CRAN Package Check Results for Package orbital

Last updated on 2025-12-06 00:48:52 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.3.1 2.61 149.85 152.46 OK
r-devel-linux-x86_64-debian-gcc 0.4.0 3.26 37.75 41.01 ERROR
r-devel-linux-x86_64-fedora-clang 0.4.0 139.01 OK
r-devel-linux-x86_64-fedora-gcc 0.4.0 30.00 270.10 300.10 ERROR
r-devel-windows-x86_64 0.3.1 5.00 166.00 171.00 OK
r-patched-linux-x86_64 0.3.1 2.21 144.91 147.12 OK
r-release-linux-x86_64 0.3.1 2.39 146.91 149.30 OK
r-release-macos-arm64 0.4.0 1.00 46.00 47.00 ERROR
r-release-macos-x86_64 0.4.0 4.00 211.00 215.00 ERROR
r-release-windows-x86_64 0.3.1 5.00 166.00 171.00 OK
r-oldrel-macos-arm64 0.4.0 1.00 56.00 57.00 ERROR
r-oldrel-macos-x86_64 0.4.0 5.00 239.00 244.00 ERROR
r-oldrel-windows-x86_64 0.4.0 9.00 246.00 255.00 OK

Check Details

Version: 0.4.0
Check: package dependencies
Result: WARN Cannot process vignettes Packages suggested but not available for checking: 'embed', 'gt', 'knitr', 'probably', 'recipes', 'rmarkdown', 'rstanarm', 'sparklyr', 'themis', 'tidypredict', 'workflows' VignetteBuilder package required for checking but not installed: ‘knitr’ Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.4.0
Check: tests
Result: ERROR Running ‘testthat.R’ [11s/11s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(orbital) > > test_check("orbital") Saving _problems/test-adjust_numeric_range-5.R Saving _problems/test-adjust_numeric_range-28.R Saving _problems/test-adjust_numeric_range-51.R Saving _problems/test-adjust_numeric_range-74.R Saving _problems/test-adjust_numeric_range-153.R Saving _problems/test-adjust_numeric_range-179.R [ FAIL 6 | WARN 0 | SKIP 345 | PASS 73 ] ══ Skipped tests (345) ═════════════════════════════════════════════════════════ • On CRAN (5): 'test-adjust_numeric_range.R:123:3', 'test-adjust_predictions_custom.R:98:3', 'test-orbital.R:117:1', 'test-orbital.R:127:1', 'test-parsnip.R:48:1' • empty test (2): 'test-augment.R:31:1', 'test-augment.R:111:1' • {recipes} is not installed (300): 'test-augment.R:2:3', 'test-augment.R:36:3', 'test-augment.R:75:3', 'test-dt.R:2:3', 'test-inline.R:2:3', 'test-json.R:2:3', 'test-json.R:27:3', 'test-orbital.R:2:3', 'test-orbital.R:63:3', 'test-orbital.R:94:3', 'test-orbital.R:135:3', 'test-orbital.R:161:3', 'test-parsnip.R:2:3', 'test-predict.R:2:3', 'test-recipes.R:2:3', 'test-recipes.R:23:3', 'test-recipes.R:44:3', 'test-show_query.R:2:3', 'test-sql.R:2:3', 'test-step_adasyn.R:2:3', 'test-step_adasyn.R:21:3', 'test-step_adasyn.R:54:3', 'test-step_adasyn.R:79:3', 'test-step_adasyn.R:107:3', 'test-step_adasyn.R:134:3', 'test-step_bin2factor.R:2:3', 'test-step_bin2factor.R:21:3', 'test-step_bin2factor.R:37:3', 'test-step_bin2factor.R:54:3', 'test-step_bin2factor.R:76:3', 'test-step_bin2factor.R:101:3', 'test-step_bin2factor.R:125:3', 'test-step_boxcox.R:2:3', 'test-step_boxcox.R:19:3', 'test-step_boxcox.R:35:3', 'test-step_boxcox.R:52:3', 'test-step_boxcox.R:74:3', 'test-step_boxcox.R:99:3', 'test-step_boxcox.R:123:3', 'test-step_bsmote.R:2:3', 'test-step_bsmote.R:21:3', 'test-step_bsmote.R:54:3', 'test-step_bsmote.R:79:3', 'test-step_bsmote.R:107:3', 'test-step_bsmote.R:133:3', 'test-step_center.R:2:3', 'test-step_center.R:19:3', 'test-step_center.R:35:3', 'test-step_center.R:52:3', 'test-step_center.R:74:3', 'test-step_center.R:99:3', 'test-step_center.R:123:3', 'test-step_corr.R:2:3', 'test-step_discretize.R:2:3', 'test-step_discretize.R:24:3', 'test-step_discretize.R:44:3', 'test-step_discretize.R:64:3', 'test-step_discretize.R:82:3', 'test-step_discretize.R:100:3', 'test-step_discretize.R:125:3', 'test-step_discretize.R:153:3', 'test-step_discretize.R:180:3', 'test-step_downsample.R:2:3', 'test-step_downsample.R:21:3', 'test-step_downsample.R:54:3', 'test-step_downsample.R:79:3', 'test-step_downsample.R:107:3', 'test-step_downsample.R:133:3', 'test-step_dummy.R:2:3', 'test-step_dummy.R:22:3', 'test-step_dummy.R:42:3', 'test-step_dummy.R:63:3', 'test-step_dummy.R:80:3', 'test-step_dummy.R:105:3', 'test-step_dummy.R:133:3', 'test-step_dummy.R:160:3', 'test-step_filter_missing.R:2:3', 'test-step_impute_mean.R:2:3', 'test-step_impute_mean.R:20:3', 'test-step_impute_mean.R:36:3', 'test-step_impute_mean.R:54:3', 'test-step_impute_mean.R:77:3', 'test-step_impute_mean.R:103:3', 'test-step_impute_mean.R:128:3', 'test-step_impute_median.R:2:3', 'test-step_impute_median.R:20:3', 'test-step_impute_median.R:37:3', 'test-step_impute_median.R:55:3', 'test-step_impute_median.R:78:3', 'test-step_impute_median.R:104:3', 'test-step_impute_median.R:129:3', 'test-step_impute_mode.R:2:3', 'test-step_impute_mode.R:22:3', 'test-step_impute_mode.R:41:3', 'test-step_impute_mode.R:61:3', 'test-step_impute_mode.R:90:3', 'test-step_impute_mode.R:122:3', 'test-step_impute_mode.R:153:3', 'test-step_indicate_na.R:2:3', 'test-step_indicate_na.R:20:3', 'test-step_indicate_na.R:39:3', 'test-step_indicate_na.R:57:3', 'test-step_indicate_na.R:80:3', 'test-step_indicate_na.R:106:3', 'test-step_indicate_na.R:131:3', 'test-step_intercept.R:2:3', 'test-step_intercept.R:19:3', 'test-step_intercept.R:42:3', 'test-step_intercept.R:64:3', 'test-step_intercept.R:89:3', 'test-step_intercept.R:113:3', 'test-step_inverse.R:2:3', 'test-step_inverse.R:19:3', 'test-step_inverse.R:35:3', 'test-step_inverse.R:52:3', 'test-step_inverse.R:69:3', 'test-step_inverse.R:91:3', 'test-step_inverse.R:116:3', 'test-step_inverse.R:140:3', 'test-step_lag.R:2:3', 'test-step_lag.R:19:3', 'test-step_lag.R:37:3', 'test-step_lag.R:60:3', 'test-step_lag.R:85:3', 'test-step_lencode_bayes.R:2:3', 'test-step_lencode_bayes.R:25:3', 'test-step_lencode_bayes.R:47:3', 'test-step_lencode_bayes.R:70:3', 'test-step_lencode_bayes.R:97:3', 'test-step_lencode_bayes.R:127:3', 'test-step_lencode_bayes.R:156:3', 'test-step_lencode_glm.R:2:3', 'test-step_lencode_glm.R:24:3', 'test-step_lencode_glm.R:45:3', 'test-step_lencode_glm.R:67:3', 'test-step_lencode_glm.R:93:3', 'test-step_lencode_glm.R:122:3', 'test-step_lencode_glm.R:150:3', 'test-step_lencode_mixed.R:2:3', 'test-step_lencode_mixed.R:25:3', 'test-step_lencode_mixed.R:47:3', 'test-step_lencode_mixed.R:70:3', 'test-step_lencode_mixed.R:99:3', 'test-step_lencode_mixed.R:130:3', 'test-step_lencode_mixed.R:160:3', 'test-step_lincomb.R:2:3', 'test-step_log.R:2:3', 'test-step_log.R:19:3', 'test-step_log.R:36:3', 'test-step_log.R:52:3', 'test-step_log.R:69:3', 'test-step_log.R:91:3', 'test-step_log.R:116:3', 'test-step_log.R:140:3', 'test-step_mutate.R:2:3', 'test-step_mutate.R:19:3', 'test-step_mutate.R:35:3', 'test-step_mutate.R:52:3', 'test-step_mutate.R:74:3', 'test-step_mutate.R:99:3', 'test-step_mutate.R:123:3', 'test-step_nearmiss.R:2:3', 'test-step_nearmiss.R:21:3', 'test-step_nearmiss.R:54:3', 'test-step_nearmiss.R:79:3', 'test-step_nearmiss.R:107:3', 'test-step_nearmiss.R:133:3', 'test-step_normalize.R:2:3', 'test-step_normalize.R:19:3', 'test-step_normalize.R:35:3', 'test-step_normalize.R:52:3', 'test-step_normalize.R:74:3', 'test-step_normalize.R:99:3', 'test-step_normalize.R:123:3', 'test-step_novel.R:2:3', 'test-step_novel.R:26:3', 'test-step_novel.R:45:3', 'test-step_novel.R:69:3', 'test-step_novel.R:96:3', 'test-step_novel.R:126:3', 'test-step_novel.R:155:3', 'test-step_nzv.R:2:3', 'test-step_other.R:2:3', 'test-step_other.R:26:3', 'test-step_other.R:47:3', 'test-step_other.R:71:3', 'test-step_other.R:98:3', 'test-step_other.R:128:3', 'test-step_other.R:157:3', 'test-step_pca.R:2:3', 'test-step_pca.R:20:3', 'test-step_pca.R:37:3', 'test-step_pca.R:56:3', 'test-step_pca.R:75:3', 'test-step_pca.R:92:3', 'test-step_pca.R:108:3', 'test-step_pca.R:126:3', 'test-step_pca.R:149:3', 'test-step_pca.R:175:3', 'test-step_pca.R:200:3', 'test-step_pca_sparse.R:2:3', 'test-step_pca_sparse.R:23:3', 'test-step_pca_sparse.R:43:3', 'test-step_pca_sparse.R:62:3', 'test-step_pca_sparse.R:82:3', 'test-step_pca_sparse.R:103:3', 'test-step_pca_sparse.R:129:3', 'test-step_pca_sparse.R:158:3', 'test-step_pca_sparse.R:186:3', 'test-step_pca_sparse_bayes.R:2:3', 'test-step_pca_sparse_bayes.R:24:3', 'test-step_pca_sparse_bayes.R:45:3', 'test-step_pca_sparse_bayes.R:66:3', 'test-step_pca_sparse_bayes.R:86:3', 'test-step_pca_sparse_bayes.R:113:3', 'test-step_pca_sparse_bayes.R:143:3', 'test-step_pca_sparse_bayes.R:172:3', 'test-step_pca_truncated.R:2:3', 'test-step_pca_truncated.R:23:3', 'test-step_pca_truncated.R:43:3', 'test-step_pca_truncated.R:62:3', 'test-step_pca_truncated.R:81:3', 'test-step_pca_truncated.R:107:3', 'test-step_pca_truncated.R:136:3', 'test-step_pca_truncated.R:164:3', 'test-step_range.R:2:3', 'test-step_range.R:19:3', 'test-step_range.R:36:3', 'test-step_range.R:52:3', 'test-step_range.R:69:3', 'test-step_range.R:91:3', 'test-step_range.R:118:3', 'test-step_range.R:144:3', 'test-step_ratio.R:2:3', 'test-step_ratio.R:22:3', 'test-step_ratio.R:43:3', 'test-step_ratio.R:60:3', 'test-step_ratio.R:85:3', 'test-step_ratio.R:113:3', 'test-step_ratio.R:140:3', 'test-step_rename.R:2:3', 'test-step_rename.R:19:3', 'test-step_rename.R:35:3', 'test-step_rename.R:52:3', 'test-step_rename.R:74:3', 'test-step_rename.R:99:3', 'test-step_rename.R:123:3', 'test-step_rm.R:2:3', 'test-step_rose.R:2:3', 'test-step_rose.R:21:3', 'test-step_rose.R:54:3', 'test-step_rose.R:79:3', 'test-step_rose.R:107:3', 'test-step_rose.R:133:3', 'test-step_scale.R:2:3', 'test-step_scale.R:19:3', 'test-step_scale.R:35:3', 'test-step_scale.R:52:3', 'test-step_scale.R:74:3', 'test-step_scale.R:99:3', 'test-step_scale.R:123:3', 'test-step_smote.R:2:3', 'test-step_smote.R:21:3', 'test-step_smote.R:54:3', 'test-step_smote.R:79:3', 'test-step_smote.R:107:3', 'test-step_smote.R:133:3', 'test-step_smotenc.R:2:3', 'test-step_smotenc.R:21:3', 'test-step_smotenc.R:54:3', 'test-step_smotenc.R:79:3', 'test-step_smotenc.R:107:3', 'test-step_smotenc.R:133:3', 'test-step_sqrt.R:2:3', 'test-step_sqrt.R:19:3', 'test-step_sqrt.R:35:3', 'test-step_sqrt.R:52:3', 'test-step_sqrt.R:74:3', 'test-step_sqrt.R:99:3', 'test-step_sqrt.R:123:3', 'test-step_tomek.R:2:3', 'test-step_tomek.R:21:3', 'test-step_tomek.R:54:3', 'test-step_tomek.R:79:3', 'test-step_tomek.R:107:3', 'test-step_tomek.R:133:3', 'test-step_unknown.R:2:3', 'test-step_unknown.R:24:3', 'test-step_unknown.R:43:3', 'test-step_unknown.R:65:3', 'test-step_unknown.R:94:3', 'test-step_unknown.R:126:3', 'test-step_unknown.R:157:3', 'test-step_upsample.R:2:3', 'test-step_upsample.R:21:3', 'test-step_upsample.R:54:3', 'test-step_upsample.R:79:3', 'test-step_upsample.R:107:3', 'test-step_upsample.R:133:3', 'test-step_zv.R:2:3' • {sparklyr} is not installed (2): 'test-adjust_numeric_range.R:95:3', 'test-adjust_predictions_custom.R:67:3' • {tidypredict} is not installed (19): 'test-model-glm.R:3:3', 'test-model-glm.R:27:3', 'test-model-glm.R:57:3', 'test-model-partykit.R:3:3', 'test-model-partykit.R:29:3', 'test-model-partykit.R:61:3', 'test-model-xgboost.R:3:3', 'test-model-xgboost.R:28:3', 'test-model-xgboost.R:51:3', 'test-model-xgboost.R:83:3', 'test-model-xgboost.R:114:3', 'test-model-xgboost.R:151:3', 'test-orbital.R:25:3', 'test-orbital.R:44:3', 'test-orbital.R:79:3', 'test-orbital.R:105:3', 'test-parsnip.R:25:3', 'test-parsnip.R:64:3', 'test-workflows.R:2:3' • {workflows} is not installed (17): 'test-adjust_equivocal_zone.R:4:3', 'test-adjust_equivocal_zone.R:39:3', 'test-adjust_equivocal_zone.R:75:3', 'test-adjust_equivocal_zone.R:110:3', 'test-adjust_equivocal_zone.R:151:3', 'test-adjust_equivocal_zone.R:194:3', 'test-adjust_equivocal_zone.R:236:3', 'test-adjust_probability_threshold.R:4:3', 'test-adjust_probability_threshold.R:37:3', 'test-adjust_probability_threshold.R:73:3', 'test-adjust_probability_threshold.R:106:3', 'test-adjust_probability_threshold.R:144:3', 'test-adjust_probability_threshold.R:184:3', 'test-adjust_probability_threshold.R:223:3', 'test-tailor.R:33:3', 'test-tailor.R:59:3', 'test-workflows.R:63:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-adjust_numeric_range.R:4:3'): adjust_predictions_custom works - defaults ── Error in `tailor::adjust_numeric_range(tailor::tailor())`: The probably package must be available to use this adjustment. Backtrace: ▆ 1. └─tailor::adjust_numeric_range(tailor::tailor()) at test-adjust_numeric_range.R:4:3 2. └─tailor:::validate_probably_available() 3. └─cli::cli_abort(...) 4. └─rlang::abort(...) ── Error ('test-adjust_numeric_range.R:27:3'): adjust_predictions_custom works - lower_limit ── Error in `tailor::adjust_numeric_range(tailor::tailor(), lower_limit = 15)`: The probably package must be available to use this adjustment. Backtrace: ▆ 1. └─tailor::adjust_numeric_range(tailor::tailor(), lower_limit = 15) at test-adjust_numeric_range.R:27:3 2. └─tailor:::validate_probably_available() 3. └─cli::cli_abort(...) 4. └─rlang::abort(...) ── Error ('test-adjust_numeric_range.R:50:3'): adjust_predictions_custom works - upper_limit ── Error in `tailor::adjust_numeric_range(tailor::tailor(), upper_limit = 25)`: The probably package must be available to use this adjustment. Backtrace: ▆ 1. └─tailor::adjust_numeric_range(tailor::tailor(), upper_limit = 25) at test-adjust_numeric_range.R:50:3 2. └─tailor:::validate_probably_available() 3. └─cli::cli_abort(...) 4. └─rlang::abort(...) ── Error ('test-adjust_numeric_range.R:73:3'): adjust_predictions_custom works - both ── Error in `tailor::adjust_numeric_range(tailor::tailor(), lower_limit = 15, upper_limit = 25)`: The probably package must be available to use this adjustment. Backtrace: ▆ 1. └─tailor::adjust_numeric_range(tailor::tailor(), lower_limit = 15, upper_limit = 25) at test-adjust_numeric_range.R:73:3 2. └─tailor:::validate_probably_available() 3. └─cli::cli_abort(...) 4. └─rlang::abort(...) ── Error ('test-adjust_numeric_range.R:152:3'): duckdb - adjust_predictions_custom works ── Error in `tailor::adjust_numeric_range(tailor::tailor(), lower_limit = 15, upper_limit = 25)`: The probably package must be available to use this adjustment. Backtrace: ▆ 1. └─tailor::adjust_numeric_range(tailor::tailor(), lower_limit = 15, upper_limit = 25) at test-adjust_numeric_range.R:152:3 2. └─tailor:::validate_probably_available() 3. └─cli::cli_abort(...) 4. └─rlang::abort(...) ── Error ('test-adjust_numeric_range.R:178:3'): arrow - adjust_predictions_custom works ── Error in `tailor::adjust_numeric_range(tailor::tailor(), lower_limit = 15, upper_limit = 25)`: The probably package must be available to use this adjustment. Backtrace: ▆ 1. └─tailor::adjust_numeric_range(tailor::tailor(), lower_limit = 15, upper_limit = 25) at test-adjust_numeric_range.R:178:3 2. └─tailor:::validate_probably_available() 3. └─cli::cli_abort(...) 4. └─rlang::abort(...) [ FAIL 6 | WARN 0 | SKIP 345 | PASS 73 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.4.0
Check: package vignettes
Result: NOTE Package has ‘vignettes’ subdirectory but apparently no vignettes. Perhaps the ‘VignetteBuilder’ information is missing from the DESCRIPTION file? Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.4.0
Check: tests
Result: ERROR Running ‘testthat.R’ [194s/351s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(orbital) > > test_check("orbital") Loading required package: parsnip Saving _problems/test-model-xgboost-17.R Saving _problems/test-model-xgboost-18.R Saving _problems/test-model-xgboost-23.R Saving _problems/test-model-xgboost-35.R Saving _problems/test-model-xgboost-65.R Saving _problems/test-model-xgboost-66.R Saving _problems/test-model-xgboost-67.R Saving _problems/test-model-xgboost-78.R Saving _problems/test-model-xgboost-90.R Saving _problems/test-model-xgboost-131.R Saving _problems/test-model-xgboost-132.R Saving _problems/test-model-xgboost-133.R Saving _problems/test-model-xgboost-134.R Saving _problems/test-model-xgboost-146.R Saving _problems/test-model-xgboost-158.R [ FAIL 15 | WARN 2 | SKIP 113 | PASS 370 ] ══ Skipped tests (113) ═════════════════════════════════════════════════════════ • On CRAN (69): 'test-adjust_equivocal_zone.R:36:1', 'test-adjust_equivocal_zone.R:155:3', 'test-adjust_numeric_range.R:123:3', 'test-adjust_predictions_custom.R:98:3', 'test-adjust_probability_threshold.R:34:1', 'test-adjust_probability_threshold.R:148:3', 'test-augment.R:41:3', 'test-dt.R:1:1', 'test-orbital.R:62:1', 'test-orbital.R:93:1', 'test-orbital.R:117:1', 'test-orbital.R:127:1', 'test-orbital.R:134:1', 'test-parsnip.R:1:1', 'test-parsnip.R:48:1', 'test-parsnip.R:63:1', 'test-recipes.R:1:1', 'test-show_query.R:7:3', 'test-sql.R:1:1', 'test-step_adasyn.R:20:1', 'test-step_adasyn.R:83:3', 'test-step_adasyn.R:111:3', 'test-step_bin2factor.R:79:3', 'test-step_boxcox.R:77:3', 'test-step_bsmote.R:20:1', 'test-step_bsmote.R:83:3', 'test-step_center.R:77:3', 'test-step_discretize.R:128:3', 'test-step_downsample.R:20:1', 'test-step_downsample.R:83:3', 'test-step_dummy.R:108:3', 'test-step_impute_mean.R:80:3', 'test-step_impute_median.R:81:3', 'test-step_impute_mode.R:93:3', 'test-step_indicate_na.R:83:3', 'test-step_intercept.R:67:3', 'test-step_inverse.R:94:3', 'test-step_lag.R:63:3', 'test-step_lencode_bayes.R:101:3', 'test-step_lencode_glm.R:96:3', 'test-step_lencode_mixed.R:104:3', 'test-step_log.R:94:3', 'test-step_mutate.R:77:3', 'test-step_nearmiss.R:20:1', 'test-step_nearmiss.R:83:3', 'test-step_normalize.R:77:3', 'test-step_novel.R:99:3', 'test-step_other.R:101:3', 'test-step_pca.R:152:3', 'test-step_pca_sparse.R:133:3', 'test-step_pca_sparse_bayes.R:118:3', 'test-step_pca_truncated.R:111:3', 'test-step_range.R:94:3', 'test-step_ratio.R:88:3', 'test-step_rename.R:77:3', 'test-step_rose.R:20:1', 'test-step_rose.R:83:3', 'test-step_scale.R:77:3', 'test-step_smote.R:20:1', 'test-step_smote.R:83:3', 'test-step_smotenc.R:20:1', 'test-step_smotenc.R:83:3', 'test-step_sqrt.R:77:3', 'test-step_tomek.R:20:1', 'test-step_tomek.R:83:3', 'test-step_unknown.R:97:3', 'test-step_upsample.R:20:1', 'test-step_upsample.R:83:3', 'test-workflows.R:1:1' • empty test (2): 'test-augment.R:31:1', 'test-augment.R:111:1' • is.na(testthat_spark_env_version()) is TRUE (42): 'test-adjust_equivocal_zone.R:113:3', 'test-adjust_numeric_range.R:96:3', 'test-adjust_predictions_custom.R:68:3', 'test-adjust_probability_threshold.R:109:3', 'test-step_adasyn.R:57:3', 'test-step_bin2factor.R:56:3', 'test-step_boxcox.R:54:3', 'test-step_bsmote.R:57:3', 'test-step_center.R:54:3', 'test-step_discretize.R:102:3', 'test-step_downsample.R:57:3', 'test-step_dummy.R:82:3', 'test-step_impute_mean.R:56:3', 'test-step_impute_median.R:57:3', 'test-step_impute_mode.R:63:3', 'test-step_indicate_na.R:59:3', 'test-step_intercept.R:44:3', 'test-step_inverse.R:71:3', 'test-step_lencode_bayes.R:73:3', 'test-step_lencode_glm.R:69:3', 'test-step_lencode_mixed.R:75:3', 'test-step_log.R:71:3', 'test-step_mutate.R:54:3', 'test-step_nearmiss.R:57:3', 'test-step_normalize.R:54:3', 'test-step_novel.R:71:3', 'test-step_other.R:73:3', 'test-step_pca.R:128:3', 'test-step_pca_sparse.R:106:3', 'test-step_pca_sparse_bayes.R:90:3', 'test-step_pca_truncated.R:84:3', 'test-step_range.R:71:3', 'test-step_ratio.R:62:3', 'test-step_rename.R:54:3', 'test-step_rose.R:57:3', 'test-step_scale.R:54:3', 'test-step_smote.R:57:3', 'test-step_smotenc.R:57:3', 'test-step_sqrt.R:54:3', 'test-step_tomek.R:57:3', 'test-step_unknown.R:67:3', 'test-step_upsample.R:57:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-model-xgboost.R:17:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds` to have names ".pred_class". Differences: `actual`: `expected`: ".pred_class" ── Failure ('test-model-xgboost.R:18:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds$.pred_class` to have type "character". Actual type: "NULL" ── Failure ('test-model-xgboost.R:20:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds$.pred_class` to be identical to `as.character(exps$.pred_class)`. Differences: `actual` is NULL `expected` is a character vector ('0', '0', '1', '1', '0', ...) ── Error ('test-model-xgboost.R:35:3'): boost_tree(), objective = binary:logistic, works with type = class ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = "class") at test-model-xgboost.R:35:3 2. └─orbital:::orbital.model_fit(bt_fit, type = "class") 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) ── Failure ('test-model-xgboost.R:65:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds` to have names `c(".pred_0", ".pred_1")`. Differences: `actual`: `expected`: ".pred_0" ".pred_1" ── Failure ('test-model-xgboost.R:66:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds$.pred_0` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:67:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds$.pred_1` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:74:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds` to equal `exps`. Differences: `actual` is length 0 `expected` is length 2 `names(actual)`: `names(expected)`: ".pred_0" ".pred_1" `actual$.pred_0` is absent `expected$.pred_0` is a double vector (0.536467909812927, 0.536467909812927, 0.100352562963963, 0.209237098693848, 0.94028639793396, ...) `actual$.pred_1` is absent `expected$.pred_1` is a double vector (0.463532090187073, 0.463532090187073, 0.899647437036037, 0.790762901306152, 0.05971360206604, ...) ── Error ('test-model-xgboost.R:90:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = "prob") at test-model-xgboost.R:90:3 2. └─orbital:::orbital.model_fit(bt_fit, type = "prob") 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) ── Failure ('test-model-xgboost.R:131:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds` to have names `c(".pred_class", ".pred_0", ".pred_1")`. Differences: `actual`: `expected`: ".pred_class" ".pred_0" ".pred_1" ── Failure ('test-model-xgboost.R:132:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_class` to have type "character". Actual type: "NULL" ── Failure ('test-model-xgboost.R:133:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_0` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:134:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_1` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:142:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds` to equal `exps`. Differences: `actual` is length 0 `expected` is length 3 `names(actual)`: `names(expected)`: ".pred_class" ".pred_0" ".pred_1" `actual$.pred_class` is absent `expected$.pred_class` is a character vector ('0', '0', '1', '1', '0', ...) `actual$.pred_0` is absent `expected$.pred_0` is a double vector (0.536467909812927, 0.536467909812927, 0.100352562963963, 0.209237098693848, 0.94028639793396, ...) `actual$.pred_1` is absent `expected$.pred_1` is a double vector (0.463532090187073, 0.463532090187073, 0.899647437036037, 0.790762901306152, 0.05971360206604, ...) ── Error ('test-model-xgboost.R:158:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = c("class", "prob")) at test-model-xgboost.R:158:3 2. └─orbital:::orbital.model_fit(bt_fit, type = c("class", "prob")) 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) [ FAIL 15 | WARN 2 | SKIP 113 | PASS 370 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.4.0
Check: tests
Result: ERROR Running ‘testthat.R’ [25s/28s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(orbital) > > test_check("orbital") Loading required package: parsnip Saving _problems/test-model-xgboost-17.R Saving _problems/test-model-xgboost-18.R Saving _problems/test-model-xgboost-23.R Saving _problems/test-model-xgboost-35.R Saving _problems/test-model-xgboost-65.R Saving _problems/test-model-xgboost-66.R Saving _problems/test-model-xgboost-67.R Saving _problems/test-model-xgboost-78.R Saving _problems/test-model-xgboost-90.R Saving _problems/test-model-xgboost-131.R Saving _problems/test-model-xgboost-132.R Saving _problems/test-model-xgboost-133.R Saving _problems/test-model-xgboost-134.R Saving _problems/test-model-xgboost-146.R Saving _problems/test-model-xgboost-158.R [ FAIL 15 | WARN 2 | SKIP 113 | PASS 370 ] ══ Skipped tests (113) ═════════════════════════════════════════════════════════ • On CRAN (69): 'test-adjust_equivocal_zone.R:36:1', 'test-adjust_equivocal_zone.R:155:3', 'test-adjust_numeric_range.R:123:3', 'test-adjust_predictions_custom.R:98:3', 'test-adjust_probability_threshold.R:34:1', 'test-adjust_probability_threshold.R:148:3', 'test-augment.R:41:3', 'test-dt.R:1:1', 'test-orbital.R:62:1', 'test-orbital.R:93:1', 'test-orbital.R:117:1', 'test-orbital.R:127:1', 'test-orbital.R:134:1', 'test-parsnip.R:1:1', 'test-parsnip.R:48:1', 'test-parsnip.R:63:1', 'test-recipes.R:1:1', 'test-show_query.R:7:3', 'test-sql.R:1:1', 'test-step_adasyn.R:20:1', 'test-step_adasyn.R:83:3', 'test-step_adasyn.R:111:3', 'test-step_bin2factor.R:79:3', 'test-step_boxcox.R:77:3', 'test-step_bsmote.R:20:1', 'test-step_bsmote.R:83:3', 'test-step_center.R:77:3', 'test-step_discretize.R:128:3', 'test-step_downsample.R:20:1', 'test-step_downsample.R:83:3', 'test-step_dummy.R:108:3', 'test-step_impute_mean.R:80:3', 'test-step_impute_median.R:81:3', 'test-step_impute_mode.R:93:3', 'test-step_indicate_na.R:83:3', 'test-step_intercept.R:67:3', 'test-step_inverse.R:94:3', 'test-step_lag.R:63:3', 'test-step_lencode_bayes.R:101:3', 'test-step_lencode_glm.R:96:3', 'test-step_lencode_mixed.R:104:3', 'test-step_log.R:94:3', 'test-step_mutate.R:77:3', 'test-step_nearmiss.R:20:1', 'test-step_nearmiss.R:83:3', 'test-step_normalize.R:77:3', 'test-step_novel.R:99:3', 'test-step_other.R:101:3', 'test-step_pca.R:152:3', 'test-step_pca_sparse.R:133:3', 'test-step_pca_sparse_bayes.R:118:3', 'test-step_pca_truncated.R:111:3', 'test-step_range.R:94:3', 'test-step_ratio.R:88:3', 'test-step_rename.R:77:3', 'test-step_rose.R:20:1', 'test-step_rose.R:83:3', 'test-step_scale.R:77:3', 'test-step_smote.R:20:1', 'test-step_smote.R:83:3', 'test-step_smotenc.R:20:1', 'test-step_smotenc.R:83:3', 'test-step_sqrt.R:77:3', 'test-step_tomek.R:20:1', 'test-step_tomek.R:83:3', 'test-step_unknown.R:97:3', 'test-step_upsample.R:20:1', 'test-step_upsample.R:83:3', 'test-workflows.R:1:1' • empty test (2): 'test-augment.R:31:1', 'test-augment.R:111:1' • is.na(testthat_spark_env_version()) is TRUE (42): 'test-adjust_equivocal_zone.R:113:3', 'test-adjust_numeric_range.R:96:3', 'test-adjust_predictions_custom.R:68:3', 'test-adjust_probability_threshold.R:109:3', 'test-step_adasyn.R:57:3', 'test-step_bin2factor.R:56:3', 'test-step_boxcox.R:54:3', 'test-step_bsmote.R:57:3', 'test-step_center.R:54:3', 'test-step_discretize.R:102:3', 'test-step_downsample.R:57:3', 'test-step_dummy.R:82:3', 'test-step_impute_mean.R:56:3', 'test-step_impute_median.R:57:3', 'test-step_impute_mode.R:63:3', 'test-step_indicate_na.R:59:3', 'test-step_intercept.R:44:3', 'test-step_inverse.R:71:3', 'test-step_lencode_bayes.R:73:3', 'test-step_lencode_glm.R:69:3', 'test-step_lencode_mixed.R:75:3', 'test-step_log.R:71:3', 'test-step_mutate.R:54:3', 'test-step_nearmiss.R:57:3', 'test-step_normalize.R:54:3', 'test-step_novel.R:71:3', 'test-step_other.R:73:3', 'test-step_pca.R:128:3', 'test-step_pca_sparse.R:106:3', 'test-step_pca_sparse_bayes.R:90:3', 'test-step_pca_truncated.R:84:3', 'test-step_range.R:71:3', 'test-step_ratio.R:62:3', 'test-step_rename.R:54:3', 'test-step_rose.R:57:3', 'test-step_scale.R:54:3', 'test-step_smote.R:57:3', 'test-step_smotenc.R:57:3', 'test-step_sqrt.R:54:3', 'test-step_tomek.R:57:3', 'test-step_unknown.R:67:3', 'test-step_upsample.R:57:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-model-xgboost.R:17:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds` to have names ".pred_class". Differences: `actual`: `expected`: ".pred_class" ── Failure ('test-model-xgboost.R:18:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds$.pred_class` to have type "character". Actual type: "NULL" ── Failure ('test-model-xgboost.R:20:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds$.pred_class` to be identical to `as.character(exps$.pred_class)`. Differences: `actual` is NULL `expected` is a character vector ('0', '0', '1', '1', '0', ...) ── Error ('test-model-xgboost.R:35:3'): boost_tree(), objective = binary:logistic, works with type = class ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = "class") at test-model-xgboost.R:35:3 2. └─orbital:::orbital.model_fit(bt_fit, type = "class") 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) ── Failure ('test-model-xgboost.R:65:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds` to have names `c(".pred_0", ".pred_1")`. Differences: `actual`: `expected`: ".pred_0" ".pred_1" ── Failure ('test-model-xgboost.R:66:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds$.pred_0` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:67:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds$.pred_1` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:74:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds` to equal `exps`. Differences: `actual` is length 0 `expected` is length 2 `names(actual)`: `names(expected)`: ".pred_0" ".pred_1" `actual$.pred_0` is absent `expected$.pred_0` is a double vector (0.536467909812927, 0.536467909812927, 0.100352562963963, 0.209237098693848, 0.94028639793396, ...) `actual$.pred_1` is absent `expected$.pred_1` is a double vector (0.463532090187073, 0.463532090187073, 0.899647437036037, 0.790762901306152, 0.05971360206604, ...) ── Error ('test-model-xgboost.R:90:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = "prob") at test-model-xgboost.R:90:3 2. └─orbital:::orbital.model_fit(bt_fit, type = "prob") 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) ── Failure ('test-model-xgboost.R:131:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds` to have names `c(".pred_class", ".pred_0", ".pred_1")`. Differences: `actual`: `expected`: ".pred_class" ".pred_0" ".pred_1" ── Failure ('test-model-xgboost.R:132:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_class` to have type "character". Actual type: "NULL" ── Failure ('test-model-xgboost.R:133:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_0` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:134:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_1` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:142:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds` to equal `exps`. Differences: `actual` is length 0 `expected` is length 3 `names(actual)`: `names(expected)`: ".pred_class" ".pred_0" ".pred_1" `actual$.pred_class` is absent `expected$.pred_class` is a character vector ('0', '0', '1', '1', '0', ...) `actual$.pred_0` is absent `expected$.pred_0` is a double vector (0.536467909812927, 0.536467909812927, 0.100352562963963, 0.209237098693848, 0.94028639793396, ...) `actual$.pred_1` is absent `expected$.pred_1` is a double vector (0.463532090187073, 0.463532090187073, 0.899647437036037, 0.790762901306152, 0.05971360206604, ...) ── Error ('test-model-xgboost.R:158:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = c("class", "prob")) at test-model-xgboost.R:158:3 2. └─orbital:::orbital.model_fit(bt_fit, type = c("class", "prob")) 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) [ FAIL 15 | WARN 2 | SKIP 113 | PASS 370 ] Error: ! Test failures. Execution halted Flavor: r-release-macos-arm64

Version: 0.4.0
Check: tests
Result: ERROR Running ‘testthat.R’ [83s/135s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(orbital) > > test_check("orbital") Loading required package: parsnip Saving _problems/test-model-xgboost-17.R Saving _problems/test-model-xgboost-18.R Saving _problems/test-model-xgboost-23.R Saving _problems/test-model-xgboost-35.R Saving _problems/test-model-xgboost-65.R Saving _problems/test-model-xgboost-66.R Saving _problems/test-model-xgboost-67.R Saving _problems/test-model-xgboost-78.R Saving _problems/test-model-xgboost-90.R Saving _problems/test-model-xgboost-131.R Saving _problems/test-model-xgboost-132.R Saving _problems/test-model-xgboost-133.R Saving _problems/test-model-xgboost-134.R Saving _problems/test-model-xgboost-146.R Saving _problems/test-model-xgboost-158.R [ FAIL 15 | WARN 2 | SKIP 113 | PASS 370 ] ══ Skipped tests (113) ═════════════════════════════════════════════════════════ • On CRAN (69): 'test-adjust_equivocal_zone.R:36:1', 'test-adjust_equivocal_zone.R:155:3', 'test-adjust_numeric_range.R:123:3', 'test-adjust_predictions_custom.R:98:3', 'test-adjust_probability_threshold.R:34:1', 'test-adjust_probability_threshold.R:148:3', 'test-augment.R:41:3', 'test-dt.R:1:1', 'test-orbital.R:62:1', 'test-orbital.R:93:1', 'test-orbital.R:117:1', 'test-orbital.R:127:1', 'test-orbital.R:134:1', 'test-parsnip.R:1:1', 'test-parsnip.R:48:1', 'test-parsnip.R:63:1', 'test-recipes.R:1:1', 'test-show_query.R:7:3', 'test-sql.R:1:1', 'test-step_adasyn.R:20:1', 'test-step_adasyn.R:83:3', 'test-step_adasyn.R:111:3', 'test-step_bin2factor.R:79:3', 'test-step_boxcox.R:77:3', 'test-step_bsmote.R:20:1', 'test-step_bsmote.R:83:3', 'test-step_center.R:77:3', 'test-step_discretize.R:128:3', 'test-step_downsample.R:20:1', 'test-step_downsample.R:83:3', 'test-step_dummy.R:108:3', 'test-step_impute_mean.R:80:3', 'test-step_impute_median.R:81:3', 'test-step_impute_mode.R:93:3', 'test-step_indicate_na.R:83:3', 'test-step_intercept.R:67:3', 'test-step_inverse.R:94:3', 'test-step_lag.R:63:3', 'test-step_lencode_bayes.R:101:3', 'test-step_lencode_glm.R:96:3', 'test-step_lencode_mixed.R:104:3', 'test-step_log.R:94:3', 'test-step_mutate.R:77:3', 'test-step_nearmiss.R:20:1', 'test-step_nearmiss.R:83:3', 'test-step_normalize.R:77:3', 'test-step_novel.R:99:3', 'test-step_other.R:101:3', 'test-step_pca.R:152:3', 'test-step_pca_sparse.R:133:3', 'test-step_pca_sparse_bayes.R:118:3', 'test-step_pca_truncated.R:111:3', 'test-step_range.R:94:3', 'test-step_ratio.R:88:3', 'test-step_rename.R:77:3', 'test-step_rose.R:20:1', 'test-step_rose.R:83:3', 'test-step_scale.R:77:3', 'test-step_smote.R:20:1', 'test-step_smote.R:83:3', 'test-step_smotenc.R:20:1', 'test-step_smotenc.R:83:3', 'test-step_sqrt.R:77:3', 'test-step_tomek.R:20:1', 'test-step_tomek.R:83:3', 'test-step_unknown.R:97:3', 'test-step_upsample.R:20:1', 'test-step_upsample.R:83:3', 'test-workflows.R:1:1' • empty test (2): 'test-augment.R:31:1', 'test-augment.R:111:1' • is.na(testthat_spark_env_version()) is TRUE (42): 'test-adjust_equivocal_zone.R:113:3', 'test-adjust_numeric_range.R:96:3', 'test-adjust_predictions_custom.R:68:3', 'test-adjust_probability_threshold.R:109:3', 'test-step_adasyn.R:57:3', 'test-step_bin2factor.R:56:3', 'test-step_boxcox.R:54:3', 'test-step_bsmote.R:57:3', 'test-step_center.R:54:3', 'test-step_discretize.R:102:3', 'test-step_downsample.R:57:3', 'test-step_dummy.R:82:3', 'test-step_impute_mean.R:56:3', 'test-step_impute_median.R:57:3', 'test-step_impute_mode.R:63:3', 'test-step_indicate_na.R:59:3', 'test-step_intercept.R:44:3', 'test-step_inverse.R:71:3', 'test-step_lencode_bayes.R:73:3', 'test-step_lencode_glm.R:69:3', 'test-step_lencode_mixed.R:75:3', 'test-step_log.R:71:3', 'test-step_mutate.R:54:3', 'test-step_nearmiss.R:57:3', 'test-step_normalize.R:54:3', 'test-step_novel.R:71:3', 'test-step_other.R:73:3', 'test-step_pca.R:128:3', 'test-step_pca_sparse.R:106:3', 'test-step_pca_sparse_bayes.R:90:3', 'test-step_pca_truncated.R:84:3', 'test-step_range.R:71:3', 'test-step_ratio.R:62:3', 'test-step_rename.R:54:3', 'test-step_rose.R:57:3', 'test-step_scale.R:54:3', 'test-step_smote.R:57:3', 'test-step_smotenc.R:57:3', 'test-step_sqrt.R:54:3', 'test-step_tomek.R:57:3', 'test-step_unknown.R:67:3', 'test-step_upsample.R:57:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-model-xgboost.R:17:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds` to have names ".pred_class". Differences: `actual`: `expected`: ".pred_class" ── Failure ('test-model-xgboost.R:18:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds$.pred_class` to have type "character". Actual type: "NULL" ── Failure ('test-model-xgboost.R:20:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds$.pred_class` to be identical to `as.character(exps$.pred_class)`. Differences: `actual` is NULL `expected` is a character vector ('0', '0', '1', '1', '0', ...) ── Error ('test-model-xgboost.R:35:3'): boost_tree(), objective = binary:logistic, works with type = class ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = "class") at test-model-xgboost.R:35:3 2. └─orbital:::orbital.model_fit(bt_fit, type = "class") 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) ── Failure ('test-model-xgboost.R:65:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds` to have names `c(".pred_0", ".pred_1")`. Differences: `actual`: `expected`: ".pred_0" ".pred_1" ── Failure ('test-model-xgboost.R:66:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds$.pred_0` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:67:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds$.pred_1` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:74:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds` to equal `exps`. Differences: `actual` is length 0 `expected` is length 2 `names(actual)`: `names(expected)`: ".pred_0" ".pred_1" `actual$.pred_0` is absent `expected$.pred_0` is a double vector (0.536467909812927, 0.536467909812927, 0.100352562963963, 0.209237098693848, 0.94028639793396, ...) `actual$.pred_1` is absent `expected$.pred_1` is a double vector (0.463532090187073, 0.463532090187073, 0.899647437036037, 0.790762901306152, 0.05971360206604, ...) ── Error ('test-model-xgboost.R:90:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = "prob") at test-model-xgboost.R:90:3 2. └─orbital:::orbital.model_fit(bt_fit, type = "prob") 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) ── Failure ('test-model-xgboost.R:131:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds` to have names `c(".pred_class", ".pred_0", ".pred_1")`. Differences: `actual`: `expected`: ".pred_class" ".pred_0" ".pred_1" ── Failure ('test-model-xgboost.R:132:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_class` to have type "character". Actual type: "NULL" ── Failure ('test-model-xgboost.R:133:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_0` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:134:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_1` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:142:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds` to equal `exps`. Differences: `actual` is length 0 `expected` is length 3 `names(actual)`: `names(expected)`: ".pred_class" ".pred_0" ".pred_1" `actual$.pred_class` is absent `expected$.pred_class` is a character vector ('0', '0', '1', '1', '0', ...) `actual$.pred_0` is absent `expected$.pred_0` is a double vector (0.536467909812927, 0.536467909812927, 0.100352562963963, 0.209237098693848, 0.94028639793396, ...) `actual$.pred_1` is absent `expected$.pred_1` is a double vector (0.463532090187073, 0.463532090187073, 0.899647437036037, 0.790762901306152, 0.05971360206604, ...) ── Error ('test-model-xgboost.R:158:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = c("class", "prob")) at test-model-xgboost.R:158:3 2. └─orbital:::orbital.model_fit(bt_fit, type = c("class", "prob")) 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) [ FAIL 15 | WARN 2 | SKIP 113 | PASS 370 ] Error: ! Test failures. Execution halted Flavor: r-release-macos-x86_64

Version: 0.4.0
Check: tests
Result: ERROR Running ‘testthat.R’ [24s/32s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(orbital) > > test_check("orbital") Loading required package: parsnip Saving _problems/test-model-xgboost-17.R Saving _problems/test-model-xgboost-18.R Saving _problems/test-model-xgboost-23.R Saving _problems/test-model-xgboost-35.R Saving _problems/test-model-xgboost-65.R Saving _problems/test-model-xgboost-66.R Saving _problems/test-model-xgboost-67.R Saving _problems/test-model-xgboost-78.R Saving _problems/test-model-xgboost-90.R Saving _problems/test-model-xgboost-131.R Saving _problems/test-model-xgboost-132.R Saving _problems/test-model-xgboost-133.R Saving _problems/test-model-xgboost-134.R Saving _problems/test-model-xgboost-146.R Saving _problems/test-model-xgboost-158.R [ FAIL 15 | WARN 2 | SKIP 113 | PASS 370 ] ══ Skipped tests (113) ═════════════════════════════════════════════════════════ • On CRAN (69): 'test-adjust_equivocal_zone.R:36:1', 'test-adjust_equivocal_zone.R:155:3', 'test-adjust_numeric_range.R:123:3', 'test-adjust_predictions_custom.R:98:3', 'test-adjust_probability_threshold.R:34:1', 'test-adjust_probability_threshold.R:148:3', 'test-augment.R:41:3', 'test-dt.R:1:1', 'test-orbital.R:62:1', 'test-orbital.R:93:1', 'test-orbital.R:117:1', 'test-orbital.R:127:1', 'test-orbital.R:134:1', 'test-parsnip.R:1:1', 'test-parsnip.R:48:1', 'test-parsnip.R:63:1', 'test-recipes.R:1:1', 'test-show_query.R:7:3', 'test-sql.R:1:1', 'test-step_adasyn.R:20:1', 'test-step_adasyn.R:83:3', 'test-step_adasyn.R:111:3', 'test-step_bin2factor.R:79:3', 'test-step_boxcox.R:77:3', 'test-step_bsmote.R:20:1', 'test-step_bsmote.R:83:3', 'test-step_center.R:77:3', 'test-step_discretize.R:128:3', 'test-step_downsample.R:20:1', 'test-step_downsample.R:83:3', 'test-step_dummy.R:108:3', 'test-step_impute_mean.R:80:3', 'test-step_impute_median.R:81:3', 'test-step_impute_mode.R:93:3', 'test-step_indicate_na.R:83:3', 'test-step_intercept.R:67:3', 'test-step_inverse.R:94:3', 'test-step_lag.R:63:3', 'test-step_lencode_bayes.R:101:3', 'test-step_lencode_glm.R:96:3', 'test-step_lencode_mixed.R:104:3', 'test-step_log.R:94:3', 'test-step_mutate.R:77:3', 'test-step_nearmiss.R:20:1', 'test-step_nearmiss.R:83:3', 'test-step_normalize.R:77:3', 'test-step_novel.R:99:3', 'test-step_other.R:101:3', 'test-step_pca.R:152:3', 'test-step_pca_sparse.R:133:3', 'test-step_pca_sparse_bayes.R:118:3', 'test-step_pca_truncated.R:111:3', 'test-step_range.R:94:3', 'test-step_ratio.R:88:3', 'test-step_rename.R:77:3', 'test-step_rose.R:20:1', 'test-step_rose.R:83:3', 'test-step_scale.R:77:3', 'test-step_smote.R:20:1', 'test-step_smote.R:83:3', 'test-step_smotenc.R:20:1', 'test-step_smotenc.R:83:3', 'test-step_sqrt.R:77:3', 'test-step_tomek.R:20:1', 'test-step_tomek.R:83:3', 'test-step_unknown.R:97:3', 'test-step_upsample.R:20:1', 'test-step_upsample.R:83:3', 'test-workflows.R:1:1' • empty test (2): 'test-augment.R:31:1', 'test-augment.R:111:1' • is.na(testthat_spark_env_version()) is TRUE (42): 'test-adjust_equivocal_zone.R:113:3', 'test-adjust_numeric_range.R:96:3', 'test-adjust_predictions_custom.R:68:3', 'test-adjust_probability_threshold.R:109:3', 'test-step_adasyn.R:57:3', 'test-step_bin2factor.R:56:3', 'test-step_boxcox.R:54:3', 'test-step_bsmote.R:57:3', 'test-step_center.R:54:3', 'test-step_discretize.R:102:3', 'test-step_downsample.R:57:3', 'test-step_dummy.R:82:3', 'test-step_impute_mean.R:56:3', 'test-step_impute_median.R:57:3', 'test-step_impute_mode.R:63:3', 'test-step_indicate_na.R:59:3', 'test-step_intercept.R:44:3', 'test-step_inverse.R:71:3', 'test-step_lencode_bayes.R:73:3', 'test-step_lencode_glm.R:69:3', 'test-step_lencode_mixed.R:75:3', 'test-step_log.R:71:3', 'test-step_mutate.R:54:3', 'test-step_nearmiss.R:57:3', 'test-step_normalize.R:54:3', 'test-step_novel.R:71:3', 'test-step_other.R:73:3', 'test-step_pca.R:128:3', 'test-step_pca_sparse.R:106:3', 'test-step_pca_sparse_bayes.R:90:3', 'test-step_pca_truncated.R:84:3', 'test-step_range.R:71:3', 'test-step_ratio.R:62:3', 'test-step_rename.R:54:3', 'test-step_rose.R:57:3', 'test-step_scale.R:54:3', 'test-step_smote.R:57:3', 'test-step_smotenc.R:57:3', 'test-step_sqrt.R:54:3', 'test-step_tomek.R:57:3', 'test-step_unknown.R:67:3', 'test-step_upsample.R:57:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-model-xgboost.R:17:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds` to have names ".pred_class". Differences: `actual`: `expected`: ".pred_class" ── Failure ('test-model-xgboost.R:18:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds$.pred_class` to have type "character". Actual type: "NULL" ── Failure ('test-model-xgboost.R:20:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds$.pred_class` to be identical to `as.character(exps$.pred_class)`. Differences: `actual` is NULL `expected` is a character vector ('0', '0', '1', '1', '0', ...) ── Error ('test-model-xgboost.R:35:3'): boost_tree(), objective = binary:logistic, works with type = class ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = "class") at test-model-xgboost.R:35:3 2. └─orbital:::orbital.model_fit(bt_fit, type = "class") 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) ── Failure ('test-model-xgboost.R:65:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds` to have names `c(".pred_0", ".pred_1")`. Differences: `actual`: `expected`: ".pred_0" ".pred_1" ── Failure ('test-model-xgboost.R:66:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds$.pred_0` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:67:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds$.pred_1` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:74:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds` to equal `exps`. Differences: `actual` is length 0 `expected` is length 2 `names(actual)`: `names(expected)`: ".pred_0" ".pred_1" `actual$.pred_0` is absent `expected$.pred_0` is a double vector (0.536467909812927, 0.536467909812927, 0.100352562963963, 0.209237098693848, 0.94028639793396, ...) `actual$.pred_1` is absent `expected$.pred_1` is a double vector (0.463532090187073, 0.463532090187073, 0.899647437036037, 0.790762901306152, 0.05971360206604, ...) ── Error ('test-model-xgboost.R:90:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = "prob") at test-model-xgboost.R:90:3 2. └─orbital:::orbital.model_fit(bt_fit, type = "prob") 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) ── Failure ('test-model-xgboost.R:131:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds` to have names `c(".pred_class", ".pred_0", ".pred_1")`. Differences: `actual`: `expected`: ".pred_class" ".pred_0" ".pred_1" ── Failure ('test-model-xgboost.R:132:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_class` to have type "character". Actual type: "NULL" ── Failure ('test-model-xgboost.R:133:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_0` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:134:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_1` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:142:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds` to equal `exps`. Differences: `actual` is length 0 `expected` is length 3 `names(actual)`: `names(expected)`: ".pred_class" ".pred_0" ".pred_1" `actual$.pred_class` is absent `expected$.pred_class` is a character vector ('0', '0', '1', '1', '0', ...) `actual$.pred_0` is absent `expected$.pred_0` is a double vector (0.536467909812927, 0.536467909812927, 0.100352562963963, 0.209237098693848, 0.94028639793396, ...) `actual$.pred_1` is absent `expected$.pred_1` is a double vector (0.463532090187073, 0.463532090187073, 0.899647437036037, 0.790762901306152, 0.05971360206604, ...) ── Error ('test-model-xgboost.R:158:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = c("class", "prob")) at test-model-xgboost.R:158:3 2. └─orbital:::orbital.model_fit(bt_fit, type = c("class", "prob")) 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) [ FAIL 15 | WARN 2 | SKIP 113 | PASS 370 ] Error: ! Test failures. Execution halted Flavor: r-oldrel-macos-arm64

Version: 0.4.0
Check: tests
Result: ERROR Running ‘testthat.R’ [78s/150s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(orbital) > > test_check("orbital") Loading required package: parsnip Saving _problems/test-model-xgboost-17.R Saving _problems/test-model-xgboost-18.R Saving _problems/test-model-xgboost-23.R Saving _problems/test-model-xgboost-35.R Saving _problems/test-model-xgboost-65.R Saving _problems/test-model-xgboost-66.R Saving _problems/test-model-xgboost-67.R Saving _problems/test-model-xgboost-78.R Saving _problems/test-model-xgboost-90.R Saving _problems/test-model-xgboost-131.R Saving _problems/test-model-xgboost-132.R Saving _problems/test-model-xgboost-133.R Saving _problems/test-model-xgboost-134.R Saving _problems/test-model-xgboost-146.R Saving _problems/test-model-xgboost-158.R [ FAIL 15 | WARN 2 | SKIP 113 | PASS 370 ] ══ Skipped tests (113) ═════════════════════════════════════════════════════════ • On CRAN (69): 'test-adjust_equivocal_zone.R:36:1', 'test-adjust_equivocal_zone.R:155:3', 'test-adjust_numeric_range.R:123:3', 'test-adjust_predictions_custom.R:98:3', 'test-adjust_probability_threshold.R:34:1', 'test-adjust_probability_threshold.R:148:3', 'test-augment.R:41:3', 'test-dt.R:1:1', 'test-orbital.R:62:1', 'test-orbital.R:93:1', 'test-orbital.R:117:1', 'test-orbital.R:127:1', 'test-orbital.R:134:1', 'test-parsnip.R:1:1', 'test-parsnip.R:48:1', 'test-parsnip.R:63:1', 'test-recipes.R:1:1', 'test-show_query.R:7:3', 'test-sql.R:1:1', 'test-step_adasyn.R:20:1', 'test-step_adasyn.R:83:3', 'test-step_adasyn.R:111:3', 'test-step_bin2factor.R:79:3', 'test-step_boxcox.R:77:3', 'test-step_bsmote.R:20:1', 'test-step_bsmote.R:83:3', 'test-step_center.R:77:3', 'test-step_discretize.R:128:3', 'test-step_downsample.R:20:1', 'test-step_downsample.R:83:3', 'test-step_dummy.R:108:3', 'test-step_impute_mean.R:80:3', 'test-step_impute_median.R:81:3', 'test-step_impute_mode.R:93:3', 'test-step_indicate_na.R:83:3', 'test-step_intercept.R:67:3', 'test-step_inverse.R:94:3', 'test-step_lag.R:63:3', 'test-step_lencode_bayes.R:101:3', 'test-step_lencode_glm.R:96:3', 'test-step_lencode_mixed.R:104:3', 'test-step_log.R:94:3', 'test-step_mutate.R:77:3', 'test-step_nearmiss.R:20:1', 'test-step_nearmiss.R:83:3', 'test-step_normalize.R:77:3', 'test-step_novel.R:99:3', 'test-step_other.R:101:3', 'test-step_pca.R:152:3', 'test-step_pca_sparse.R:133:3', 'test-step_pca_sparse_bayes.R:118:3', 'test-step_pca_truncated.R:111:3', 'test-step_range.R:94:3', 'test-step_ratio.R:88:3', 'test-step_rename.R:77:3', 'test-step_rose.R:20:1', 'test-step_rose.R:83:3', 'test-step_scale.R:77:3', 'test-step_smote.R:20:1', 'test-step_smote.R:83:3', 'test-step_smotenc.R:20:1', 'test-step_smotenc.R:83:3', 'test-step_sqrt.R:77:3', 'test-step_tomek.R:20:1', 'test-step_tomek.R:83:3', 'test-step_unknown.R:97:3', 'test-step_upsample.R:20:1', 'test-step_upsample.R:83:3', 'test-workflows.R:1:1' • empty test (2): 'test-augment.R:31:1', 'test-augment.R:111:1' • is.na(testthat_spark_env_version()) is TRUE (42): 'test-adjust_equivocal_zone.R:113:3', 'test-adjust_numeric_range.R:96:3', 'test-adjust_predictions_custom.R:68:3', 'test-adjust_probability_threshold.R:109:3', 'test-step_adasyn.R:57:3', 'test-step_bin2factor.R:56:3', 'test-step_boxcox.R:54:3', 'test-step_bsmote.R:57:3', 'test-step_center.R:54:3', 'test-step_discretize.R:102:3', 'test-step_downsample.R:57:3', 'test-step_dummy.R:82:3', 'test-step_impute_mean.R:56:3', 'test-step_impute_median.R:57:3', 'test-step_impute_mode.R:63:3', 'test-step_indicate_na.R:59:3', 'test-step_intercept.R:44:3', 'test-step_inverse.R:71:3', 'test-step_lencode_bayes.R:73:3', 'test-step_lencode_glm.R:69:3', 'test-step_lencode_mixed.R:75:3', 'test-step_log.R:71:3', 'test-step_mutate.R:54:3', 'test-step_nearmiss.R:57:3', 'test-step_normalize.R:54:3', 'test-step_novel.R:71:3', 'test-step_other.R:73:3', 'test-step_pca.R:128:3', 'test-step_pca_sparse.R:106:3', 'test-step_pca_sparse_bayes.R:90:3', 'test-step_pca_truncated.R:84:3', 'test-step_range.R:71:3', 'test-step_ratio.R:62:3', 'test-step_rename.R:54:3', 'test-step_rose.R:57:3', 'test-step_scale.R:54:3', 'test-step_smote.R:57:3', 'test-step_smotenc.R:57:3', 'test-step_sqrt.R:54:3', 'test-step_tomek.R:57:3', 'test-step_unknown.R:67:3', 'test-step_upsample.R:57:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-model-xgboost.R:17:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds` to have names ".pred_class". Differences: `actual`: `expected`: ".pred_class" ── Failure ('test-model-xgboost.R:18:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds$.pred_class` to have type "character". Actual type: "NULL" ── Failure ('test-model-xgboost.R:20:3'): boost_tree(), objective = binary:logistic, works with type = class ── Expected `preds$.pred_class` to be identical to `as.character(exps$.pred_class)`. Differences: `actual` is NULL `expected` is a character vector ('0', '0', '1', '1', '0', ...) ── Error ('test-model-xgboost.R:35:3'): boost_tree(), objective = binary:logistic, works with type = class ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = "class") at test-model-xgboost.R:35:3 2. └─orbital:::orbital.model_fit(bt_fit, type = "class") 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) ── Failure ('test-model-xgboost.R:65:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds` to have names `c(".pred_0", ".pred_1")`. Differences: `actual`: `expected`: ".pred_0" ".pred_1" ── Failure ('test-model-xgboost.R:66:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds$.pred_0` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:67:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds$.pred_1` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:74:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Expected `preds` to equal `exps`. Differences: `actual` is length 0 `expected` is length 2 `names(actual)`: `names(expected)`: ".pred_0" ".pred_1" `actual$.pred_0` is absent `expected$.pred_0` is a double vector (0.536467909812927, 0.536467909812927, 0.100352562963963, 0.209237098693848, 0.94028639793396, ...) `actual$.pred_1` is absent `expected$.pred_1` is a double vector (0.463532090187073, 0.463532090187073, 0.899647437036037, 0.790762901306152, 0.05971360206604, ...) ── Error ('test-model-xgboost.R:90:3'): boost_tree(), objective = binary:logistic, works with type = prob ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = "prob") at test-model-xgboost.R:90:3 2. └─orbital:::orbital.model_fit(bt_fit, type = "prob") 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) ── Failure ('test-model-xgboost.R:131:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds` to have names `c(".pred_class", ".pred_0", ".pred_1")`. Differences: `actual`: `expected`: ".pred_class" ".pred_0" ".pred_1" ── Failure ('test-model-xgboost.R:132:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_class` to have type "character". Actual type: "NULL" ── Failure ('test-model-xgboost.R:133:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_0` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:134:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds$.pred_1` to have type "double". Actual type: "NULL" ── Failure ('test-model-xgboost.R:142:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Expected `preds` to equal `exps`. Differences: `actual` is length 0 `expected` is length 3 `names(actual)`: `names(expected)`: ".pred_class" ".pred_0" ".pred_1" `actual$.pred_class` is absent `expected$.pred_class` is a character vector ('0', '0', '1', '1', '0', ...) `actual$.pred_0` is absent `expected$.pred_0` is a double vector (0.536467909812927, 0.536467909812927, 0.100352562963963, 0.209237098693848, 0.94028639793396, ...) `actual$.pred_1` is absent `expected$.pred_1` is a double vector (0.463532090187073, 0.463532090187073, 0.899647437036037, 0.790762901306152, 0.05971360206604, ...) ── Error ('test-model-xgboost.R:158:3'): boost_tree(), objective = binary:logistic, works with type = c(class, prob) ── Error in `build_fit_formula_xgb(parsedmodel)`: Only objectives "binary:logistic", "reg:squarederror", "reg:logistic", "binary:logitraw" are supported yet. Backtrace: ▆ 1. ├─orbital::orbital(bt_fit, type = c("class", "prob")) at test-model-xgboost.R:158:3 2. └─orbital:::orbital.model_fit(bt_fit, type = c("class", "prob")) 3. ├─base::tryCatch(...) 4. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 5. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 6. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 7. ├─tidypredict::tidypredict_fit(x) 8. └─tidypredict:::tidypredict_fit._xgb.Booster(x) 9. ├─tidypredict::tidypredict_fit(model$fit) 10. └─tidypredict:::tidypredict_fit.xgb.Booster(model$fit) 11. └─tidypredict:::build_fit_formula_xgb(parsedmodel) 12. └─cli::cli_abort("Only objectives {.val binary:logistic}, {.val reg:squarederror},\n {.val reg:logistic}, {.val binary:logitraw} are supported yet.") 13. └─rlang::abort(...) [ FAIL 15 | WARN 2 | SKIP 113 | PASS 370 ] Error: ! Test failures. Execution halted Flavor: r-oldrel-macos-x86_64