
Package ‘FCSlib’
October 12, 2022

Type Package

Title A Collection of Fluorescence Fluctuation Spectroscopy Analysis
Methods

Version 1.3.0

Date 2020-11-17

Author Raúl Pinto Cámara, Adán Guerrero, Alejan-
dro Linares, José Damián Martínez Reyes, Haydee Hernández.

Maintainer Raúl Pinto Cámara <support.fcslib@mail.ibt.unam.mx>

Description This is a package for fluorescence fluctuation spectroscopy data analysis meth-
ods such as spFCS, FCCS, scanning-FCS, pCF, N&B and pCOMB, among others.
In addition, several data detrending tools are provided. For an exten-
sive user's guide for the use of FCSlib, please navi-
gate to (<https://github.com/FCSlib/FCSlib/tree/master/Documentation>).
Sample data can be found at (<https:
//github.com/FCSlib/FCSlib/tree/master/Sample%20Data>).
The original paper where this package is pre-
sented can be found at (<doi:10.1093/bioinformatics/btaa876>).

License GPL-3

Depends R(>= 3.6.0), tiff, stringr, bitops, fields

RoxygenNote 7.1.1

Encoding UTF-8

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2020-11-18 09:40:09 UTC

R topics documented:
asynACTCSPC . 2
binMatrix . 3
binTimeSeries . 4

1

https://github.com/FCSlib/FCSlib/tree/master/Documentation
https://github.com/FCSlib/FCSlib/tree/master/Sample%20Data
https://github.com/FCSlib/FCSlib/tree/master/Sample%20Data
https://doi.org/10.1093/bioinformatics/btaa876

2 asynACTCSPC

Cy5 . 5
detrendTimeSeries . 6
fcs . 7
fitFCS . 10
gcf . 12
nbline . 13
norm.vector . 15
pcf . 16
pcomb . 17
readFileFCS . 18
readFileModel . 19
readFileSPC . 20
readFileTiff . 21
simplifyFCS . 22
smoothCarpet . 23
tiff_to_mtx . 24
V2 . 25
writeFileTiff . 26

Index 27

asynACTCSPC Asynchronous Autocorrelation of Time-Correlated Single-Photon
Counting

Description

Calculates the auto-correlation of the Macrotime data, returning a correlation function.

Usage

asynACTCSPC(macro, n = 5, B = 10)

Arguments

macro A numeric vector containig a Macrotime Data.
n numeric parameter that represents the number of layers of the cascade.
B numeric parameter that represents the number of values in every layer of the

cascade.

Details

This function creates list of tau’s with a length of n*B, this list is used to perform the correlation of
the data.

Value

A numeric vector G containing either the autocorrelation for the input vector macro, with a length
of n*B.

binMatrix 3

Author(s)

Raúl Pinto Cámara, José Damián Martínez Reyes.

References

wahl, M., Gregor, I., Patting, M. & Enderlein, J. Fast calculation of fluorescence correlation data
with asynchronous time-correlated single-photon counting. Opt. Express 11, 3583–3591 (2003).

See Also

readFileSPC

Examples

spcData <- readFileSPC("atto532_atto655_m1.spc")
asynCorrData <- asynACTCSPC(macro = spcData$MacroTime)

binMatrix Binned representation of a matrix

Description

Groups each column in a matrix into several bins of a given length for better (and faster) data
plotting

Usage

binMatrix(f, lineTime, nIntervals, columns, mode = "mean", plot = TRUE)

Arguments

f A vector or a matrix

lineTime Line (row) acquisition rate (in seconds)

nIntervals Number of intervals into which the all columns will be grouped

columns Number of columns of the resulting binned matrix

mode Set to "mean" (default) or "sum" to average or sum all the points in every inter-
val, respectively

plot Boolean, set to TRUE (default) to plot the result

Details

This function groups all the points in each column of the matrix ’f’ into ’nIntervals’ bins of length
= length(f)/nIntervals. Then, averages or sums all of the points in each bin and plots the result. If ’f’
is a vector, ’columns’ is used to build the resulting matrix. If ’f’ is a matrix, then ’columns’ takes
the value of the number of columns in ’f’.

4 binTimeSeries

Value

A matrix of ’nIntervals’ rows

Author(s)

Alejandro Linares

See Also

binTimeSeries

Examples

Please navigate to
(https://github.com/FCSlib/FCSlib/tree/master/Sample%20Data)
to find this sample data

Automatic plot
x <- read.table("Pax.dat")
x <- binMatrix(x[,1], lineTime = 1e-3, nIntervals = 500,

columns = 64, mode = "mean", plot = T)

Manual plot (useful for adding custom labels)
x <- read.table("Pax.dat")
x <- binMatrix(x[,1], lineTime = 1e-3, nIntervals = 500,

columns = 64, mode = "mean", plot = F)
image.plot(x)

binTimeSeries Binned representation of a time series

Description

Groups large vectors into several bins of a given length for better (and faster) data plotting

Usage

binTimeSeries(f, acqTime, nIntervals, mode = "mean", plot = TRUE)

Arguments

f Numeric vector
acqTime Point acquisition rate (in seconds)
nIntervals Number of intervals into which the vector will be grouped
mode Set to "mean" (default) or "sum" to average or sum all the points in every inter-

val, respectively
plot Boolean, set to TRUE (default) to plot the result

Cy5 5

Details

This function groups all the points in the vector ’f’ into ’nIntervals’ bins of length = length(f)/nIntervals.
Then, averages or sums all of the points in each bin and plots the result.

Value

A data frame with two variables (Counts and Time) and ’nIntervals’ observations

Author(s)

Alejandro Linares

See Also

binMatrix

Examples

Please navigate to
(https://github.com/FCSlib/FCSlib/tree/master/Sample%20Data)
to find this sample data

Automatic plot
x <- readFileTiff("Cy5.tif")
x <- as.vector(x)
x <- binTimeSeries(x[length(x):1], 2e-6, 100, mode = "mean", plot = T)

Manual plot (useful for adding custom labels)
x <- readFileTiff("Cy5.tif")
x <- as.vector(x)
x <- binTimeSeries(x[length(x):1], 2e-6, 100, mode = "mean", plot = F)
plot(x$Counts~x$Time, type = "l")

Cy5 Experimental data of freely diffusing Cy5 dye in water at a concentra-
tion of 33 nM.

Description

A single vector of single-point scan data, in the form of a TIFF file.

Usage

data(Cy5)

6 detrendTimeSeries

Format

A matrix with 2048 columns and 5000 rows

Details

To analyze this data set with FCSlib, import by typing: readFileTiff("Cy5.tif")

detrendTimeSeries Algorithms for data detrending

Description

Allows to perform Exponential, Polynomial or Boxcar Filter detrending over a time series vector

Usage

detrendTimeSeries(f, acqTime, nIntervals, algorithm, degree, w, pois = FALSE,
max = FALSE, plot = TRUE)

Arguments

f A vector

acqTime Point acquisition rate (in seconds)

nIntervals Number of intervals into which the vector will be grouped prior to the detrending
process

algorithm A character string. Choose between Exponential ("exp"), Polynomial ("poly")
or Boxcar Filter ("boxcar") detrending

degree The degree of the polynomial function

w Moving average time window size

pois Logical, set to TRUE for detrending performance by adding random, uncorre-
lated numbers sampled from a Poisson distribution (see details)

max Logical, set to TRUE for detrending performance based on the highest value of
the original data, rather than the first one (see details)

plot Logical, set to TRUE (default) to plot de result

Details

First, the binTimeSeries() function is used to obtain a binned version of ’f’ of ’nIntervals’ points.

For exponential detrending, a model of the form (A0*e^(k*t) is adjusted to the binned vector.

A polynomial function of user-specified degree is rather used for polynomial detrending.

For the case of boxcar filtering, the moving average vector is calculated from the original series.
An amount of zeroes equal to (w-1) is added at the tail of ’f’ to compensate for the moving average
effect when position (length(f) - w + 1) is reached.

fcs 7

In either case, the residuals are then obtained and added a constant value for trend correction. When
’max’ is set to TRUE, said value will be the highest in the binned vector of ’f’.

When ’pois’ is set to FALSE (default), the trend correction value is directly added to the obtained
residuals, in a quantity that will make the average counts remain constant throughout the whole
time series. On the other hand, when ’pois = TRUE’, the trend correction value is instead used as
the ’lambda’ parameter for a Poisson distribution from which uncorrelated counts will be randomly
sampled and added to the whole series for trend correction. This procedure asures that only integer
counts will be obtained after detrending, at the cost of adding some noise and making the detrending
process a lengthier task.

Value

A vector

Author(s)

Alejandro Linares, Ad?n Guerrero, Haydee Hern?ndez

See Also

binTimeSeries

fcs Fluorescence Correlation Spectroscopy

Description

Calculates either the auto-correlation or cross-correlation between vectors x and y, returning a cor-
relation function.

Usage

fcs(x , y = NULL, nPoints, pcf = FALSE)

Arguments

x Numeric vector of length N.

y Numeric vector of length N.

nPoints The size of the sub-vectors in which the input vectors will be divided. This
number must be less than N/2.

pcf A boolean parameter to determine if an alternate version of the correlation func-
tion is used for the calculation of de pCF and pComb functions.

8 fcs

Details

Fluorescence correlation spectroscopy (FCS) is a technique with high spatial and temporal resolu-
tion used to analyze the kinetics of particles diffusing at low concentrations. The detected fluores-
cence intensity as a function of time is: F(t).

The correlation function is computed as the normalized autocorrelation function, G(tau) = <deltaF(t)deltaF(t+tau)>/(<F(t)>*<F(t)>),
to the collected data set, where t refers to a time point of flourescence acquisition, and tau refers to
the temporal delay between acquisitions and <...> indicates average.

The correlation between deltaF(t) = F(t) - <F(t)> and deltaF(t+tau) = F(t+tau) - <F(t)> is calculated
for a range of delay times. For temporal acquisitions as FCS point, x takes the value of F(t) and y =
NULL. For cross-correlation experiments between two fluorescent signals x = F1(t) and y = F2(t),
as channels, the correlation function is: G(tau) = <deltaF1(t) deltaF2(t+tau)> / (<F1(t)> <F2(t)>).

The function separate the original vector in sub-vectors of same length (n-points), then calculate
an autocorrelation function form each sub-vector. The final result will be an average of all the
autocorrelation functions.

Value

A numeric vector G containing either the autocorrelation for the input vector x, or the cross-
correlation between x and y vectors, with a length of nPoints.

Note

The argument nPoints must be smaller than the total number of temporal observations N, it is
recommended to set nPoints = 2^n, with n = 2, ..., infinity.

Author(s)

Raúl Pinto Cámara, Adan O. Guerrero

References

R.A. Migueles-Ramirez, A.G. Velasco-Felix, R. Pinto-Cámara, C.D. Wood, A. Guerrero. Fluo-
rescence fluctuation spectroscopy in living cells. Microscopy and imaging science: practical ap-
proaches to applied research and education, 138-151,2017.

See Also

gcf

Examples

Load the FCSlib package

library(FCSlib)

As an example, we will use data from experiment adquisition
of free Cy5 molecules diffusing in water at a concentration of 100 nM.
Use readFileTiff() function to read the fcs data in TIFF format.

fcs 9

f<-readFileTiff("Cy5_100nM.tif")

Note that f is a matrix of 2048 x 5000 x 1 dimentions.
This is due to the fact that this single-point FCS experimen twas collected
at intervals of 2048 points each, with an acquisition time of 2 mu s.
Let's now create a dataframe with the FCS data wich here-and-after will be called Cy5.

acqTime = 2E-6
f<-as.vector(f)
time <- (1:length(f))*acqTime
Cy5<-data.frame(t = time, f)

The first 100 ms of the time series are:

plot(Cy5[1:5000,], type ="l", xlab = "t(s)", ylab ="Fluorescence Intensity", main = "Cy5")

The fcs() function receives three parameters: 'x' (mandatory),
'y'(optional) and 'nPoints' (optional), where x is the main signal to analyze,
y is a secondary signal (for the case of cross-correlation instead of autocorrelation)
and nPoints is the final length of the calculated correlation curve.
This function divides the original N-size signal into sub-vectors with a size of nPoints*2.
Once all the sub-vectors are analyzed, these are then averaged.
To use the fcs() function type

g <- fcs(x = Cy5$f, nPoints = length(Cy5$f)/2)

The result of the function is assigned to the variable 'g',
which contains the autocorrelation curve

length <- 1:length(g)
tau <-Cy5$t[length]
G<-data.frame(tau,g)
plot(G, log = "x", type = "l", xlab = expression(tau(s)), ylab = expression(G(tau)), main = "Cy5")

It is important to remove the first point from the data,
where G(\tau=0) it is not properly computed

G<-G[-1,]
plot(G, log = "x", type = "l", xlab = expression(tau(s)), ylab = expression(G(tau)), main = "Cy5")

The variable 'nPoints' can be adjusted to better assess the transport phenomena
in study (i.e. free diffusion in three dimensions in the case of this example) and
for better understanding of the diffusive nature of the molecules.
In this example 'nPoints' will be set to 2048.

g <- fcs(x = Cy5$f,nPoints = 2048)
length <- 1:length(g)
tau <-Cy5$t[length]
G<-data.frame(tau,g)
G<-G[-1,]
plot(G, log = "x", type = "l", xlab = expression(tau(s)), ylab = expression(G(tau)), main = "Cy5")

10 fitFCS

fitFCS Fitting FCS Data

Description

Estimates the parameters based on a given equation, on the data generated with the fcs() function.

Usage

fitFCS(data = parent.frame(), start, low = -Inf, up = Inf,
type = "D3D", model = NULL, trace = TRUE)

Arguments

data data frame in which to evaluate the variables in formula and weights.

start a named list or named numeric vector of starting estimates.

low, up a named list or named numeric vector of lower and upper bounds, replicated to
be as long as start. If unspecified, all parameters are assumed to be -Inf and Inf.

type specification for the equation to model, is a character string. The default value is
"D3D" equation for three-dimensional free diffusion. Another possibles values
are: "D2D" for two-dimensional free diffusion, "D2DT" for two-dimensional
free diffusion with triplet exited state, and "D3DT" for three-dimensional free
diffusion with triplet exited state and D3D2S for two species in three-dimensional
free diffusion.

model a character type variable, that must contain the custom equation if needed, NULL
by default.

trace logical value that indicates whether the progress of the non-linear regression
(nls) should be printed.

Details

A transport model, containing physical information about the diffusive nature of the fluorophores,
can be fitted to the autocorrelation data to obtain parameters such as the diffusion coeficient D and
the number of molecules within the observation volume N.

The fitFCS() function uses the ’Non-linear Least Squares’ function to fit a physical model into a
data set. There are four possible models to be fit:

"D2D" for two-dimensional diffusion

"D2DT" for two-dimensional diffusion with triplet state

"D3D" for three-dimensional diffusion

"D3DT" for three-dimensional diffusion with triplet state

Inside the equations for each model, gamma a geometric factor that depends on the illumination
profile. For confocal excitation its magnitude approaches gamma = 1/sqrt8 ??? 0.35 fl. The diffu-
sion time is defined as tau_D = s^2/4D, where s and u are the radius and the half-length of the focal
volume, respectively. The parameter u is usually expressed as u = ks, with k being the eccentricity

fitFCS 11

of the focal volume; for confocal excitation k ??? 3. The fraction of molecules in the triplet state is
B, and tau_B is a time constant for the triplet state.

Value

A nls object (from nls).

Author(s)

Raúl Pinto Cámara.

See Also

nls, fcs

Examples

Load the FCSlib package

library(FCSlib)

g <- fcs(x = Cy5$f,nPoints = 2048)
len <- 1:length(g)
tau <-Cy5_100nM$t[len]
G<-data.frame(tau,g)
G<-G[-1,]

Once the correlation curve 'g' has been generated,
a data frame containing known parameters must be then defined

df<-data.frame(G, s = 0.27, k = 3)
head(df)

The radius of the focal volume must computed experimentally.
For this example, we choose a s = 0.27~ mu m
Then, three lists that contain the initial values of the data,
as well as the upper and lower limits of these values, must be defined.
The input values here are the expected values for the real experimental data
to be very similar or close to, so that the function calculates them accurately.
Initial values:

start <- list(D = 100, G0 = 0.1)
up <- list(D = 1E3, G0 = 10)
low <- list(D = 1E-1, G0 = 1E-2)

Once the known parameters are defined, we now proceed to use the fitFCS() function.
The result will be a nls object

modelFCS <- fitFCS(df, start, low, up, type = "D3D", trace = F)
summary(modelFCS)

12 gcf

By using the predict() function, the object generated in the previous step
is transformed into a vector that contains the curve fitted by the desired model.

fit <- predict(modelFCS, tau)

Finally, use the following command to obtain the resulting graph,
where the blue line corresponds to the fitted data and the black surface
corresponds to the unfitted

plot (G, log = "x", type = "l", xlab = expression(tau(s)),
ylab = expression(G(tau)), main = "Cy5")

lines(fit~G$tau, col = "blue")

To acquire access to the physical coefficients of the model type

s<-summary(modelFCS)
s$coefficients[,1]

gcf General Correlation Function

Description

Performs either the auto-correlation or cross-correlation between vectors x and y, returning a corre-
lation function.

Usage

gcf(x, y, xmean = 1, ymean = 1, c = 0)

Arguments

x A numerical signal with dimensions M x N x Z.

y A numerical signal with dimensions M x N x Z.

xmean The mean value of the signal x.

ymean The mean value of the signal y.

c A numeric variable to restrict the correlation to positives values.

Details

The number of emission events per unit time is determined and used to generate autocorrelation
and cross-correlation curves from the intensity traces F(t) and the fluctuations deltaF(t) = F(t)-
<F(t)>. The auto-correlation function of the collected data set, is computed as the normalized
auto-correlation function, when y=x. The general auto-correlation function is defined as: G(tau) =
(deltaF(t) deltaF(t+tau))/(<F(t)> <F(t)>), where t refers to a time point of fluorescence acquisition,
and tau refers to the temporal delay between acquisitions. <...> is the temporal average of F(t); and
deltaF(t) = F(t)-<F(t)>, deltaF(t+tau) = F(t+tau)-<F(t)>.

nbline 13

For temporal acquisitions such as point FCS, x and y are F(t). The cross-correlation function be-
tween two channels of fluorescent signals, x = F1(t) and y = F2(t), the cross-correlation function
is defined as: G(tau) = (deltaF1(t) deltaF2(t+tau))/(<F1(t)><F2(t)>), where xmean = <F1(t)> and
ymean = <F2(t)> are the mean values of the fluorescent signals.

Value

G A numerical signal with dimension N’ x M’ x Z’

Author(s)

Raúl Pinto Cámara.

References

Siegel, A. P., Hays, N. M., & Day, R. N. (2013). Unraveling transcription factor interactions with
heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence corre-
lation spectroscopy. Journal of biomedical optics, 18(2), 025002.

See Also

fcs, convolve

Examples

Load the FCSlib package

library(FCSlib)

As an example, we will use data from experiment adquisition
of free Cy5 molecules diffusing in water at a concentration of 100 nM.

oldpar <- par(no.readonly = TRUE)
g <- gcf(x = Cy5$f, y = Cy5$f, xmean = mean(Cy5$f), ymean = mean(Cy5$f))
length <- 1:length(g)
par(mfrow=c(1,1))
plot(y = g, x = Cy5$t[length], log = 'x', type = 'l',
xlab = expression(tau(mu~s)), ylab = expression(G(tau)),
main = "Cy5 100nM")
par(oldpar)

nbline Number & Brightness (Single Image)

Description

Performs the Number and Brightness Analysis (N&B) on an image

14 nbline

Usage

nbline(img, sigma0 = 0, offset = 0, S = 1, w = 0)

Arguments

img The image to analyze.

sigma0 Variance of the optical system readout noise

offset Constant number that depends on the optical system configuration. Signal values
smaller that the offset should be considered zero.

S Proportionality factor S. Indicates the ratio between the amount inicident pho-
tons in the detector and those converted to an electronic signal.

w Time window at which the running average is calculated

Details

The Number and Brightness (N&B) method is a time-independent technique that provides an esti-
mate of molecular concentration and aggregation state (or stoichiometry), based on the statistical
moments of the fluorescence intensity fluctuations. In other words, this tool allows to distinguish
between two or more homo-oligomeric states of a molecule present in a given region in the sample
(Brightness) while also providing a direct indicator of the molecules relative abundance (Number).
The intensity of the fluorescence signal is mostly due to the mere presence of fluorophores in the
media, affected by the fluorophore quantum yield, the sensitivity of the detector and the photophys-
ical characteristics of the optical instrumentation. The average particle number and brightness are
calculated directly from the mean value <k> and variance (sigma^2) of the fluorescence intensity
data (image) for a given pixel as follows: N = (<k>^2)/(sigma^2) and B = (sigma^2)/<k>

Value

A list containing two vectors, the Brightness and the Number of the image.

Author(s)

Raúl Pinto Cámara.

See Also

var, mean

Examples

Load the FCSlib package

library(FCSlib)

As an example, we will use a data set that corresponds
to a population of Venus dimers and hexamers diffusing in HEK-293 cells.
Use the readFileTiff() function to extract the information from the '.tiff' files.

norm.vector 15

nbv2 <- nbline(V2)
pixelSize = 0.05
r<- (1:dim(V2)[1])*pixelSize

norm.vector Min-Max Feature scaling normalization

Description

Normalizes a vector using the Min-Max Feature scaling method (a.k.a unity-based normalization)

Usage

norm.vector(x, a.b = NULL)

Arguments

x A vector
a.b A vector that indicates the minimum and maximum scaling values

Details

Feature scaling is used to bring all values into the range [0,1]. This is also called unity-based
normalization. When ’a.b = NULL’ (default), the highest and lowest values in ’x’ will turn to 1 and
0, respectively, while all values in between will be re-scaled. Defining ’a.b’ will bring all values
into the range [a,b].

Value

A normalized vector

Author(s)

Alejandro Linares

Examples

x <- seq(from = 1, to = 100, by = 0.1)
y <- sin(sqrt(x))
plot(y~x, type = "l")

y.n <- norm.vector(y)
plot(y.n~x, type = "l")

y.ab <- norm.vector(y, a.b = c(5,20))
plot(y.ab~x, type = "l")

16 pcf

pcf Pair Correlation Function

Description

Calculates the correlation between the pixel i and pixel i + dr.

Usage

pcf(img, nPoints = 1000, one.col = FALSE, dr = 1)

Arguments

img The image to analyze

nPoints The size of the sub-vectors in which the input vectors will be divided. This
number must be less than N/2.

one.col By default FALSE. If TRUE the correlation will be performed in the fixed colum
mode, else the distance mode.

dr Distance between pixel at which the correlation is calculated. For a value of
delta_r = 3, the columns are correlated as follows: (1,4), (2,5), ..., (n-3, n), with
n being the last column.

Details

The pair correlation function (pCF) analyzes data of a periodically scanned line, measuring the
time it takes a particle to go from one pixel to another, i.e. calculates the spatial cross-correlation
function between pixels. G(tau,deltar) = (<F(t,0) F(t + tau, deltar)>/<F(t,0)> <F(t,deltar)>)-1

Value

An image depicting the correlation between the pixel i and pixel i + dr.

Author(s)

Raúl Pinto Cámara.

See Also

fcs, pcomb

Examples

Load the FCSlib package

library(FCSlib)

As an example, we will use a data set that corresponds to a population of Venus dimers

pcomb 17

diffusing in HEK-293 cells. Use the readFileTiff() function to extract the information
from the '.tiff' files.

dmv2 <- data.matrix(V2)
pB <- pcf(dmv2, nPoints = 2500, dr = 10)

Plot the result
library(fields)
di <- dim(pB)
tau <- (1:(di[2]))
image.plot(x = 1:di[1], y = log10(tau), z = pB, main = "Column Distance 10",
xlab = "Pixel", ylab = "Logarithmic tau",
cex.lab = 1.2, cex.main = 1.2, cex.axis = 1)

pcomb Pair Correlation of Molecular Brightness

Description

Performs the pair correlation of molecular brightness (pCOMB) analysis.

Usage

pcomb(img, nPoints = 25000, one.col = FALSE, dr = 1, w = 100)

Arguments

img The image to analyze.

nPoints The size of the sub-vectors in which the input vectors will be divided. This
number must be less than N/2.

one.col By default FALSE. If TRUE the correlation will be performed in the fixed colum
mode, else the distance mode.

dr Is the distance between the two columns that will be correlated. For a value of
deltar = 3, the columns are correlated as follows: (1,4), (2,5), ..., (n-3, n), with n
as the last column.

w Range value that is used to calculate the brightness in the image.

Details

With the Pair Correlation of Molecular Brightness (pCOMB) method, one can distinguish between
different homo-oligomeric species of the same molecule coexisting in the same microenvironment,
while separately and specifically tracking each species’ moblity across the cellular compartments.
This technique amplifies the signal from the brightest species present and filters the dynamics of
the extracted oligomeric population based on arrival time between two locations. This method is
suitable for mapping the impact oligomerization on transcription factor dynamics. The resulting
intensity fluctuations, pCF, are transformed into brightness fluctuations using B = (sigma^2)/mean,

18 readFileFCS

and the pair correlation analysis is then performed on the brightness fluctuations along the line scan
, at a distance (delta(r)).

If the pcf is set as FALSE the pComb data will not be generated and will be NULL. In order to
generate that data the pcf function must be used on the BCarpet data.

Value

A list containing the Brightness Carpet and the Pair Correlation of that carpet

Author(s)

Raúl Pinto Cámara.

See Also

fcs, pcf

Examples

Load the FCSlib package

library(FCSlib)

As an example, we will use a data set that corresponds to a population of Venus dimers
diffusing in HEK-293 cells. Use the readFileTiff() function to extract the information
from the '.tiff' files.

dmv2 <- data.matrix(V2)
pC <- pcomb(dmv2[1:32,1:2001], nPoints = 1000, type = 'd', dr = 10, w = 2, pcf = FALSE)
dmv2 <- data.matrix(v2DataSet)
pC <- pcomb(dmv2, nPoints = 5000, type = 'd', dr = 10, w = 100)
di <- dim(pC$pComb)
tau <- (1:(di[2]))

Plot the result
library("fields")
image.plot(x = 1:di[1], y = log10(tau), z = pC$pComb, main = "pComb",
xlab = "Pixel", ylab = "Logarithmic tau",
cex.lab = 1.2, cex.main = 1.2, cex.axis = 1)

readFileFCS Read File FCS

Description

Reads a FCS file and returns the data sets within the file.

readFileModel 19

Usage

readFileFCS(filename)

Arguments

filename the name of the file to read from.

Details

Read a FCS file using the scan function and extract the data contained in the file.

Value

dataList A list containing the data sets within the file.

Author(s)

Raúl Pinto Cámara.

Examples

raw_fcs <- readFileFCS(FileName)

readFileModel Read File Model

Description

Reads a txt file and returns the parameters and the model (equation).

Usage

readFileModel(filename)

Arguments

filename The name of the file to read from.

Details

Read a txt file using the scan function and extracts the parameters and the model (equation) in the
file.

Value

params A list containing the parameters as well as the model.

20 readFileSPC

Author(s)

Raúl Pinto Cámara.

See Also

fitFCS

Examples

modelData <- readFileModel(filename)

readFileSPC Read File SPC-140/150/130/830

Description

Reads a SPC file and returns the Macrotime and Microtime.

Usage

readFileSPC(filename, nData = 1E8)

Arguments

filename the name of the file to read from.

nData parameter that defines the length of data to read.

Details

Read a SPC file, with SPC-140/150/130/830 version, using the readBin function and extract the
data contained in the file.

Value

A list containing the Macrotime and the Microtime vectors.

Note

The nData parameter is used to overestimate the amount of data that the file can contain.

Author(s)

Raúl Pinto Cámara, José Damián Martínez Reyes.

readFileTiff 21

References

Becker, W., 2019. The Bh TCSPC Handbook. 8th ed. Berlin, Germany: Becker & Hickl GmbH,
pp. 855-856.

See Also

asynACTCSPC

Examples

spcData <- readFileSPC(FileName)

readFileTiff Read File Tiff

Description

Reads a TIFF file and converts it into a 2D-array. If the file contains multiple pages, a 3D-array will
be then returned.

Usage

readFileTiff(filename, invert = TRUE)

Arguments

filename Either name of the file to read from or a raw vector representing the TIFF file
content.

invert If set to TRUE then the order of the data will be reversed. Default TRUE.

Details

Read a TIFF file image using readTIFF and converts it to a matrix with n-dimensions.

Value

A matrix containing the image data.

Note

This function must be used in order to extract the information from the TIFF files needed to test the
functions in this package. The TIFF file must be grayscale.

Author(s)

Adan O. Guerrero Cardenas.

22 simplifyFCS

See Also

readTIFF writeFileTiff

Examples

raw <- readFileTiff(FileName)

simplifyFCS Simplify FCS

Description

Reduces the amount of data in a data set without altering its overall structure

Usage

simplifyFCS(g, tau, step = 1)

Arguments

g A vector containing the FCS data analysis

tau A vector that represents the time frame between data acquisitions

step A numeric value that affects the final length of the vector

Details

The simplifyFCS function performs a log10 weighted binning of the autocorrelation function (acf).
It balance the weight of the long-time scale trending behavior of the acf curve, which commonly
contain G(tau) points that fluctuate around the zero-correlation regime, hence overweighting fitting
with ‘noisy data’. simplifyFCS reduce the weight of the long-time scale trending behavior (ms to
sec), preserving the structure of the short-time scales.

Value

A vector of the FCS data with reduced length

Note

the step parameter must be between 0 and 1

Author(s)

Adan O. Guerrero

smoothCarpet 23

See Also

gcf, var, mean

Examples

f <- Cy5_100nM$f
acqTime <- 2E-6
f <- as.vector(f)
time <- (1:length(f))*acqTime
cy5 <- data.frame(t = time, f)

g <- fcs(x = cy5$f)
len <- 1:length(g)
tau <-cy5$t[len]
G <- data.frame(tau,g)

sfcs <- simplifyFCS(Gg, Gtau, step = 0.5)
plot(sfcs$g~sfcs$tau, log = "x", type = "l",

xlab = expression(tau(s)),
ylab = expression(G(tau)), main = "Cy5")

Comparison, original with simplify
plot(G, type = 'l', log = 'x')
lines(sfcs$g~sfcs$tau, col = "red")

smoothCarpet Smooth Carpet (Single Image)

Description

Generates a smooth carpet.

Usage

smoothCarpet(img, dfV = 0, dfH = 0)

Arguments

img The image to analyze.

dfV The desired equivalent number of degrees of freedom in the vertical axis.

dfH The desired equivalent number of degrees of freedom in the horizontal axis.

Details

The smoothCarpet function makes use of the smooth.spline method to smooth the vertical and
horizontal axes of an image. The magnitude of the smoothing depends on the degrees of freedom
set for and vertical (’dfV’) and horizontal (’dfH’) axes of the image.

24 tiff_to_mtx

Value

Smooth Carpet A smooth image.

Author(s)

Raúl Pinto Cámara.

See Also

pcomb, smooth.spline

Examples

Load the FCSlib package

library(FCSlib)

As an example, we will use a data set that corresponds to a population of Venus dimers
diffusing in HEK-293 cells. Use the readFileTiff() function to extract the information
from the '.tiff' files.

v2 <- data.matrix(V2)
nbv2 <- nbline(img = v2, S=3.5, sigma0 = 1,offset = 0, wSigma = 100);
sC <- smoothCarpet(img = nbv2$number, dfV = 5, dfH = 5)

tiff_to_mtx Transformation of multiple-image TIFF files or arrays into a matrix

Description

Transforms multiple-image TIFF files or 3D arrays into 2D matrices with a user-specified number
of columns

Usage

tiff_to_mtx(data, columns)

Arguments

data A character string indicating the name of a TIFF file or a 3D array

columns The number of columns of the resulting matrix

Details

Creates a matrix with a user-specified number of columns and a number of rows equal to the total
amount of points in ’data’ divided by ’columns’.

V2 25

Value

A matrix

Author(s)

Alejandro Linares

See Also

binMatrix

Examples

Please navigate to
(https://github.com/FCSlib/FCSlib/tree/master/Sample%20Data)
to find this sample data

x <- readFileTiff("Example_file_name.tif")
class(x); dim(x)

x.m <- tiff_to_mtx(data = x, columns = 64)
class(x.m); dim(x.m)

V2 Line-scan data of HEK-293 cells expressing Venus (EYFP) dimers

Description

This data set consists on a raster line scan performed over HEK-293 cells expressing dimers of
the fluorescent protein Venus, also known as SEYFP-F46L. The scan line is 64 pixels long, and
the scanning direction is from the cytoplasm to the nucleus, across the nuclear envelope. A pixel
size of 50 nm was used, as well as a pixel dwell time of 12.5 us and a line scan time of 1.925
ms. Fluorescence excitation was provided by a 488 nm laser at 0.1 Fluorescence intensity data
was collected using the photon-counting mode in an Olympus FV1000 Upright BX61WI confocal
microscope.

Usage

data(V2)

Format

A matrix with 64 rows and 25000 columns

Details

To analyze this data set with FCSlib, import by typing: readFileTiff("V2.tif")[„1]

26 writeFileTiff

writeFileTiff Write File Tiff

Description

Create a TIFF file from a 3D-array.

Usage

writeFileTiff(img, file.name, invert = TRUE, bits.per.sample = NULL)

Arguments

img Either an image or a list of images. An image is a real matrix or array of three
dimensions.

file.name Either the name of the file or the name of a raw vector.

invert If set to TRUE then the order of the data will be reversed. Default TRUE.
bits.per.sample

Number of bits per sample (numeric scalar). Supported values in this version
are 8, 16, and 32.

Details

Create a TIFF file using writeTIFF, converting a 2D-array. If the file contains multiple pages, a
3D-array is turned into a 2D-array to implement the aforementioned function.

Value

None.

Author(s)

Adan O. Guerrero Cardenas.

References

None

See Also

writeTIFF readFileTiff

Examples

imagsave <- array(data = 1:10, dim = c(100,100,10))
writeFileTiff(imagsave, paste(tempdir(), "/image_Test.tif", sep = ""))

Index

∗ datasets
Cy5, 5
V2, 25

asynACTCSPC, 2, 21

binMatrix, 3, 5, 25
binTimeSeries, 4, 4, 7

convolve, 13
Cy5, 5

detrendTimeSeries, 6

fcs, 7, 11, 13, 16, 18
fitFCS, 10, 20

gcf, 8, 12, 23

mean, 14, 23

nbline, 13
nls, 11
norm.vector, 15

pcf, 16, 18
pcomb, 16, 17, 24

readFileFCS, 18
readFileModel, 19
readFileSPC, 3, 20
readFileTiff, 21, 26
readTIFF, 22

simplifyFCS, 22
smooth.spline, 24
smoothCarpet, 23

tiff_to_mtx, 24

V2, 25
var, 14, 23

writeFileTiff, 22, 26
writeTIFF, 26

27

	asynACTCSPC
	binMatrix
	binTimeSeries
	Cy5
	detrendTimeSeries
	fcs
	fitFCS
	gcf
	nbline
	norm.vector
	pcf
	pcomb
	readFileFCS
	readFileModel
	readFileSPC
	readFileTiff
	simplifyFCS
	smoothCarpet
	tiff_to_mtx
	V2
	writeFileTiff
	Index

