fmriAR: Fast AR and ARMA Noise Whitening for Functional MRI (fMRI) Design and Data

Lightweight utilities to estimate autoregressive (AR) and autoregressive moving average (ARMA) noise models from residuals and apply matched generalized least squares to whiten functional magnetic resonance imaging (fMRI) design and data matrices. The ARMA estimator follows a classic 1982 approach <doi:10.1093/biomet/69.1.81>, and a restricted AR family mirrors workflows described by Cox (2012) <doi:10.1016/j.neuroimage.2011.08.056>.

Version: 0.2.0
Depends: R (≥ 4.0)
Imports: Rcpp, stats
LinkingTo: Rcpp, RcppArmadillo
Suggests: testthat (≥ 3.0.0), knitr, rmarkdown, abind, withr
Published: 2025-11-03
DOI: 10.32614/CRAN.package.fmriAR (may not be active yet)
Author: Bradley Buchsbaum [aut, cre]
Maintainer: Bradley Buchsbaum <brad.buchsbaum at gmail.com>
License: MIT + file LICENSE
URL: https://bbuchsbaum.github.io/fmriAR/
NeedsCompilation: yes
SystemRequirements: OpenMP (optional)
Materials: README
CRAN checks: fmriAR results

Documentation:

Reference manual: fmriAR.html , fmriAR.pdf
Vignettes: Getting Started with fmriAR (source, R code)

Downloads:

Package source: fmriAR_0.2.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=fmriAR to link to this page.