x,apply(y,1,sum),lwd=2)

x <- seq(-1,2,by=0.01)
y <- periodic_bspline_basis(x,nbasis=5,names="spline%d")
matplot(x,y,type="'1")

childhood_disease_data
Historical childhood disease incidence data

Description

LondonYorke is a data frame containing the monthly number of reported cases of chickenpox,
measles, and mumps from two American cities (Baltimore and New York) in the mid-20th century
(1928-1972).

ewmeas and ewcitmeas are data frames containing weekly reported cases of measles in England and
Wales. ewmeas records the total measles reports for the whole country, 1948-1966. One question-
able data point has been replaced with an NA. ewcitmeas records the incidence in seven English
cities 1948—-1987. These data were kindly provided by Ben Bolker, who writes: “Most of these data
have been manually entered from published records by various people, and are prone to errors at
several levels. All data are provided as is; use at your own risk.”

References

W. P. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps: 1. Seasonal
variation in contact rates. American Journal of Epidemiology 98, 453—468, 1973.
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See Also

compartmental models, bsflu
More data sets provided with pomp: blowflies, bsflu, dacca(), ebola, parus

More examples provided with pomp: blowflies, compartmental_models, dacca(), ebola, gompertz(),
ou2(), pomp_examples, ricker(), rw2(), verhulst()

Examples

plot(cases~time,data=LondonYorke, subset=disease=="measles"”,type='n',main="measles"”, bty="1")
lines(cases~time,data=LondonYorke, subset=disease=="measles"&town=="Baltimore”,col="red")
lines(cases~time,data=LondonYorke, subset=disease=="measles"&town=="New York",6col="blue")
legend("topright”,legend=c(”"Baltimore”, "New York"),1lty=1,col=c("red”,"blue”),bty='n")

plot(
cases~time,
data=LondonYorke,
subset=disease=="chickenpox"&town=="New York",
type='1",col="blue",main="chickenpox, New York",
bty="1"

plot(
cases~time,
data=LondonYorke,
subset=disease=="mumps"&town=="New York",
type='1",col="blue”,main="mumps, New York",
bty="1"
)

plot(reports~time,data=ewmeas, type='1")

plot(reports~date,data=ewcitmeas, subset=city=="Liverpool”,type='1")

coef Extract, set, or alter coefficients

Description

Extract, set, or modify the estimated parameters from a fitted model.

Usage
## S4 method for signature 'listie'’
coef(object, ...)

## S4 method for signature 'pomp'
coef(object, pars, transform = FALSE, ...)
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## S4 replacement method for signature 'pomp'
coef(object, pars, transform = FALSE, ...) <- value

## S4 method for signature 'objfun'
coef(object, ...)

## S4 replacement method for signature 'objfun'

coef(object, pars, transform = FALSE, ...) <- value
Arguments
object an object of class ‘pomp’, or of a class extending ‘pomp’

ignored or passed to the more primitive function

pars optional character; names of parameters to be retrieved or set.
transform logical; perform parameter transformation?
value numeric vector or list; values to be assigned. If value = NULL, the parameters
are unset.
Details

coef allows one to extract the parameters from a fitted model.
coef(object, transform=TRUE) returns the parameters transformed onto the estimation scale.
coef (object) <- value sets or alters the coefficients of a ‘pomp’ object.

coef(object, transform=TRUE) <- value assumes that value is on the estimation scale, and ap-
plies the “from estimation scale” parameter transformation from object before altering the coeffi-
cients.

See Also

Other extraction methods: cond_loglLik(), covmat(), eff_sample_size(), filter_mean(), filter_traj(),
forecast(), logLik, obs(), pred_mean(), pred_var(), saved_states(), spy(), states(),
summary (), time(), timezero(), traces()

compartmental_models  Compartmental epidemiological models

Description

Simple SIR-type models implemented in various ways.
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Usage
sir(

gamma = 26,
mu = 0.02,
iota = 0.01,
betal = 400,
beta2 = 480,
beta3 = 320,
beta_sd = 0.001,
rho = 0.6,
k =0.1,
pop = 2100000,
S_0 = 26/400,
1.0 =0.001,
RO=1-5S10-1_0,
to = 0,

times = seq(from = t@ + 1/52, to = t@ + 4, by = 1/52),
seed = 329343545,
delta.t = 1/52/20

)

sir2(
gamma = 24,
mu = 1/70,
iota = 0.1,
betal = 330,
beta2 = 410,
beta3 = 490,
rho = 0.1,
k =0.1,
pop = le+06,
S_0 = 0.05,
1.0 = 1e-04,
RO=1-S0-1.0,
to = 0,

times = seq(from = t@ + 1/12, to = t0 + 10, by = 1/12),
seed = 1772464524

)
Arguments
gamma recovery rate
mu death rate (assumed equal to the birth rate)
iota infection import rate

betal, beta2, beta3
seasonal contact rates

beta_sd environmental noise intensity
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rho

pop
S_0,I_0,R_0

t0
times
seed

delta.t

Details

compartmental_models

reporting efficiency

reporting overdispersion parameter (reciprocal of the negative-binomial size pa-
rameter)

overall host population size

the fractions of the host population that are susceptible, infectious, and recov-
ered, respectively, at time zero.

Zero time
observation times
seed of the random number generator

Euler step size

sir() producees a ‘pomp’ object encoding a simple seasonal SIR model with simulated data. Sim-
ulation is performed using an Euler multinomial approximation.

sir2() has the same model implemented using Gillespie’s algorithm.

In both cases the measurement model is negative binomial: reports is distributed as a negative
binomial random variable with mean equal to rho*cases and size equal to 1/k.

This and similar examples are discussed and constructed in tutorials available on the package web-

site.

Value

These functions return ‘pomp’ objects containing simulated data.

See Also

More examples provided with pomp: blowflies, childhood_disease_data, dacca(), ebola,
gompertz(), ou2(), pomp_examples, ricker(), rw2(), verhulst()

Examples

po <- sir()

plot(po)
coef (po)

po <- sir2()

plot(po)

plot(simulate(window(po,end=3)))

coef (po)

po |> as.data.frame() |> head()


https://kingaa.github.io/pomp/
https://kingaa.github.io/pomp/
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concat Concatenate

Description

Concatenate two or more ‘pomp’ objects into a list-like ‘listie’.

Usage

## S3 method for class 'Pomp'
c(...)

concat(...)

Arguments

elements to be recursively combined into a ‘listie’

Details

concat applied to one or more ‘pomp’ objects or lists of ‘pomp’ objects converts the list into a
‘listie’. In particular, concat(A,B,C) is equivalent to do.call(c,unlist(list(A,B,C))).

Examples

gompertz(sigma=2,tau=1) -> g
Np <- c(low=100,med=1000,high=10000)
lapply(
Np,
\(np) pfilter(g,Np=np)
) 1>

concat() -> pfs

pfs

coef (pfs)
logLik(pfs)
eff_sample_size(pfs)
cond_loglLik(pfs)

pfs |> plot()
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cond_logLik Conditional log likelihood

Description

The estimated conditional log likelihood from a fitted model.

Usage

## S4 method for signature 'kalmand_pomp'
cond_logLik(object, ..., format = c("numeric”, "data.frame"))

## S4 method for signature 'pfilterd_pomp'
cond_logLik(object, ..., format = c("numeric”, "data.frame"))

## S4 method for signature 'wpfilterd_pomp'
cond_logLik(object, ..., format = c("numeric”, "data.frame"))

## S4 method for signature 'bsmcd_pomp'
cond_loglLik(object, ..., format = c("numeric”, "data.frame"))

## S4 method for signature 'pfilterList'

cond_logLik(object, ..., format = c("numeric”, "data.frame"))
Arguments
object result of a filtering computation
ignored
format format of the returned object
Details

The conditional likelihood is defined to be the value of the density of
Y)Y (t1), ..., Y (tr—1)
evaluated at Y (¢x) = y;. Here, Y (¢;) is the observable process, and y;; the data, at time t.
Thus the conditional log likelihood at time ty, is
0:(6) = log fIY (t) =YY (t2) = g, .., Y (bies) = i),
where f is the probability density above.

Value

The numerical value of the conditional log likelihood. Note that some methods compute not the log
likelihood itself but instead a related quantity. To keep the code simple, the cond_logLik function
is nevertheless used to extract this quantity.

When object is of class ‘bsmcd_pomp’ (i.e., the result of a bsmc2 computation), cond_loglLik
returns the conditional log “evidence” (see bsmc2).
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See Also

More on sequential Monte Carlo methods: bsmc2(), eff_sample_size(), filter_mean(), filter_traj(),
kalman,mif2(), pfilter (), pmecmc(), pred_mean(), pred_var(), saved_states(),wpfilter()

Other extraction methods: coef (), covmat (), eff_sample_size(), filter_mean(), filter_traj(),
forecast(), logLik, obs(), pred_mean(), pred_var(), saved_states(), spy(), states(),
summary (), time(), timezero(), traces()

continue Continue an iterative calculation

Description

Continue an iterative computation where it left off.

Usage

## S4 method for signature 'abcd_pomp'
continue(object, Nabc =1, ...)

## S4 method for signature 'pmcmcd_pomp'
continue(object, Nmcmc = 1, ...)

## S4 method for signature 'mif2d_pomp'

continue(object, Nmif =1, ...)
Arguments
object the result of an iterative pomp computation
Nabc positive integer; number of additional ABC iterations to perform

additional arguments will be passed to the underlying method. This allows one
to modify parameters used in the original computations.

Nmecme positive integer; number of additional PMCMC iterations to perform
Nmif positive integer; number of additional filtering iterations to perform
See Also

mif2 pmecmc abc
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covariates Covariates

Description

Incorporating time-varying covariates using lookup tables.

Usage

## S4 method for signature 'numeric'
covariate_table(..., order = c("linear”, "constant”), times)

## S4 method for signature 'character'
covariate_table(..., order = c("linear"”, "constant”), times)

repair_lookup_table(table, t, order)

Arguments
numeric vectors or data frames containing time-varying covariates. It must be
possible to bind these into a data frame.
order the order of interpolation to be used. Options are “linear” (the default) and
“constant”. Setting order="1linear" treats the covariates as piecewise linear
functions of time; order="constant" treats them as right-continuous piecewise
constant functions.
times the times corresponding to the covariates. This may be given as a vector of (non-
decreasing, finite) numerical values. Alternatively, one can specify by name
which of the given variables is the time variable.
table a ‘covartable’ object created by a call to covariate_table
t numeric vector; times at which interpolated values of the covariates in table
are required.
Details

If the ‘pomp’ object contains covariates (specified via the covar argument), then interpolated val-
ues of the covariates will be available to each of the model components whenever it is called. In
particular, variables with names as they appear in the covar covariate table will be available to any
C snippet. When a basic component is defined using an R function, that function will be called
with an extra argument, covars, which will be a named numeric vector containing the interpolated
values from the covariate table.

An exception to this rule is the prior (rprior and dprior): covariate-dependent priors are not
allowed. Nor are parameter transformations permitted to depend upon covariates.

repair_lookup_table applies lookup at the provided values of t and returns the resulting lookup
table. If order is unsupplied, the interpolation-order from table is preserved. repair_lookup_table
should be considered experimental: its interface may change without notice.
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Value

covariate_table returns a lookup table suitable for inclusion of covariates in a ‘pomp’ object.
Specifically, this is an object of class ‘covartable’.

repair_lookup_table returns a lookup table with entries at the provided values of t.

Extrapolation

If t is outside the range of the lookup table, the values will be extrapolated, and a warning will be
issued. The type of extrapolation performed will be constant or linear according to the order flag
used when creating the table.

See Also

More on implementing POMP models: Csnippet, accumvars, basic_components, betabinomial,
dinit_spec, dmeasure_spec, dprocess_spec, emeasure_spec, eulermultinom, parameter_trans(),
pomp-package, pomp_constructor, prior_spec, rinit_spec, rmeasure_spec, rprocess_spec,
skeleton_spec, transformations, userdata, vmeasure_spec

More on interpolation: bsplines, lookup()

covmat Estimate a covariance matrix from algorithm traces

Description

A helper function to extract a covariance matrix.

Usage

## S4 method for signature 'pmcmcd_pomp'

covmat(object, start = 1, thin = 1, expand = 2.38, ...)
## S4 method for signature 'pmcmclList'

covmat(object, start = 1, thin = 1, expand = 2.38, ...)
## S4 method for signature 'abcd_pomp'

covmat(object, start = 1, thin = 1, expand = 2.38, ...)
## S4 method for signature 'abclList'

covmat(object, start = 1, thin = 1, expand = 2.38, ...)

## S4 method for signature 'probed_pomp'
covmat(object, ...)
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Arguments
object an object extending ‘pomp’
start the first iteration number to be used in estimating the covariance matrix. Setting
thin > 1 allows for a burn-in period.
thin factor by which the chains are to be thinned
expand the expansion factor
ignored
Value

When object is the result of a pmcmc or abc computation, covmat (object) gives the covariance
matrix of the chains. This can be useful, for example, in tuning the proposal distribution.

When object is a ‘probed_pomp’ object (i.e., the result of a probe computation), covmat (object)
returns the covariance matrix of the probes, as applied to simulated data.

See Also
MCMC proposals.

Other extraction methods: coef (), cond_loglLik(), eff_sample_size(), filter_mean(), filter_traj(),
forecast(), logLik, obs(), pred_mean(), pred_var(), saved_states(), spy(), states(),
summary (), time(), timezero(), traces()

Csnippet C snippets

Description

Accelerating computations through inline snippets of C code

Usage

Csnippet(text)

Arguments

text character; text written in the C language

Details

pomp provides a facility whereby users can define their model’s components using inline C code.
C snippets are written to a C file, by default located in the R session’s temporary directory, which is
then compiled (via R CMD SHLIB) into a dynamically loadable shared object file. This is then loaded
as needed.
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Note to Windows and Mac users

By default, your R installation may not support R CMD SHLIB. The package website contains instal-
lation instructions that explain how to enable this powerful feature of R.

General rules for writing C snippets

In writing a C snippet one must bear in mind both the goal of the snippet, i.e., what computation it
is intended to perform, and the confext in which it will be executed. These are explained here in the
form of general rules. Additional specific rules apply according to the function of the particular C
snippet. [llustrative examples are given in the tutorials on the package website.

1. C snippets must be valid C. They will embedded verbatim in a template file which will then be
compiled by a call to R CMD SHLIB. If the resulting file does not compile, an error message will
be generated. Compiler messages will be displayed, but no attempt will be made by pomp to
interpret them. Typically, compilation errors are due to either invalid C syntax or undeclared
variables.

2. State variables, parameters, observables, and covariates must be left undeclared within the
snippet. State variables and parameters are declared via the statenames or paramnames ar-
guments to pomp, respectively. Compiler errors that complain about undeclared state variables
or parameters are usually due to failure to declare these in statenames or paramnames, as
appropriate.

3. A C snippet can declare local variables. Be careful not to use names that match those of state
variables, observables, or parameters. One must never declare state variables, observables,
covariates, or parameters within a C snippet.

4. Names of observables must match the names given given in the data. They must be referred
to in measurement model C snippets (rmeasure and dmeasure) by those names.

5. If the ‘pomp’ object contains a table of covariates (see above), then the variables in the co-
variate table will be available, by their names, in the context within which the C snippet is
executed.

6. Because the dot “.” has syntactic meaning in C, R variables with names containing dots (") are
replaced in the C codes by variable names in which all dots have been replaced by underscores
(‘_’ .

7. The headers ‘R.h’ and ‘Rmath.h’, provided with R, will be included in the generated C file,
making all of the R C API available for use in the C snippet. This makes a great many useful
functions available, including all of R’s statistical distribution functions.

8. The header ‘pomp.h’, provided with pomp, will also be included, making all of the pomp C
API available for use in every C snippet.

9. Snippets of C code passed to the globals argument of pomp will be included at the head of
the generated C file. This can be used to declare global variables, define useful functions, and
include arbitrary header files.

Linking to precompiled libraries

It is straightforward to link C snippets with precompiled C libraries. To do so, one must make
sure the library’s header files are included; the globals argument can be used for this purpose.
The shlib.args argument can then be used to specify additional arguments to be passed to R CMD
SHLIB. FAQ 3.7 gives an example.


https://kingaa.github.io/pomp/install.html
https://kingaa.github.io/pomp/install.html
https://kingaa.github.io/pomp/
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html#The-R-API
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html#Distribution-functions
https://github.com/kingaa/pomp/blob/master/inst/include/pomp.h
https://kingaa.github.io/pomp/C_API.html
https://kingaa.github.io/pomp/C_API.html
https://kingaa.github.io/pomp/FAQ.html#linking-C-libraries
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C snippets are salted

To prevent collisions in parallel computations, a ‘pomp’ object built using C snippets is “salted”
with the current time and a random number. A result is that two ‘pomp’ objects, built on identical
codes and data, will not be identical as R objects, though they will be functionally identical in every
respect.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also

Spy

More on implementing POMP models: accumvars, basic_components, betabinomial, covariates,
dinit_spec, dmeasure_spec, dprocess_spec, emeasure_spec, eulermultinom, parameter_trans(),
pomp-package, pomp_constructor, prior_spec, rinit_spec, rmeasure_spec, rprocess_spec,
skeleton_spec, transformations, userdata, vmeasure_spec

dacca Model of cholera transmission for historic Bengal.

Description

dacca constructs a ‘pomp’ object containing census and cholera mortality data from the Dacca dis-
trict of the former British province of Bengal over the years 1891 to 1940 together with a stochastic
differential equation transmission model. The model is that of King et al. (2008). The parameters
are the MLE for the SIRS model with seasonal reservoir.

Usage

dacca(
gamma =
eps = 1
rho = 0,
delta =

deltal =

clin =1,

alpha = 1,

beta_trend = -0.00498,

logbeta = c(0.747, 6.38, -3.44, 4.23, 3.33, 4.55),

logomega = log(c(0.184, 0.0786, ©0.0584, 0.00917, 0.000208, 0.0124)),

sd_beta = 3.13,
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tau = 0.2
S_©0 =0.6
I 0=20.3
Y_0 =0,
R1_0 = 0.000843,
R2_0 = 0.000972,
R3_0 = 1.16e-07
)
Arguments
gamma recovery rate
eps rate of waning of immunity for severe infections
rho rate of waning of immunity for inapparent infections
delta baseline mortality rate
deltal cholera mortality rate
clin fraction of infections that lead to severe infection
alpha transmission function exponent
beta_trend slope of secular trend in transmission
logbeta seasonal transmission rates
logomega seasonal environmental reservoir parameters
sd_beta environmental noise intensity
tau measurement error s.d.
S_0 initial susceptible fraction
I_0 initial fraction of population infected
Y_0 initial fraction of the population in the Y class

R1_0,R2_0,R3_0 Iinitial fractions in the respective R classes

Details

Data are provided courtesy of Dr. Menno J. Bouma, London School of Tropical Medicine and

Hygiene.

Value

dacca returns a ‘pomp’ object containing the model, data, and MLE parameters, as estimated by

King et al. (2008).

References

A.A. King, E.L. Ionides, M. Pascual, and M.J. Bouma. Inapparent infections and cholera dynamics.
Nature 454, 877-880, 2008
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See Also

More examples provided with pomp: blowflies, childhood_disease_data, compartmental_models,
ebola, gompertz(), ou2(), pomp_examples, ricker (), rw2(), verhulst()

More data sets provided with pomp: blowflies, bsflu, childhood_disease_data, ebola, parus

Examples

# takes too long for R CMD check
po <- dacca()

plot(po)

## MLE:

coef (po)

plot(simulate(po))

design Design matrices for pomp calculations

Description

These functions are useful for generating designs for the exploration of parameter space.

profile_design generates a data-frame where each row can be used as the starting point for a
profile likelihood calculation.

runif_design generates a design based on random samples from a multivariate uniform distribu-
tion.

slice_design generates points along slices through a specified point.

sobol_design generates a Latin hypercube design based on the Sobol’ low-discrepancy sequence.

Usage

profile_design(

lower,

upper,

nprof,

type = c("runif”, "sobol"),

stringsAsFactors = getOption("stringsAsFactors"”, FALSE)
)

runif_design(lower = numeric(@), upper = numeric(@), nseq)

slice_design(center, ...)

sobol_design(lower = numeric(@), upper = numeric(@), nseq)
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In profile_design, additional arguments specify the parameters over which to
profile and the values of these parameters. In slice_design, additional numeric
vector arguments specify the locations of points along the slices.

named numeric vectors giving the lower and upper bounds of the ranges, respec-
tively.

nprof The number of points per profile point.

type the type of design to use. type="runif” uses runif_design. type="sobol"”
uses sobol_design;

stringsAsFactors
should character vectors be converted to factors?

nseq Total number of points requested.

center center is a named numeric vector specifying the point through which the slice(s)
is (are) to be taken.

Details

The Sobol’ sequence generation is performed using codes from the NLopt library by S. Johnson.

Value

profile_design returns a data frame with nprof points per profile point.

runif_design returns a data frame with nseq rows and one column for each variable named in

lower and upper.

slice_design returns a data frame with one row per point. The ‘slice’ variable indicates which
slice the point belongs to.

sobol_design returns a data frame with nseq rows and one column for each variable named in

lower and upper.

Author(s)

Aaron A. King

References

S. Kucherenko and Y. Sytsko. Application of deterministic low-discrepancy sequences in global op-
timization. Computational Optimization and Applications 30,297-318, 2005. doi:10.1007/s10589-

00546151.

S.G. Johnson. The NLopt nonlinear-optimization package. https://github.com/stevengj/

nlopt/.

P. Bratley and B.L. Fox. Algorithm 659 Implementing Sobol’s quasirandom sequence generator.
ACM Transactions on Mathematical Software 14, 88100, 1988.

S. Joe and F.Y. Kuo. Remark on algorithm 659: Implementing Sobol’ quasirandom sequence gen-
erator. ACM Transactions on Mathematical Software 29, 49-57, 2003.


https://doi.org/10.1007/s10589-005-4615-1
https://doi.org/10.1007/s10589-005-4615-1
https://github.com/stevengj/nlopt/
https://github.com/stevengj/nlopt/
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Examples

## Sobol' low-discrepancy design
plot(sobol_design(lower=c(a=0,b=100),upper=c(b=200,a=1),nseq=100))

## Uniform random design
plot(runif_design(lower=c(a=0,b=100),upper=c(b=200,a=1),100))

## A one-parameter profile design:

x <- profile_design(p=1:10,lower=c(a=0,b=0),upper=c(a=1,b=5),nprof=20)
dim(x)

plot(x)

## A two-parameter profile design:

x <- profile_design(p=1:10,9=3:5, lower=c(a=0,b=0),upper=c(b=5,a=1),nprof=200)
dim(x)

plot(x)

## A two-parameter profile design with random points:

X <- profile_design(p=1:10,q9=3:5,lower=c(a=0,b=0),upper=c(b=5,a=1),nprof=200, type="runif")
dim(x)

plot(x)

## A single 11-point slice through the point c(A=3,B=8,C=0) along the B direction.
x <- slice_design(center=c(A=3,B=8,C=0),B=seq(0,10,by=1))

dim(x)

plot(x)

## Two slices through the same point along the A and C directions.

x <- slice_design(c(A=3,B=8,C=0),A=seq(0@,5,by=1),C=seq(@,5,1length=11))
dim(x)

plot(x)

dinit dinit workhorse

Description

Evaluates the initial-state density.

Usage

## S4 method for signature 'pomp'
dinit(

object,

params = coef(object),

t0 = timezero(object),

X,

log = FALSE,
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)
Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.

t0 the initial time, i.e., the time corresponding to the initial-state distribution.

X an array containing states of the unobserved process. The dimensions of x are
nvars X nrep X ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

log if TRUE, log probabilities are returned.
additional arguments are ignored.

Value

dinit returns a 1-D numerical array containing the likelihoods (or log likelihoods if 10g=TRUE). By
default, t0 is the initial time defined when the ‘pomp’ object ws constructed.

See Also

Specification of the initial-state distribution: dinit_spec

More on pomp workhorse functions: dmeasure(), dprior(), dprocess(), emeasure(), flow(),
partrans(), pomp-package, rinit(), rmeasure(), rprior (), rprocess(), skeleton(), vmeasure(),
workhorses

dinit_spec dinit specification

Description

Specification of the initial-state distribution density evaluator, dinit.

Details

To fully specify the unobserved Markov state process, one must give its distribution at the zero-time
(t@). One specifies how to evaluate the log probability density function for this distribution using
the dinit argument. As usual, this can be provided either as a C snippet or as an R function. In the
former case, bear in mind that:

1. The goal of a this snippet is computation of a log likelihood, to be put into a variable named
loglik.
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2. In addition to the state variables, parameters, and covariates (if any), the variable t, containing
the zero-time, will be defined in the context in which the snippet is executed.

General rules for writing C snippets can be found here.

If an R function is to be used, pass
dinit = f

to pomp, where f is a function with arguments that can include the time t, any or all of the model
state variables, parameters, and covariates. As usual, f may take additional arguments, provided
these are passed along with it in the call to pomp. f must return a single numeric value, the log
likelihood.

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also
dinit
More on implementing POMP models: Csnippet, accumvars, basic_components, betabinomial,
covariates, dmeasure_spec, dprocess_spec, emeasure_spec, eulermultinom, parameter_trans(),

pomp-package, pomp_constructor, prior_spec, rinit_spec, rmeasure_spec, rprocess_spec,
skeleton_spec, transformations, userdata, vmeasure_spec

dmeasure dmeasure workhorse

Description

dmeasure evaluates the probability density of observations given states.

Usage

## S4 method for signature 'pomp'
dmeasure(

object,

y = obs(object),

x = states(object),

times = time(object),

params = coef(object),

’

log = FALSE
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Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

y a matrix containing observations. The dimensions of y are nobs x ntimes,
where nobs is the number of observables and ntimes is the length of times.

X an array containing states of the unobserved process. The dimensions of x are
nvars x nrep X ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent
parameter set, in correspondence with the corresponding column of x.
additional arguments are ignored.

log if TRUE, log probabilities are returned.

Value

dmeasure returns a matrix of dimensions nreps x ntimes. If d is the returned matrix, d[j,k] is
the likelihood (or log likelihood if log = TRUE) of the observation y[,k] at time times[k] given
the state x[, j, k1.

See Also

Specification of the measurement density evaluator: dmeasure_spec

More on pomp workhorse functions: dinit(), dprior(), dprocess(), emeasure(), flow(),
partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(),
workhorses

dmeasure_spec dmeasure specification

Description

Specification of the measurement model density function, dmeasure.

Details

The measurement model is the link between the data and the unobserved state process. It can be
specified either by using one or both of the rmeasure and dmeasure arguments.

Suppose you have a procedure to compute the probability density of an observation given the value
of the latent state variables. Then you can furnish

dmeasure = f
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to pomp algorithms, where f is a C snippet or R function that implements your procedure.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet
for general rules on writing C snippets. The goal of a dmeasure C snippet is to fill the variable 1ik
with the either the probability density or the log probability density, depending on the value of the
variable give_log.

In writing a dmeasure C snippet, observe that:
1. In addition to the states, parameters, covariates (if any), and observables, the variable t, con-

taining the time of the observation will be defined in the context in which the snippet is exe-
cuted.

2. Moreover, the Boolean variable give_log will be defined.

3. The goal of a dmeasure C snippet is to set the value of the 1ik variable to the likelihood of
the data given the state, if give_log == 0. If give_log == 1, lik should be set to the log
likelihood.

If dmeasure is to be provided instead as an R function, this is accomplished by supplying
dmeasure = f

to pomp, where f is a function. The arguments of f should be chosen from among the observables,
state variables, parameters, covariates, and time. It must also have the arguments . . ., and log. It
can take additional arguments via the userdata facility. f must return a single numeric value, the
probability density (or log probability density if log = TRUE) of y given x at time t.

Important note

It is a common error to fail to account for both log = TRUE and log = FALSE when writing the
dmeasure C snippet or function.

Default behavior

If dmeasure is left unspecified, calls to dmeasure will return missing values (NA).

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also

dmeasure

More on implementing POMP models: Csnippet, accumvars, basic_components, betabinomial,
covariates,dinit_spec, dprocess_spec, emeasure_spec, eulermultinom, parameter_trans(),
pomp-package, pomp_constructor, prior_spec, rinit_spec, rmeasure_spec, rprocess_spec,
skeleton_spec, transformations, userdata, vmeasure_spec
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Examples

#it

We start with the pre-built Ricker example:

ricker() -> po

#it
##
#it
#it
##

pPo

#it

po

To change the measurement model density, dmeasure,

we use the 'dmeasure' argument in any 'pomp’
elementary or estimation function.

Here, we pass the dmeasure specification to 'pfilter'
as an R function.

|>

pfilter(

dmeasure=function (y, N, phi, ..., log) {
dpois(y,lambda=phi*N, log=1og)

}’

Np=100

) > pf

We can also pass it as a C snippet:

|>

pfilter(

dmeasure=Csnippet("”1lik = dpois(y,phi*N,give_log);"),
paramnames="phi",

statenames="N",

Np=100

) —> pf

dprior

dprior workhorse

Description

Evaluates the prior probability density.

Usage

## S4 method for signature 'pomp'
dprior(object, params = coef(object), ..., log = FALSE)

Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically

be the output of pomp, simulate, or one of the pomp inference algorithms.

params a npar x nrep matrix of parameters. Each column is treated as an independent

log

parameter set, in correspondence with the corresponding column of x.
additional arguments are ignored.
if TRUE, log probabilities are returned.
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Value

The required density (or log density), as a numeric vector.

See Also

Specification of the prior density evaluator: prior_spec

More on pomp workhorse functions: dinit(), dmeasure(), dprocess(), emeasure(), flow(),
partrans(), pomp-package, rinit(), rmeasure(), rprior(), rprocess(), skeleton(), vmeasure(),
workhorses

More on Bayesian methods: abc (), bsmc2(), pmemc(), prior_spec, rprior()

dprocess dprocess workhorse

Description

Evaluates the probability density of a sequence of consecutive state transitions.

Usage

## S4 method for signature 'pomp'
dprocess(

object,

x = states(object),

times = time(object),

params = coef(object),

’

log = FALSE

)
Arguments

object an object of class ‘pomp’, or of a class that extends ‘pomp’. This will typically
be the output of pomp, simulate, or one of the pomp inference algorithms.

X an array containing states of the unobserved process. The dimensions of x are
nvars x nrep x ntimes, where nvars is the number of state variables, nrep is
the number of replicates, and ntimes is the length of times. One can also pass
x as a named numeric vector, which is equivalent to the nrep=1, ntimes=1 case.

times a numeric vector (length ntimes) containing times. These must be in non-
decreasing order.

params a npar x nrep matrix of parameters. Each column is treated as an independent

parameter set, in correspondence with the corresponding column of x.
additional arguments are ignored.

log if TRUE, log probabilities are returned.
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Value

dprocess returns a matrix of dimensions nrep x ntimes-1. If d is the returned matrix, d[j, k] is
the likelihood (or the log likelihood if 1og=TRUE) of the transition from state x[, j,k-1] at time
times[k-1] to state x[, j,k] at time times[k].

See Also

Specification of the process-model density evaluator: dprocess_spec

More on pomp workhorse functions: dinit(), dmeasure(), dprior(), emeasure(), flow(),
partrans(), pomp-package, rinit(), rmeasure(), rprior (), rprocess(), skeleton(), vmeasure(),
workhorses

dprocess_spec dprocess specification

Description

Specification of the latent state process density function, dprocess.

Details

Suppose you have a procedure that allows you to compute the probability density of an arbitrary
transition from state x; at time ¢; to state zo at time t5 > t; under the assumption that the state
remains unchanged between ¢; and ¢5. Then you can furnish

dprocess = f

to pomp, where f is a C snippet or R function that implements your procedure. Specifically, f should
compute the log probability density.

Using a C snippet is much preferred, due to its much greater computational efficiency. See Csnippet
for general rules on writing C snippets. The goal of a dprocess C snippet is to fill the variable loglik
with the log probability density. In the context of such a C snippet, the parameters, and covariates
will be defined, as will the times t_1 and t_2. The state variables at time t_1 will have their usual
name (see statenames) with a “_1” appended. Likewise, the state variables at time t_2 will have a
“_2” appended.

If f is given as an R function, it should take as arguments any or all of the state variables, param-
eter, covariates, and time. The state-variable and time arguments will have suffices “_1"" and “_2”
appended. Thus for example, if var is a state variable, when f is called, var_1 will value of state
variable var at time t_1, var_2 will have the value of var at time t_2. f should return the log like-
lihood of a transition from x1 at time t1 to x2 at time t2, assuming that no intervening transitions
have occurred.

To see examples, consult the demos and the tutorials on the package website.


https://kingaa.github.io/pomp/
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Note

It is not typically necessary (or even feasible) to define dprocess. In fact, no current pomp in-
ference algorithm makes use of dprocess. This functionality is provided only to support future
algorithm development.

Default behavior

By default, dprocess returns missing values (NA).

Note for Windows users

Some Windows users report problems when using C snippets in parallel computations. These ap-
pear to arise when the temporary files created during the C snippet compilation process are not
handled properly by the operating system. To circumvent this problem, use the cdir and cfile op-
tions to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary
files altogether.

See Also

dprocess

More on implementing POMP models: Csnippet, accumvars, basic_components, betabinomial,
covariates,dinit_spec, dmeasure_spec, emeasure_spec, eulermultinom, parameter_trans(),
pomp-package, pomp_constructor, prior_spec, rinit_spec, rmeasure_spec, rprocess_spec,
skeleton_spec, transformations, userdata, vmeasure_spec
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Description

Data and models for 