GLMMRR: Generalized Linear Mixed Model (GLMM) for Binary Randomized
Response Data
Generalized Linear Mixed Model (GLMM) for Binary Randomized Response Data.
    Includes Cauchit, Compl. Log-Log, Logistic, and Probit link functions for Bernoulli Distributed RR data.
    RR Designs: Warner, Forced Response, Unrelated Question, Kuk, Crosswise, and Triangular. 
    Reference: Fox, J-P, Veen, D. and Klotzke, K. (2018). Generalized Linear Mixed Models for Randomized Responses. Methodology. <doi:10.1027/1614-2241/a000153>.
| Version: | 
0.6.0 | 
| Depends: | 
R (≥ 3.5.0), lme4, methods | 
| Imports: | 
lattice, stats, utils, grDevices, RColorBrewer | 
| Published: | 
2025-09-18 | 
| DOI: | 
10.32614/CRAN.package.GLMMRR | 
| Author: | 
Jean-Paul Fox [aut, cre],
  Konrad Klotzke [aut],
  Duco Veen [aut] | 
| Maintainer: | 
Jean-Paul Fox  <jpfox00 at gmail.com> | 
| License: | 
GPL-3 | 
| NeedsCompilation: | 
no | 
| Materials: | 
README  | 
| In views: | 
MixedModels, Psychometrics | 
| CRAN checks: | 
GLMMRR results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=GLMMRR
to link to this page.