| Title: | Inference for Infectious Disease Transmission in SIR Framework | 
| Version: | 1.2.1 | 
| Description: | Model and estimate the model parameters for the spatial model of individual-level infectious disease transmission in Susceptible-Infected-Recovered (SIR) framework. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.1 | 
| LazyData: | true | 
| Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| Imports: | mvtnorm, psych, stats,MASS,numDeriv,Matrix | 
| Depends: | R (≥ 2.10) | 
| NeedsCompilation: | no | 
| Packaged: | 2024-06-04 16:28:29 UTC; ruwan | 
| Author: | Ruwani Herath [aut, cre], Leila Amiri [ctb], Mahmoud Torabi [ctb] | 
| Maintainer: | Ruwani Herath <ruwanirasanjalih@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-06-04 17:30:14 UTC | 
Area level data
Description
The data which describes the sociodemographic characters (proportion of indigenous people, proportions of immigrants, proportion of low education, median household income) for 96 regions.
Usage
Area_Level_Data
Format
A data frame with 96 rows and 5 columns:
- RHDA
 Region name
- Percentage_of_immigrants
 percentage of immigrants in each region
- Percentage_of_indigenous
 percentage of indigenous people in each region
- Proporton_of_Low_education
 proportion of persons 15+ who have not graduated high school
- Income
 median household income
...
Individual level data
Description
The data which describes the Individual characteristics (gender, age group, infected status) and corresponding area details for 700 individuals.
Usage
Individual_Level_Data
Format
A data frame with 700 rows and 8 columns:
- Disease_Status
 Disease status of the individual
- Region
 The regioal health authority of the individual
- Gender
 Gender of the individual
- Age_Group
 Age group of the individual
- Postal_code
 postal code which the individual belong to
- Longitde
 longitude of the region
- Latitude
 latitude of the region
- Region_Number
 Region number assigned for each regional health authority
...
This function is used to estimate model parameters
Description
This function is used to estimate model parameters
Usage
Realdata_Finalmodel(
  ITER,
  zz,
  lambda0,
  sigma0,
  Di,
  D,
  n,
  time,
  tau,
  lambda,
  alpha0,
  q1,
  q2,
  cov1,
  cov2,
  phi,
  delta0,
  Nlabel,
  npar,
  I
)
Arguments
ITER | 
 Number of iterations  | 
zz | 
 Number of Regions  | 
lambda0 | 
 Spatial dependence  | 
sigma0 | 
 precision  | 
Di | 
 Euclidean distance between susceptible individual and infectious individual  | 
D | 
 Neighborhood structure  | 
n | 
 total number of individuals  | 
time | 
 time  | 
tau | 
 tau  | 
lambda | 
 lambda ###  | 
alpha0 | 
 intercept  | 
q1 | 
 Number of variables corresponding to individual level data  | 
q2 | 
 Number of variables corresponding to area level data  | 
cov1 | 
 Individual level covariates  | 
cov2 | 
 Area level covariates  | 
phi | 
 Spatial random effects  | 
delta0 | 
 Spatial parameter  | 
Nlabel | 
 Label for each sample from the area  | 
npar | 
 number of parameters  | 
I | 
 Identity matrix  | 
Value
Numerical values for estimates
Examples
Realdata_Finalmodel(2,4,0.2,0.5,
matrix(runif(400,min = 4,max = 20),nrow=20, byrow = TRUE),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),20,10,
sample(c(0,1),replace = TRUE, size = 20),rep(3,20),0.4,6,5,
matrix(runif(120, 0, 1),nrow=20,byrow=TRUE),
matrix(runif(20, 0, 1),nrow=4,byrow=TRUE),runif(4,min = 0, max = 1),2,
rep(1:4,each=5),15,diag(4))
Calculating the estimated values for the parameters using log-likelihood function
Description
Calculating the estimated values for the parameters using log-likelihood function
Usage
Sim_Estpar(
  Nlabel,
  phi,
  Di,
  alpha1,
  delta,
  lambda1,
  sigma1,
  beta1,
  beta2,
  zz,
  time,
  n,
  tau,
  lambda,
  I,
  D,
  cov1,
  cov2
)
Arguments
Nlabel | 
 Label for each sample from the area  | 
phi | 
 Spatial random effects  | 
Di | 
 Euclidean distance between susceptible individual and infectious individual  | 
alpha1 | 
 intercept  | 
delta | 
 Spatial parameter  | 
lambda1 | 
 Spatial dependence  | 
sigma1 | 
 precision of spatial random effects  | 
beta1 | 
 the parameter corresponding to the covariate associated with susceptible individual  | 
beta2 | 
 the parameter corresponding to the covariate associated with area  | 
zz | 
 Number of areas  | 
time | 
 Time  | 
n | 
 Total number of individuals  | 
tau | 
 the set of infectious individuals at time t in the zth area  | 
lambda | 
 a vector containing the length of infectious period  | 
I | 
 identity matrix  | 
D | 
 Neighborhood structure  | 
cov1 | 
 Individual level covariates  | 
cov2 | 
 Area level covariates  | 
Value
a list of the solutions for the estimations of the parameters
Examples
Sim_Estpar(rep(1:4,each=5),runif(4,min = 0, max = 1),
matrix(runif(400,min=4,max=20),nrow=20,byrow = TRUE),0.4,3,0.2,0.5,1,1,4,10,
20,sample(c(0,1),replace = TRUE, size = 20),rep(3,20),diag(4),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),
runif(20, 0, 1),runif(4, 0, 1))
This function calculates the value of the log-likelihood function
Description
This function calculates the value of the log-likelihood function
Usage
Sim_Loglik(
  Nlabel,
  phi,
  Di,
  alpha1,
  delta,
  lambda,
  sigma1,
  beta1,
  beta2,
  time,
  n,
  zz,
  tau,
  lambda1,
  I,
  D,
  cov1,
  cov2
)
Arguments
Nlabel | 
 Label for each sample from the area  | 
phi | 
 Spatial random effects  | 
Di | 
 Euclidean distance between susceptible individual and infectious individual  | 
alpha1 | 
 intercept  | 
delta | 
 Spatial parameter  | 
lambda | 
 a vector containing the length of infectious period  | 
sigma1 | 
 precision of spatial random effects  | 
beta1 | 
 the parameter corresponding to the covariate associated with susceptible individual  | 
beta2 | 
 the parameter corresponding to the covariate associated with area  | 
time | 
 time  | 
n | 
 Total number of individuals  | 
zz | 
 Number of areas  | 
tau | 
 the set of infectious individuals at time t in the zth area  | 
lambda1 | 
 Spatial dependence  | 
I | 
 Identity matrix  | 
D | 
 matrix reflecting neighborhood structure  | 
cov1 | 
 Individual level covariates  | 
cov2 | 
 Area level covariates  | 
Value
a numeric value for the log-likelihood
Examples
Sim_Loglik(rep(1:4,each=5), runif(4,min = 0, max = 1),
matrix(runif(400,min=4,max=20),nrow=20,byrow=TRUE),0.4, 2,rep(3,20),0.5,1,1,
10,20,4,sample(c(0,1),replace = TRUE, size = 20),0.6,diag(4),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),
runif(20, 0, 1), runif(4, 0, 1))
This function can use to estimate the model parameters using the initial values.
Description
This function can use to estimate the model parameters using the initial values.
Usage
Simulation_Finalmodel(
  ITER,
  zz,
  lambda0,
  sigma0,
  Di,
  g,
  nSample,
  d,
  n,
  time,
  tau,
  lambda,
  alpha0,
  beta10,
  beta20,
  cov1,
  cov2,
  phi,
  delta0,
  Nlabel,
  D,
  I
)
Arguments
ITER | 
 Number of iterations  | 
zz | 
 Number of Regions  | 
lambda0 | 
 initial value for Spatial dependence  | 
sigma0 | 
 initial value for the precision of spatial random effects  | 
Di | 
 Euclidean distance between susceptible individual and infectious individual  | 
g | 
 Number of rows in the lattice  | 
nSample | 
 Number of individuals in each cell  | 
d | 
 infectious time units  | 
n | 
 total number of individuals  | 
time | 
 time  | 
tau | 
 the set of infectious individuals at time t in the zth area  | 
lambda | 
 a vector containing the length of infectious period  | 
alpha0 | 
 initial value for the intercept  | 
beta10 | 
 initial value for the parameter corresponding to the covariate associated with susceptible individual  | 
beta20 | 
 initial value for the parameter corresponding to the area-level covariates corresponding to area  | 
cov1 | 
 a vector of covariates associated with susceptible individual  | 
cov2 | 
 a vector of area-level covariates corresponding to area  | 
phi | 
 Spatial random effects  | 
delta0 | 
 Spatial parameter  | 
Nlabel | 
 Label for each sample from the area  | 
D | 
 matrix reflecting neighborhood structure  | 
I | 
 Identity matrix  | 
Value
the estimated values for the model parameters
Examples
Simulation_Finalmodel(2,4,0.2,0.5,
matrix(runif(1600,min=4,max=20),nrow=40,byrow=TRUE),2,10,3,40,10,
sample(c(0,1),replace=TRUE,size=40),rep(3,40),0.4,1,1,runif(40,0,1),
runif(4,0,1),runif(4,min=0,max=1),2,rep(1:4,each=10),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),
diag(4))
TwoWeek
Description
The simulated data for the date diagnosed and tau
Usage
TwoWeek
Format
A data frame with 700 rows and 2 columns:
- date_diagnosed
 The date which the disease diagnosed
- V2
 the week
...