| aam.cl | Estimate Classification Accuracy By Resampling Method |
| aam.mcl | Estimate Classification Accuracy By Resampling Method |
| abr1 | abr1 Data |
| accest | Estimate Classification Accuracy By Resampling Method |
| accest.default | Estimate Classification Accuracy By Resampling Method |
| accest.formula | Estimate Classification Accuracy By Resampling Method |
| binest | Binary Classification |
| boot.err | Calculate .632 and .632+ Bootstrap Error Rate |
| boxplot.frankvali | Boxplot Method for Class 'frankvali' |
| boxplot.maccest | Boxplot Method for Class 'maccest' |
| cl.auc | Assess Classification Performances |
| cl.perf | Assess Classification Performances |
| cl.rate | Assess Classification Performances |
| cl.roc | Assess Classification Performances |
| classifier | Wrapper Function for Classifiers |
| combn.pw | Generate Pairwise Data Set |
| cor.cut | Correlation Analysis Utilities |
| cor.hcl | Correlation Analysis Utilities |
| cor.heat | Correlation Analysis Utilities |
| cor.heat.gram | Correlation Analysis Utilities |
| corrgram.circle | Correlation Analysis Utilities |
| corrgram.ellipse | Correlation Analysis Utilities |
| dat.sel | Generate Pairwise Data Set |
| df.summ | Summary Utilities |
| feat.agg | Rank aggregation by Borda count algorithm |
| feat.freq | Frequency and Stability of Feature Selection |
| feat.mfs | Multiple Feature Selection |
| feat.mfs.stab | Multiple Feature Selection |
| feat.mfs.stats | Multiple Feature Selection |
| feat.rank.re | Feature Ranking with Resampling Method |
| frank.err | Feature Ranking and Validation on Feature Subset |
| frankvali | Estimates Feature Ranking Error Rate with Resampling |
| frankvali.default | Estimates Feature Ranking Error Rate with Resampling |
| frankvali.formula | Estimates Feature Ranking Error Rate with Resampling |
| fs.anova | Feature Selection Using ANOVA |
| fs.auc | Feature Selection Using Area under Receiver Operating Curve (AUC) |
| fs.bw | Feature Selection Using Between-Group to Within-Group (BW) Ratio |
| fs.cl | Estimates Feature Ranking Error Rate with Resampling |
| fs.cl.1 | Estimates Feature Ranking Error Rate with Resampling |
| fs.kruskal | Feature Selection Using Kruskal-Wallis Test |
| fs.pca | Feature Selection by PCA |
| fs.pls | Feature Selection Using PLS |
| fs.plsvip | Feature Selection Using PLS |
| fs.plsvip.1 | Feature Selection Using PLS |
| fs.plsvip.2 | Feature Selection Using PLS |
| fs.relief | Feature Selection Using RELIEF Method |
| fs.rf | Feature Selection Using Random Forests (RF) |
| fs.rf.1 | Feature Selection Using Random Forests (RF) |
| fs.rfe | Feature Selection Using SVM-RFE |
| fs.snr | Feature Selection Using Signal-to-Noise Ratio (SNR) |
| fs.welch | Feature Selection Using Welch Test |
| fs.wilcox | Feature Selection Using Wilcoxon Test |
| get.fs.len | Get Length of Feature Subset for Validation |
| grpplot | Plot Matrix-Like Object by Group |
| hm.cols | Correlation Analysis Utilities |
| lda.plot.wrap | Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA |
| lda.plot.wrap.1 | Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA |
| list2df | List Manipulation Utilities |
| maccest | Estimation of Multiple Classification Accuracy |
| maccest.default | Estimation of Multiple Classification Accuracy |
| maccest.formula | Estimation of Multiple Classification Accuracy |
| mbinest | Binary Classification by Multiple Classifier |
| mc.anova | Multiple Comparison by 'ANOVA' and Pairwise Comparison by 'HSDTukey Test' |
| mc.fried | Multiple Comparison by 'Friedman Test' and Pairwise Comparison by 'Wilcoxon Test' |
| mc.norm | Normality Test by Shapiro-Wilk Test |
| mds.plot.wrap | Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA |
| mdsplot | Plot Classical Multidimensional Scaling |
| mv.fill | Missing Value Utilities |
| mv.stats | Missing Value Utilities |
| mv.zene | Missing Value Utilities |
| osc | Orthogonal Signal Correction (OSC) |
| osc.default | Orthogonal Signal Correction (OSC) |
| osc.formula | Orthogonal Signal Correction (OSC) |
| osc_sjoblom | Orthogonal Signal Correction (OSC) Approach by Sjoblom et al. |
| osc_wise | Orthogonal Signal Correction (OSC) Approach by Wise and Gallagher. |
| osc_wold | Orthogonal Signal Correction (OSC) Approach by Wold et al. |
| panel.elli | Panel Function for Plotting Ellipse and outlier |
| panel.elli.1 | Panel Function for Plotting Ellipse and outlier |
| panel.outl | Panel Function for Plotting Ellipse and outlier |
| panel.smooth.line | Panel Function for Plotting Regression Line |
| pca.comp | Plot Function for PCA with Grouped Values |
| pca.outlier | Outlier detection by PCA |
| pca.outlier.1 | Outlier detection by PCA |
| pca.plot | Plot Function for PCA with Grouped Values |
| pca.plot.wrap | Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA |
| pcalda | Classification with PCADA |
| pcalda.default | Classification with PCADA |
| pcalda.formula | Classification with PCADA |
| pcaplot | Plot Function for PCA with Grouped Values |
| plot.accest | Plot Method for Class 'accest' |
| plot.maccest | Plot Method for Class 'maccest' |
| plot.pcalda | Plot Method for Class 'pcalda' |
| plot.plsc | Plot Method for Class 'plsc' or 'plslda' |
| plot.plslda | Plot Method for Class 'plsc' or 'plslda' |
| pls.plot.wrap | Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA |
| plsc | Classification with PLSDA |
| plsc.default | Classification with PLSDA |
| plsc.formula | Classification with PLSDA |
| plslda | Classification with PLSDA |
| plslda.default | Classification with PLSDA |
| plslda.formula | Classification with PLSDA |
| predict.osc | Predict Method for Class 'osc' |
| predict.pcalda | Predict Method for Class 'pcalda' |
| predict.plsc | Predict Method for Class 'plsc' or 'plslda' |
| predict.plslda | Predict Method for Class 'plsc' or 'plslda' |
| preproc | Pre-process Data Set |
| preproc.const | Pre-process Data Set |
| preproc.sd | Pre-process Data Set |
| print.accest | Estimate Classification Accuracy By Resampling Method |
| print.frankvali | Estimates Feature Ranking Error Rate with Resampling |
| print.maccest | Estimation of Multiple Classification Accuracy |
| print.osc | Orthogonal Signal Correction (OSC) |
| print.pcalda | Classification with PCADA |
| print.plsc | Classification with PLSDA |
| print.plslda | Classification with PLSDA |
| print.summary.accest | Estimate Classification Accuracy By Resampling Method |
| print.summary.frankvali | Estimates Feature Ranking Error Rate with Resampling |
| print.summary.maccest | Estimation of Multiple Classification Accuracy |
| print.summary.osc | Orthogonal Signal Correction (OSC) |
| print.summary.pcalda | Classification with PCADA |
| print.summary.plsc | Classification with PLSDA |
| print.summary.plslda | Classification with PLSDA |
| pval.reject | P-values Utilities |
| pval.test | P-values Utilities |
| save.tab | Save List of Data Frame or Matrix into CSV File |
| shrink.list | List Manipulation Utilities |
| stats.mat | Statistical Summary Utilities for Two-Classes Data |
| stats.vec | Statistical Summary Utilities for Two-Classes Data |
| summary.accest | Estimate Classification Accuracy By Resampling Method |
| summary.frankvali | Estimates Feature Ranking Error Rate with Resampling |
| summary.maccest | Estimation of Multiple Classification Accuracy |
| summary.osc | Orthogonal Signal Correction (OSC) |
| summary.pcalda | Classification with PCADA |
| summary.plsc | Classification with PLSDA |
| summary.plslda | Classification with PLSDA |
| trainind | Generate Index of Training Samples |
| tune.func | Functions for Tuning Appropriate Number of Components |
| tune.pcalda | Functions for Tuning Appropriate Number of Components |
| tune.plsc | Functions for Tuning Appropriate Number of Components |
| tune.plslda | Functions for Tuning Appropriate Number of Components |
| un.list | List Manipulation Utilities |
| valipars | Generate Control Parameters for Resampling |
| vec.summ | Summary Utilities |
| vec.summ.1 | Summary Utilities |