This document collects call patterns and options for each public function. All formulas follow response ~ A + B (+ C …) with numeric response and factor predictors.
srh.kway.full()
Purpose: one-call pipeline: ANOVA on ranks +
descriptives + post hocs + simple effects.
Syntax: srh.kway.full(y ~ A + B (+ C …), data,
max_levels = 30)
Automatically chooses the ANOVA engine:
Returns a list: anova, summary, posthoc_cells, posthoc_simple, meta.
Placeholders:
Example:
res <- srh.kway.full(liking ~ gender + condition + age_cat, data = mimicry)
names(res)
res$anova[1:3]
head(res$summary)
names(res$posthoc_cells)
names(res$posthoc_simple)[1:3]
res$meta
Notes:
write.srh.kway.full.tsv()
Purpose: export the srh.kway.full() result into a
single TSV file for fast formatting.
Syntax: write.srh.kway.full.tsv(obj, file =
“srh_kway_full.tsv”, sep = “, na =”“, dec =”.”)
Example:
# you can of course provide your own path to the file outside the temporary folder
f <- file.path(tempdir(), "result.tsv")
write.srh.kway.full.tsv(res, file = f, dec = ",")
file.exists(f)
srh.kway()
Purpose: general k-way SRH-style ANOVA on ranks (Type II SS), tie-corrected p-values. Syntax: srh.kway(y ~ A + B (+ C …), data, clamp0 = TRUE, force_factors = TRUE, type = 2, …)
Example:
k3 <- srh.kway(liking ~ gender + condition + age_cat, data = mimicry)
k3
One-factor check (KW-like):
k1 <- srh.kway(liking ~ condition, data = mimicry)
k1
Two factor (Type III SS):
k3_ss3 <- srh.kway(liking ~ gender + condition, data = mimicry, type = 3)
k3_ss3
srh.effsize()
Purpose: 2-way SRH table with effect sizes from
H.
Syntax: srh.effsize(y ~ A + B, data, clamp0 = TRUE,
…)
Example:
e2 <- srh.effsize(liking ~ gender + condition, data = mimicry)
e2
nonpar.datatable()
Purpose: compact descriptive tables (APA-style),
with global rank means, medians, quartiles, IQR.
Syntax: nonpar.datatable(y ~ A + B (+ C …), data,
force_factors = TRUE)
Example:
dt <- nonpar.datatable(liking ~ gender + condition, data = mimicry)
head(dt)
srh.posthoc()
Purpose: Dunn–Bonferroni pairwise comparison
matrix for a specified effect.
Syntax: srh.posthoc(y ~ A (+ B + …), data, method =
“bonferroni”, digits = 3, triangular = c(“lower”,“upper”,“full”),
numeric = FALSE, force_factors = TRUE, sep = “.”)
Example:
ph <- srh.posthoc(liking ~ condition, data = mimicry)
srh.posthocs()
Purpose: Dunn–Bonferroni pairwise matrices
for all effects (main and interactions).
Syntax: srh.posthocs(y ~ A + B (+ C …), data, …)
Example:
phs <- srh.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
names(phs)
phs[["gender:condition"]][1:5, 1:5]
srh.simple.posthoc()
Purpose: Simple-effects post hocs
(pairwise comparisons within levels of conditioning
factors).
Syntax: srh.simple.posthoc(y ~ A + B (+ C …), data,
compare = NULL, scope = c(“within”,“global”), digits = 3)
Example:
simp <- srh.simple.posthoc(liking ~ gender + condition + age_cat, data = mimicry, compare = "gender", scope = "within")
head(simp)
srh.simple.posthocs()
Purpose: enumerate all simple-effect
configurations for a given design.
Syntax: srh.simple.posthocs(y ~ A + B (+ C …),
data)
Example:
sps <- srh.simple.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
head(names(sps), 6)
normality.datatable
Purpose: Shapiro–Wilk normality tests for the raw response within each subgroup for all non-empty combinations of RHS factors (main effects and interaction cells). Syntax: normality.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)
Example:
normality.datatable(liking ~ gender + condition + age_cat, data = mimicry)
residuals.normality.datatable
Purpose: Shapiro–Wilk normality tests on residuals from a classical ANOVA model fitted to the selected RHS factors (full factorial for those factors), one test per model (global residuals). Syntax: residuals.normality.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)
Example:
residuals.normality.datatable(liking ~ gender + condition + age_cat, data = mimicry)
residuals.cellwise.normality.datatable
Purpose: Shapiro–Wilk tests of residuals from an ANOVA model fitted to the selected RHS factors (full factorial), but tested separately within each cell defined by those factors. Syntax: residuals.cellwise.normality.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)
Example:
residuals.cellwise.normality.datatable(liking ~ gender + condition + age_cat, data = mimicry)
balance.chisq.datatable
Purpose: Count-balance diagnostics across design factors. Syntax: balance.chisq.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)
Example:
balance.chisq.datatable(liking ~ gender + condition + age_cat, data = mimicry)
levene.plan.datatable
Purpose: Levene/Brown–Forsythe test for homogeneity of variances across the full-plan cells (highest-order interaction of RHS factors). Syntax: levene.plan.datatable(y ~ A + B (+ C …), data, center = “median”, force_factors = TRUE)
Examples:
levene.plan.datatable(liking ~ gender + condition + age_cat, data = mimicry)  
levene.plan.datatable(liking ~ gender + condition, data = mimicry, center = "mean")
plan.diagnostics
Purpose: Orchestrates all diagnostics in one call. Syntax: plan.diagnostics(y ~ A + B (+ C …), data, force_factors = TRUE)
Returned list:
$summary: percent_ok, ok_count, total, overall, plus per-type percentages:  
percent_ok_normality_raw, percent_ok_residuals_cellwise, percent_ok_balance_chisq, percent_ok_levene_full_plan.  
$results: normality_raw, residuals_cellwise_normality, levene_full_plan, balance_chisq.  
Examples:
diag_out <- plan.diagnostics(liking ~ gender + condition + age_cat, data = mimicry)  
diag_out$results$normality_raw  
diag_out$results$residuals_cellwise_normality  
diag_out$results$levene_full_plan  
diag_out$results$balance_chisq  
diag_out$summary
Formula tips and pitfalls
Example:
#coercing
mimicry$gender <- factor(mimicry$gender)
mimicry$condition <- factor(mimicry$condition)
Performance and reproducibility
C:116060334b62-reference.R