| Title: | Kriging Method for Spatial Functional Data | 
| Version: | 0.1.1 | 
| Maintainer: | Gilberto Sassi <sassi.pereira.gilberto@gmail.com> | 
| Description: | A Kriging method for functional datasets with spatial dependency. This functional Kriging method avoids the need to estimate the trace-variogram, and the curve is estimated by minimizing a quadratic form. The curves in the functional dataset are smoothed using Fourier series. The functional Kriging of this package is a modification of the method proposed by Giraldo (2011) <doi:10.1007/s10651-010-0143-y>. | 
| Imports: | numDeriv, stats, Rcpp | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.1.2 | 
| URL: | https://github.com/gilberto-sassi/geoFKF | 
| BugReports: | https://github.com/gilberto-sassi/geoFKF/issues | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| NeedsCompilation: | yes | 
| Packaged: | 2022-08-12 19:06:56 UTC; gilberto | 
| Author: | Gilberto Sassi [aut, cre] | 
| Repository: | CRAN | 
| Date/Publication: | 2022-08-12 19:50:02 UTC | 
Computing coefficients Fourier.
Description
This function computes minimum square estimates for Fourier coefficients.
Usage
coef_fourier(f, m)
Arguments
f | 
 A time series to be smoothed.  | 
m | 
 Order of the Fourier polynomial. Default value is computed using the Sturge's rule.  | 
Value
A vector with the fourier coefficients.
Examples
x <- seq(from = -pi, to = pi, by = 0.01)
y <- x^2 + rnorm(length(x), sd = 0.1)
v_coef <- coef_fourier(y)
Temperature datasets from Canada.
Description
Temperature time series from 35 weather stations from Canada.  This dataset
is a classic one and was used in famous package fda. We have made a few
changes in this dataset.
Usage
data("datasetCanada")
Format
A list with two entries: m_cood and m_data.
m_coorda
tibblewith latitude, logitude and the name of stations.- m_data
 a
tibblewhere each column is the time series from a weather station.
Source
the CanadianWeather dataset from the R package
fda.
Smoothed curve in Fourier Series.
Description
This function computes the smoothed curve using Fourier coefficients.
Usage
fourier_b(coef, x)
Arguments
coef | 
 Fourier coefficients.  | 
x | 
 a time series to evaluate the smoothed curve.  | 
Value
a time series with the smoothed curve.
Examples
v_coef <- rnorm(23)
fourier_b(v_coef)
Kriging method for Spatial Functional Data.
Description
geo_fkf implements the kriging method for spatial functional datasets.
Usage
geo_fkf(m_data, m_coord, new_loc, p, t = seq(from = -pi, to = pi, by = 0.01))
Arguments
m_data | 
 a tibble where each column or variable is data from a station  | 
m_coord | 
 a tibble with two columns: latitude and longitude  | 
new_loc | 
 a tible with one observation, where the columns or variables are latitude and longitude  | 
p | 
 order in the Fourier Polynomial  | 
t | 
 a time series with values belonging to   | 
Value
a list with three entries: estimates, Theta and
cov_params
- estimates
 the estimate curve
- Theta
 weights (matrices) of the linear combination
- cov_params
 estimate
\sigma^2,\phiand\rho
Examples
data("datasetCanada")
m_data <- as.matrix(datasetCanada$m_data)
m_coord <- as.matrix(datasetCanada$m_coord[, 1:2])
pos <- sample.int(nrow(m_coord), 1)
log_pos <- !(seq_len(nrow(m_coord)) %in% pos)
new_loc <- m_coord[pos, ]
m_coord <- m_coord[log_pos, ]
m_data <- m_data[, log_pos]
geo_fkf(m_data, m_coord, new_loc)
Log likelihood function for multivariate normal with spatial dependency.
Description
Log likelihood function for multivariate normal with spatial dependency.
Arguments
mCoef | 
 coefficient matrix. Each column is the coefficient from a curve;  | 
mDist | 
 distance matris;  | 
s2 | 
 variance from the covariance model;  | 
phi | 
 variance from the covariance model;  | 
rho | 
 variance from the covariance model;  | 
Maximum likelihood estimate for \sigma^2, \phi and \rho.
Description
This function maximum likelihood estimate for \sigma^2, \phi
and \rho in the random field model for the covariance.
Usage
log_lik_rf(m_coef, m_coord)
Arguments
m_coef | 
 Matrix where each column is an observed vector  | 
m_coord | 
 Matrix where each observation contains the latitude and longitude  | 
Value
Return a list with
- par
 A vector with the estimates of
\sigma^2,\phiand\rho.- m_cov
 A matrix of covariances of the estimates.
Examples
data("datasetCanada")
m_data <- as.matrix(datasetCanada$m_data)
m_coord <- as.matrix(datasetCanada$m_coord[, 1:2])
p <- ceiling(1 + log2(nrow(m_data)))
m_coef <- sapply(seq_len(nrow(m_coord)), function(i) {
    coef_fourier(m_data[, i], p)
})
log_lik_rf(m_coef, m_coord)