CRAN Package Check Results for Package ssc

Last updated on 2025-12-06 00:49:02 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 2.1-0 3.36 88.16 91.52 OK
r-devel-linux-x86_64-debian-gcc 2.1-0 2.35 31.72 34.07 ERROR
r-devel-linux-x86_64-fedora-clang 2.1-0 133.94 OK
r-devel-linux-x86_64-fedora-gcc 2.1-0 144.88 OK
r-devel-windows-x86_64 2.1-0 6.00 126.00 132.00 OK
r-patched-linux-x86_64 2.1-0 3.61 76.76 80.37 OK
r-release-linux-x86_64 2.1-0 3.25 81.87 85.12 OK
r-release-macos-arm64 2.1-0 OK
r-release-macos-x86_64 2.1-0 3.00 93.00 96.00 OK
r-release-windows-x86_64 2.1-0 6.00 126.00 132.00 OK
r-oldrel-macos-arm64 2.1-0 OK
r-oldrel-macos-x86_64 2.1-0 2.00 75.00 77.00 OK
r-oldrel-windows-x86_64 2.1-0 4.00 149.00 153.00 OK

Check Details

Version: 2.1-0
Check: examples
Result: ERROR Running examples in ‘ssc-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: coBC > ### Title: CoBC method > ### Aliases: coBC > > ### ** Examples > > > library(ssc) > > ## Load Wine data set > data(wine) > > cls <- which(colnames(wine) == "Wine") > x <- wine[, -cls] # instances without classes > y <- wine[, cls] # the classes > x <- scale(x) # scale the attributes > > ## Prepare data > set.seed(20) > # Use 50% of instances for training > tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5)) > xtrain <- x[tra.idx,] # training instances > ytrain <- y[tra.idx] # classes of training instances > # Use 70% of train instances as unlabeled set > tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7)) > ytrain[tra.na.idx] <- NA # remove class information of unlabeled instances > > # Use the other 50% of instances for inductive testing > tst.idx <- setdiff(1:length(y), tra.idx) > xitest <- x[tst.idx,] # testing instances > yitest <- y[tst.idx] # classes of testing instances > > ## Example: Training from a set of instances with 1-NN as base classifier. > set.seed(1) > m1 <- coBC(x = xtrain, y = ytrain, + learner = caret::knn3, + learner.pars = list(k = 1), + pred = "predict") Error in loadNamespace(x) : there is no package called ‘caret’ Calls: coBC ... loadNamespace -> withRestarts -> withOneRestart -> doWithOneRestart Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 2.1-0
Check: tests
Result: ERROR Running ‘testthat.R’ [5s/5s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(ssc) > > test_check("ssc") Saving _problems/test_Democratic-10.R Saving _problems/test_Democratic-58.R Saving _problems/test_Democratic-66.R Saving _problems/test_Democratic-77.R Saving _problems/test_Democratic-93.R Saving _problems/test_Democratic-104.R Saving _problems/test_Democratic-115.R Saving _problems/test_Democratic-169.R Saving _problems/test_SETRED-9.R Saving _problems/test_SETRED-28.R Saving _problems/test_SETRED-38.R Saving _problems/test_SETRED-52.R Saving _problems/test_SETRED-62.R Saving _problems/test_SETRED-72.R Saving _problems/test_SETRED-122.R Saving _problems/test_SETRED-138.R Saving _problems/test_SETRED-154.R Saving _problems/test_SETRED-170.R Saving _problems/test_SelfTraining-9.R Saving _problems/test_SelfTraining-29.R Saving _problems/test_SelfTraining-39.R Saving _problems/test_SelfTraining-52.R Saving _problems/test_SelfTraining-61.R Saving _problems/test_SelfTraining-71.R Saving _problems/test_SelfTraining-117.R Saving _problems/test_SelfTraining-133.R Saving _problems/test_SelfTraining-149.R Saving _problems/test_SelfTraining-165.R Saving _problems/test_TriTraining-9.R Saving _problems/test_TriTraining-28.R Saving _problems/test_TriTraining-38.R Saving _problems/test_TriTraining-53.R Saving _problems/test_TriTraining-63.R Saving _problems/test_TriTraining-73.R Saving _problems/test_TriTraining-123.R Saving _problems/test_coBC-9.R Saving _problems/test_coBC-28.R Saving _problems/test_coBC-38.R Saving _problems/test_coBC-53.R Saving _problems/test_coBC-63.R Saving _problems/test_coBC-73.R Saving _problems/test_coBC-123.R Saving _problems/test_coBC-139.R Saving _problems/test_coBC-155.R Saving _problems/test_coBC-172.R Saving _problems/test_coBC-188.R [ FAIL 46 | WARN 5 | SKIP 3 | PASS 89 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • {caret} is not installed. (3): 'test_DemocraticG.R:5:1', 'test_TriTrainingG.R:4:1', 'test_coBCG.R:4:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_Democratic.R:9:5'): democratic works ─────────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::democratic(...) at test_Democratic.R:9:5 2. └─ssc:::as.list2(learners.pars, length(learners)) ── Error ('test_Democratic.R:56:5'): the learners information is complete ────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_Democratic.R:56:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::democratic(...) 5. └─ssc:::as.list2(learners.pars, length(learners)) ── Error ('test_Democratic.R:65:5'): prediction not fail when x is a vector ──── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::democratic(...) at test_Democratic.R:65:5 2. └─ssc:::as.list2(learners.pars, length(learners)) ── Error ('test_Democratic.R:76:5'): the model structure is correct ──────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::democratic(...) at test_Democratic.R:76:5 2. └─ssc:::as.list2(learners.pars, length(learners)) ── Error ('test_Democratic.R:89:5'): x can be a data.frame ───────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_Democratic.R:89:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::democratic(...) 5. └─ssc:::as.list2(learners.pars, length(learners)) ── Error ('test_Democratic.R:100:5'): y can be a vector ──────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_Democratic.R:100:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::democratic(...) 5. └─ssc:::as.list2(learners.pars, length(learners)) ── Error ('test_Democratic.R:111:5'): x.inst can be coerced to logical ───────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_Democratic.R:111:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::democratic(...) 5. └─ssc:::as.list2(learners.pars, length(learners)) ── Error ('test_Democratic.R:165:5'): x is a square matrix when x.inst is FALSE ── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_Democratic.R:165:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::democratic(...) 5. └─ssc:::as.list2(learners.pars, length(learners)) ── Error ('test_SETRED.R:9:5'): setred works ─────────────────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::setred(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_SETRED.R:9:5 2. └─ssc::setredG(...) 3. └─ssc (local) gen.learner(labeled, ynew[labeled]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_SETRED.R:28:5'): prediction not fail when x is a vector ──────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::setred(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_SETRED.R:28:5 2. └─ssc::setredG(...) 3. └─ssc (local) gen.learner(labeled, ynew[labeled]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_SETRED.R:38:5'): the model structure is correct ──────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::setred(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_SETRED.R:38:5 2. └─ssc::setredG(...) 3. └─ssc (local) gen.learner(labeled, ynew[labeled]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_SETRED.R:49:5'): x can be a data.frame ───────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SETRED.R:49:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::setred(...) 5. └─ssc::setredG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_SETRED.R:59:5'): y can be a vector ───────────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SETRED.R:59:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::setred(x = wine$xtrain, y = as.vector(wine$ytrain), learner = knn3) 5. └─ssc::setredG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_SETRED.R:69:5'): x.inst can be coerced to logical ────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SETRED.R:69:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::setred(...) 5. └─ssc::setredG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_SETRED.R:119:5'): x is a square matrix when x.inst is FALSE ──── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SETRED.R:119:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::setred(...) 5. └─ssc::setredG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(...) 8. └─base::do.call(learner, lpars) ── Error ('test_SETRED.R:135:5'): max.iter is a value greather than 0 ────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SETRED.R:135:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::setred(...) 5. └─ssc::setredG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_SETRED.R:151:5'): perc.full is a value between 0 and 1 ───────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SETRED.R:151:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::setred(...) 5. └─ssc::setredG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_SETRED.R:167:5'): theta is a value between 0 and 1 ───────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SETRED.R:167:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::setred(...) 5. └─ssc::setredG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_SelfTraining.R:9:5'): selfTraining works ─────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::selfTraining(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_SelfTraining.R:9:5 2. └─ssc::selfTrainingG(...) 3. └─ssc (local) gen.learner(labeled, ynew[labeled]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_SelfTraining.R:29:5'): prediction not fail when x is a vector ── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::selfTraining(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_SelfTraining.R:29:5 2. └─ssc::selfTrainingG(...) 3. └─ssc (local) gen.learner(labeled, ynew[labeled]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_SelfTraining.R:39:5'): the model structure is correct ────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::selfTraining(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_SelfTraining.R:39:5 2. └─ssc::selfTrainingG(...) 3. └─ssc (local) gen.learner(labeled, ynew[labeled]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_SelfTraining.R:51:5'): x can be a data.frame ─────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SelfTraining.R:51:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::selfTraining(x, y = wine$ytrain, learner = knn3) 5. └─ssc::selfTrainingG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_SelfTraining.R:60:5'): y can be a vector ─────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SelfTraining.R:60:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::selfTraining(x = wine$xtrain, y, learner = knn3) 5. └─ssc::selfTrainingG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_SelfTraining.R:68:5'): x.inst can be coerced to logical ──────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SelfTraining.R:68:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::selfTraining(...) 5. └─ssc::selfTrainingG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_SelfTraining.R:114:5'): x is a square matrix when x.inst is FALSE ── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SelfTraining.R:114:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::selfTraining(...) 5. └─ssc::selfTrainingG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(...) 8. └─base::do.call(learner, lpars) ── Error ('test_SelfTraining.R:130:5'): max.iter is a value greather than 0 ──── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SelfTraining.R:130:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::selfTraining(...) 5. └─ssc::selfTrainingG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_SelfTraining.R:146:5'): perc.full is a value between 0 and 1 ─── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SelfTraining.R:146:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::selfTraining(...) 5. └─ssc::selfTrainingG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_SelfTraining.R:162:5'): thr.conf is a value between 0 and 1 ──── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_SelfTraining.R:162:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::selfTraining(...) 5. └─ssc::selfTrainingG(...) 6. └─ssc (local) gen.learner(labeled, ynew[labeled]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_TriTraining.R:9:5'): triTraining works ───────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::triTraining(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_TriTraining.R:9:5 2. └─ssc::triTrainingG(y, gen.learner2, gen.pred2) 3. └─ssc (local) gen.learner(indexes, y[indexes]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_TriTraining.R:28:5'): prediction not fail when x is a vector ─── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::triTraining(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_TriTraining.R:28:5 2. └─ssc::triTrainingG(y, gen.learner2, gen.pred2) 3. └─ssc (local) gen.learner(indexes, y[indexes]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_TriTraining.R:38:5'): the model structure is correct ─────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::triTraining(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_TriTraining.R:38:5 2. └─ssc::triTrainingG(y, gen.learner2, gen.pred2) 3. └─ssc (local) gen.learner(indexes, y[indexes]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_TriTraining.R:50:5'): x can be a data.frame ──────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_TriTraining.R:50:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::triTraining(...) 5. └─ssc::triTrainingG(y, gen.learner2, gen.pred2) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_TriTraining.R:60:5'): y can be a vector ──────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_TriTraining.R:60:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::triTraining(...) 5. └─ssc::triTrainingG(y, gen.learner2, gen.pred2) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_TriTraining.R:70:5'): x.inst can be coerced to logical ───────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_TriTraining.R:70:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::triTraining(...) 5. └─ssc::triTrainingG(y, gen.learner2, gen.pred2) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_TriTraining.R:120:5'): x is a square matrix when x.inst is FALSE ── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_TriTraining.R:120:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::triTraining(...) 5. └─ssc::triTrainingG(y, gen.learner1, gen.pred1) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(...) 8. └─base::do.call(learner, lpars) ── Error ('test_coBC.R:9:5'): coBC works ─────────────────────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_coBC.R:9:5 2. └─ssc::coBCG(y, gen.learner2, gen.pred2, N, perc.full, u, max.iter) 3. └─ssc (local) gen.learner(indexes, y[indexes]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_coBC.R:28:5'): prediction not fail when x is a vector ────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_coBC.R:28:5 2. └─ssc::coBCG(y, gen.learner2, gen.pred2, N, perc.full, u, max.iter) 3. └─ssc (local) gen.learner(indexes, y[indexes]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_coBC.R:38:5'): the model structure is correct ────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. └─ssc::coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3) at test_coBC.R:38:5 2. └─ssc::coBCG(y, gen.learner2, gen.pred2, N, perc.full, u, max.iter) 3. └─ssc (local) gen.learner(indexes, y[indexes]) 4. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 5. └─base::do.call(learner, lpars) ── Error ('test_coBC.R:50:5'): x can be a data.frame ─────────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_coBC.R:50:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::coBC(x = as.data.frame(wine$xtrain), y = wine$ytrain, learner = knn3) 5. └─ssc::coBCG(y, gen.learner2, gen.pred2, N, perc.full, u, max.iter) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_coBC.R:60:5'): y can be a vector ─────────────────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_coBC.R:60:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::coBC(x = wine$xtrain, y = as.vector(wine$ytrain), learner = knn3) 5. └─ssc::coBCG(y, gen.learner2, gen.pred2, N, perc.full, u, max.iter) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_coBC.R:70:5'): x.inst can be coerced to logical ──────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_coBC.R:70:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::coBC(x = wine$xtrain, y = wine$ytrain, x.inst = TRUE, learner = knn3) 5. └─ssc::coBCG(y, gen.learner2, gen.pred2, N, perc.full, u, max.iter) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_coBC.R:120:5'): x is a square matrix when x.inst is FALSE ────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_coBC.R:120:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::coBC(x = wine$dtrain, y = wine$ytrain, x.inst = FALSE, learner = knn3) 5. └─ssc::coBCG(y, gen.learner1, gen.pred1, N, perc.full, u, max.iter) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(...) 8. └─base::do.call(learner, lpars) ── Error ('test_coBC.R:136:5'): max.iter is a value greather than 0 ──────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_coBC.R:136:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, max.iter = 80) 5. └─ssc::coBCG(y, gen.learner2, gen.pred2, N, perc.full, u, max.iter) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_coBC.R:152:5'): perc.full is a value between 0 and 1 ─────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_coBC.R:152:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, perc.full = 0.8) 5. └─ssc::coBCG(y, gen.learner2, gen.pred2, N, perc.full, u, max.iter) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_coBC.R:169:5'): N is a value greather than 0 ─────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_coBC.R:169:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, N = 2) 5. └─ssc::coBCG(y, gen.learner2, gen.pred2, N, perc.full, u, max.iter) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) ── Error ('test_coBC.R:185:5'): u is a value greather than 0 ─────────────────── Error in `eval(code, test_env)`: object 'knn3' not found Backtrace: ▆ 1. ├─testthat::expect_is(...) at test_coBC.R:185:5 2. │ └─testthat::quasi_label(enquo(object), label) 3. │ └─rlang::eval_bare(expr, quo_get_env(quo)) 4. └─ssc::coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, u = 80) 5. └─ssc::coBCG(y, gen.learner2, gen.pred2, N, perc.full, u, max.iter) 6. └─ssc (local) gen.learner(indexes, y[indexes]) 7. └─ssc:::trainModel(x[training.ints, ], cls, learner, learner.pars) 8. └─base::do.call(learner, lpars) [ FAIL 46 | WARN 5 | SKIP 3 | PASS 89 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc