CRAN Package Check Results for Package rifttable

Last updated on 2025-12-06 00:48:57 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.7.1 3.40 135.15 138.55 OK
r-devel-linux-x86_64-debian-gcc 0.7.1 3.01 43.90 46.91 ERROR
r-devel-linux-x86_64-fedora-clang 0.7.1 211.35 OK
r-devel-linux-x86_64-fedora-gcc 0.7.1 217.63 OK
r-devel-windows-x86_64 0.7.1 9.00 142.00 151.00 OK
r-patched-linux-x86_64 0.7.1 4.54 124.37 128.91 OK
r-release-linux-x86_64 0.7.1 4.01 128.13 132.14 OK
r-release-macos-arm64 0.7.1 OK
r-release-macos-x86_64 0.7.1 3.00 130.00 133.00 OK
r-release-windows-x86_64 0.7.1 6.00 140.00 146.00 OK
r-oldrel-macos-arm64 0.7.1 OK
r-oldrel-macos-x86_64 0.7.1 3.00 120.00 123.00 OK
r-oldrel-windows-x86_64 0.7.1 8.00 173.00 181.00 OK

Check Details

Version: 0.7.1
Check: package dependencies
Result: WARN Cannot process vignettes Packages suggested but not available for checking: 'gt', 'knitr', 'rmarkdown' VignetteBuilder package required for checking but not installed: ‘knitr’ Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.7.1
Check: examples
Result: ERROR Running examples in ‘rifttable-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: rifttable > ### Title: Results Tables for Epidemiology > ### Aliases: rifttable > > ### ** Examples > > # Load 'cancer' dataset from survival package (Used in all examples) > data(cancer, package = "survival") > > # The exposure (here, 'sex') must be categorical > cancer <- cancer |> + tibble::as_tibble() |> + dplyr::mutate( + sex = factor( + sex, + levels = 1:2, + labels = c("Male", "Female") + ), + time = time / 365.25, + status = status - 1 + ) > > > # Example 1: Binary outcomes (use 'outcome' variable) > # Set table design > design1 <- tibble::tibble( + label = c( + "Outcomes", + "Total", + "Outcomes/Total", + "Risk", + "Risk (CI)", + "Outcomes (Risk)", + "Outcomes/Total (Risk)", + "RR", + "RD" + ) + ) |> + dplyr::mutate( + type = label, + exposure = "sex", + outcome = "status" + ) > > # Generate rifttable > rifttable( + design = design1, + data = cancer + ) # A tibble: 9 × 3 sex Male Female <chr> <chr> <chr> 1 Outcomes 112 53 2 Total 138 90 3 Outcomes/Total 112/138 53/90 4 Risk 0.81 0.59 5 Risk (CI) 0.81 (0.74, 0.87) 0.59 (0.49, 0.68) 6 Outcomes (Risk) 112 (0.81) 53 (0.59) 7 Outcomes/Total (Risk) 112/138 (0.81) 53/90 (0.59) 8 RR 1 (reference) 0.73 (0.60, 0.88) 9 RD 0 (reference) -0.22 (-0.34, -0.10) > > # Use 'design' as columns (selecting RR and RD only) > rifttable( + design = design1 |> + dplyr::filter(label %in% c("RR", "RD")), + data = cancer, + layout = "cols" + ) # A tibble: 2 × 3 sex RR RD <chr> <chr> <chr> 1 Male 1 (reference) 0 (reference) 2 Female 0.73 (0.60, 0.88) -0.22 (-0.34, -0.10) > > > # Example 2: Survival outcomes (use 'time' and 'event'), > # with an effect modifier and a confounder > # Set table design > design2 <- tibble::tribble( + # Elements that vary by row: + ~label, ~stratum, ~confounders, ~type, + "**Overall**", NULL, "", "blank", + " Events", NULL, "", "events", + " Person-years", NULL, "", "time", + " Rate/1000 py (95% CI)", NULL, "", "rate (ci)", + " Unadjusted HR (95% CI)", NULL, "", "hr", + " Age-adjusted HR (95% CI)", NULL, "+ age", "hr", + "", NULL, "", "blank", + "**Stratified models**", NULL, "", "", + "*ECOG PS1* (events/N)", 1, "", "events/total", + " Unadjusted", 1, "", "hr", + " Age-adjusted", 1, "+ age", "hr", + "*ECOG PS2* (events/N)", 2, "", "events/total", + " Unadjusted", 2, "", "hr", + " Age-adjusted", 2, "+ age", "hr", + "", NULL, "", "", + "**Joint model**, age-adj.", NULL, "", "", + " ECOG PS1", 1, "+ age", "hr_joint", + " ECOG PS2", 2, "+ age", "hr_joint" + ) |> + # Elements that are the same for all rows: + dplyr::mutate( + exposure = "sex", + event = "status", + time = "time", + effect_modifier = "ph.ecog" + ) > > # Generate rifttable > rifttable( + design = design2, + data = cancer |> + dplyr::filter(ph.ecog %in% 1:2) + ) # A tibble: 18 × 3 sex Male Female <chr> <chr> <chr> 1 "**Overall**" "" "" 2 " Events" "82" "44" 3 " Person-years" "70" "59" 4 " Rate/1000 py (95% CI)" "1164.8 (938.1, 1446.3)" "746.7 (555.7, 1003.4)" 5 " Unadjusted HR (95% CI)" "1 (reference)" "0.60 (0.41, 0.86)" 6 " Age-adjusted HR (95% CI)" "1 (reference)" "0.60 (0.41, 0.86)" 7 "" "" "" 8 "**Stratified models**" "" "" 9 "*ECOG PS1* (events/N)" "54/71" "28/42" 10 " Unadjusted" "1 (reference)" "0.53 (0.33, 0.85)" 11 " Age-adjusted" "1 (reference)" "0.53 (0.33, 0.85)" 12 "*ECOG PS2* (events/N)" "28/29" "16/21" 13 " Unadjusted" "1 (reference)" "0.70 (0.37, 1.30)" 14 " Age-adjusted" "1 (reference)" "0.68 (0.34, 1.36)" 15 "" "" "" 16 "**Joint model**, age-adj." "" "" 17 " ECOG PS1" "1 (reference)" "0.55 (0.35, 0.88)" 18 " ECOG PS2" "1.54 (0.98, 2.44)" "1.10 (0.62, 1.98)" > > > # Example 3: Get two estimates using 'type' and 'type2' > design3 <- tibble::tribble( + ~label, ~stratum, ~type, ~type2, + "ECOG PS1", 1, "events/total", "hr", + "ECOG PS2", 2, "events/total", "hr" + ) |> + dplyr::mutate( + exposure = "sex", + event = "status", + time = "time", + confounders = "+ age", + effect_modifier = "ph.ecog" + ) > > rifttable( + design = design3, + data = cancer |> + dplyr::filter(ph.ecog %in% 1:2) + ) # A tibble: 4 × 3 sex Male Female <chr> <chr> <chr> 1 "ECOG PS1" 54/71 28/42 2 "" 1 (reference) 0.53 (0.33, 0.85) 3 "ECOG PS2" 28/29 16/21 4 "" 1 (reference) 0.68 (0.34, 1.36) > > rifttable( + design = design3, + data = cancer |> + dplyr::filter(ph.ecog %in% 1:2), + layout = "cols", + type2_layout = "cols" + ) # A tibble: 2 × 5 sex `ECOG PS1` `ECOG PS1 ` `ECOG PS2` `ECOG PS2 ` <chr> <chr> <chr> <chr> <chr> 1 Male 54/71 1 (reference) 28/29 1 (reference) 2 Female 28/42 0.53 (0.33, 0.85) 16/21 0.68 (0.34, 1.36) > > > # Example 4: Continuous outcomes (use 'outcome' variable); > # request rounding to 1 decimal digit in some cases; > # add continuous trend (slope per one unit of the 'trend' variable) > tibble::tribble( + ~label, ~stratum, ~type, ~digits, + "Marginal mean (95% CI)", NULL, "mean (ci)", 1, + " Male", "Male", "mean", NA, + " Female", "Female", "mean", NA, + "", NULL, "", NA, + "Stratified model", NULL, "", NA, + " Male", "Male", "diff", 1, + " Female", "Female", "diff", 1, + "", NULL, "", NA, + "Joint model", NULL, "", NA, + " Male", "Male", "diff_joint", NA, + " Female", "Female", "diff_joint", NA + ) |> + dplyr::mutate( + exposure = "ph.ecog_factor", + trend = "ph.ecog", + outcome = "age", + effect_modifier = "sex" + ) |> + rifttable( + data = cancer |> + dplyr::filter(ph.ecog < 3) |> + dplyr::mutate(ph.ecog_factor = factor(ph.ecog)) + ) # A tibble: 11 × 5 ph.ecog_factor `0` `1` `2` Trend <chr> <chr> <chr> <chr> <chr> 1 "Marginal mean (95% CI)" "61.2 (58.8, 63.5)" "61.5 (59.8, 63.1… "66.… "" 2 " Male" "63.00" "62.79" "65.… "" 3 " Female" "58.70" "59.19" "67.… "" 4 "" "" "" "" "" 5 "Stratified model" "" "" "" "" 6 " Male" "0 (reference)" "-0.2 (-3.9, 3.5)" "2.0… "0.9… 7 " Female" "0 (reference)" "0.5 (-3.5, 4.5)" "9.2… "4.4… 8 "" "" "" "" "" 9 "Joint model" "" "" "" "" 10 " Male" "0 (reference)" "-0.21 (-3.75, 3.… "2.0… "0.9… 11 " Female" "-4.30 (-8.70, 0.11)" "-3.81 (-7.74, 0.… "4.9… "4.3… > > > # Example 5: Get formatted output for Example 2 > rifttable( + design = design2, + data = cancer |> + dplyr::filter(ph.ecog %in% 1:2) + ) |> + rt_gt() Error in loadNamespace(x) : there is no package called ‘knitr’ Calls: rt_gt ... loadNamespace -> withRestarts -> withOneRestart -> doWithOneRestart Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.7.1
Check: package vignettes
Result: NOTE Package has ‘vignettes’ subdirectory but apparently no vignettes. Perhaps the ‘VignetteBuilder’ information is missing from the DESCRIPTION file? Flavor: r-devel-linux-x86_64-debian-gcc