RLescalation: Optimal Dose Escalation Using Deep Reinforcement Learning
An implementation to compute an optimal dose escalation rule
    using deep reinforcement learning in phase I oncology trials
    (Matsuura et al. (2023) <doi:10.1080/10543406.2023.2170402>).
    The dose escalation rule can directly optimize the percentages of correct
    selection (PCS) of the maximum tolerated dose (MTD).
| Version: | 
1.0.3 | 
| Imports: | 
glue, R6, nleqslv, reticulate, stats, utils, zip | 
| Suggests: | 
knitr, rmarkdown | 
| Published: | 
2025-10-07 | 
| DOI: | 
10.32614/CRAN.package.RLescalation | 
| Author: | 
Kentaro Matsuura  
    [aut, cre, cph] | 
| Maintainer: | 
Kentaro Matsuura  <matsuurakentaro55 at gmail.com> | 
| BugReports: | 
https://github.com/MatsuuraKentaro/RLescalation/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://github.com/MatsuuraKentaro/RLescalation | 
| NeedsCompilation: | 
no | 
| Language: | 
en-US | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
RLescalation results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=RLescalation
to link to this page.